MODELS 08 Workshop ESMDE

Towards a generic framework for empirical
studies of Model-Driven Engineering

Benoit Vanderose and Naji Habra

PReCISE Research Centre
Faculty of Computer Science
University of Namur
5000 Namur, Belgium
{bva,nha}@info.fundp.ac.be
http://www.fundp.ac.be/precise

Abstract. The goal of this paper is to introduce a work-in-progress
approach that intends to formalize and facilitate empirical studies in
Software Engineering in general and in Model-Driven Engineering in par-
ticular. The main idea is to use a detailed model of software that makes
explicit the different intermediate models used at the different levels of
abstraction, their different quality characteristics together with their re-
lationships. The expected benefits of using such an explicit modeling is
illustrated though five examples for which empirical studies are designed
(but not yet conducted) on basis of that approach.

1 Introduction

Though Model-Driven Engineering techniques are very in vogue in academic
world, their introduction into industry seems very slow. One of the suggested
reasons is the difficulty to convince decision makers of Model-Driven Engineering
advantages in terms of qualities and consequently regarding return on invest-
ment. Indeed, such argumentation necessitates empirical evidence.

Some major problems in conducting empirical studies in MDE are related
to the use of classical quality models. In this paper, we claim that considering
software as a single product with a list of quality characteristics (maintainability
readability, efficiency...) is too rough to be used as basis for empirical studies in
MDE. Instead, we suggest the use of a detailed model of the software products
that makes explicit the different intermediate products (the different interrelated
models) together with their relationships. The ultimate goal is to elaborate a
framework to help design empirical studies in MDE. The remainder of this paper
is organized as follows: Section 2 presents some related works our approach relies
on and complements as well as the remaining problems we intend to address.
Section 3 describes the framework and the approach themselves while Section 4
describes some examples of use.

71

MODELS 08 Workshop ESMDE

2 Related work and Issues

The effort described here relies on research linked to both quality measurement
and empirical software engineering. The basis of empirical studies in software
engineering can be found in [28,18]. Software measurement has witnessed too
many metric proposals to cite them here but also benefits from generic theoretical
works like [9, 16] while quality assessment benefits from numerous quality mod-
els — notably McCall’s [25,19], Boehm’s [3, 2], FURPS [15], ISO [17], Dromey’s
[8]. Unfortunately those works do not take explicitly into account design-related
quality. Software design quality still benefits from its own research. For instance,
[6] summarizes many object-oriented design measures and studies the relation-
ships between them and software quality. We can find publications, notably [13,
14,12,11, 10, 20, 21], that focus on how to estimate the quality of models. Finally,
a generic approach to evaluate design is also proposed in [7].

Nevertheless we still identify some difficulties and limitations that appear
when conducting empirical investigations in Software Engineering in general and
in Model-Driven Engineering in particular.

To begin with, software measurement methods in general lack clarity about
what they really measure. Theoretically, measurement process consists in quan-
tifying relevant features (attributes) of a product (entity) in order to estimate
another feature (quality) that is not directly quantifiable [9]. Practically, the
entity supposed to be measured is very frequently not defined in a precise way
and roughly called “software”. If this view is sufficient for some empirical studies
focusing on the quality of the software product as a whole, investigating Model-
Driven Engineering necessitates more. In fact, since Model-Driven Engineering
copes with different models and handles them as distinguished products, the
qualities of the different models have to be clearly distinguished.

Moreover, the attribute supposed to be measured is frequently unclear. Num-
bers produced by applying a measurement method on a given model are some-
times used to estimate or predict different attributes without any clarification
— e.g., a complexity measurement method used as size measurement. This can
lead to incongruous use of software metrics and therefore to a completely wrong,
or at least biased, quality assessment [16].

Model-Driven Engineering deals with a succession of models, from the more
abstract ones to the code. Each model corresponds to a given abstraction level
and has its own concerns about quality. But, as any model produced during
software development is a part of an overall workflow, the inner quality of a given
model is as important as the preservation of this quality through subsequent
transformation steps leading to the final product. As a consequence, it can be
unclear whether a quality criteria of a given model from a given development
step actually improves or worsens the quality of the overall software product.

Also, Model-Driven Engineering is based on model transformations. However,
research focuses are usually put on the preservation of semantic properties —
the correctness of a transformation is defined on that basis. Traditional seman-
tics approaches only encapsulate the “functional” aspects while empirical studies
are needed to estimate a larger set of software quality attributes — including

72

MODELS 08 Workshop ESMDE

various non-functional aspects. Whatever quality model and vocabulary is used
quality attributes include not only the functionality but also other attributes
which are based on cognitive sub-characteristics — e.g., understandability, mod-
ifiability,...— related to the syntax. Empirical investigation in Model-Driven
Engineering should thus take this specific type of qualities into account.

Finally, software development is mainly a matter of information transmis-
sion between people and transformation through different levels of abstraction
and viewpoints [7]. Nevertheless, almost every effort relating to quality does
not address such aspects — i.e. how easy the transformation process of a given
model will be. Model-Driven Engineering also supposes that most of the models
should be generated through automated — or at least very systematic — trans-
formations. Investigating the preservation of the quality attributes all along the
transformation process trough empirical studies should thus also imply to ques-
tion the quality of these transmissions and transformations.

3 An approach to improve empirical studies of quality

This section introduces a framework we are elaborating with the intent to address
the previously cited issues. The basic idea is to use model of software that makes
explicit the various models used in the development as well as their relationships
in terms of quality. Section 3.1 deals with the model of the software while Section
3.2 is concerned with the quality characteristics.

3.1 Modeling the software product(s).

Our framework relies on an explicit representation of software as a complex
and composite product. In the followings we introduce a generic structure of
software (see Figure 1) we claim to be sufficient to illustrate our approach.
Our generic model introduces two levels of decomposition. The first level of
decomposition focuses on software as the collection of outcomes of a multifaceted
process involving many distinct activities. As a matter of fact, software life cycle
models intend to organize those activities in a structured and rational manner
[26] and the outcome of these activities is mostly composed of models — it is
even arguable that this outcome is exclusively composed of models if “model” is
defined as just a representation. In order to be as general as possible and to cover
most life cycle models, we use a generic structure which divides the process into
three categories of activities: Requirement Engineering, Architectural Design and
Implementation where each category includes all the (sub)activities involved
in the production of three global artifacts: the Requirements, the Design and
the Source Code. Even though the process behind a software life cycle is not
necessary linear — as shown notably in [4, 5,24, 22] —, each global artifact relies
on another previously produced one (except for the Requirements).

The second level of decomposition logically focuses on the internal structure
of those composite global artifacts. Each of them is in fact made of one or more
specialized elements referenced to as elementary artifacts in the framework. The

73

MODELS 08 Workshop ESMDE

Process Computer
of the assited
empirical world Process

S PR
g Architectural h
_______ .| Requirements e Implementation |
Engineering - esign -
4 :
v . A
= . _
&ﬂ . / —
design-related —
users without _K/ ‘ users with
software system requirement-related code-related software system

document #1

document #1
document #1
design-related ===
aug document #2
5 code-related
document #21
requirement-related B
document #2 l (|

N

design-related pum B
document #3 =

code-related
document #3

design-related
document #4

IS

=

requirement-related
— document #X

L ==

E code-related
= document #2
rely on design-related
document #Y Software

Fig. 1. Software as a composite and complex artifact

word elementary artifact means here any self sufficient piece of information com-
prised in a global artifact (e.g. a diagram, a structured text, a list of items in
a text, a file, etc.). Each elementary artifact has a type (e.g., static structure
diagram, dynamic structure diagram, source file, etc.), is written in a given
language (e.g., UML, java, etc.), with a given level of abstraction and can be
requirement-, design-, or code-related. Moreover, the granularity of the decom-
position is variable so that it is possible to define elementary artifacts with more
or less important scope. Finally, each element is part of an interconnected net-
work of dependencies partially inherited from the dependencies of the composite
global artifacts. At this level of our investigation, such a generic model seems to
be sufficient to support the approach.

3.2 Modeling the software characteristics.

The main use of this view is to support a refined definition of the different qual-
ity characteristics, to relate each of them to the adequate product (elementary
artifact or composite one) and to express and study relationships between them.
The final aim is to build a quality model that is more flexible and adequate for
model-driven approaches than the existing ones. Practically, as the quality of
any type of elements can almost certainly be evaluated through a set of pro-
posed “quality characteristics” — as hinted notably in [12,11,10]—, a powerful

74

MODELS 08 Workshop ESMDE

quality model could be built by defining a list of characteristics assigned to each
element then by determining the “influence” relationship between attributes.
At this point, we can illustrate the “influence relationship” with the following
partial example based on our practice, and common sense.

Each entry of the table below has the following structure:

Globalartifact. Type OfElementaryartifact. Characteristic, where

— Globalartifact is either R(equirements), D(esign) or C(ode).

— TypeOfElementaryartifact is : NFu stands for non functional require-
ments, Fu for functional requirements, Struc for structural aspect, Behav
for behavioral aspects, Run for aspects involved at runtime or “*” which
means that any type of Elementary Artifact is involved. The type is used
to categorize the elementary artifacts according to the role they play in the
development. Not every type is present in every global artifact.

— Characteristic is either Main(tainability), Usab(ility), Func(tionality), Effi
(ciency) [17] or Pres(ence) — since the presence of a given artifact can be
considered as quality-related information in this approach as we will see in
Section 4. A characteristic could be meaningful for only a subset of a type
of elementary artifact but this preliminary attempt intends to be as generic
and simple as possible.

— Each cell contains either N(no influence expected) or I (some influence ex-
pected)

Table 1. Expected Influence relationships

R.NFu.Usab
R.Fu.Usab
R.* . Pres

~| ~|=| D.Struc.Main
= |~|=|~| D.Behav.Mainl
~ |~|~|=| C.Run.Func
~ |~|=|~| C.Run.Effi

~ |~|=|=|C.*. Main

D.Struc.Main |...

~
~

D.Behav.Main|...| N
D.* Pres T I | T|1T]1

The table intends to give a new formulation of the questions to be dealt with
through empirical studies. It shows the plausible expectations in terms of in-
fluence at a very general level. That is, its content represents a set of plausible

75

MODELS 08 Workshop ESMDE

hypotheses to explore through empirical investigations, each of them involving
going to a lower level (subtype of element artifact, quality sub-characteristic and
internal metrics). The table is far from being final at this point and each “path”
can be questioned. Also, this current table is only focusing on very generic char-
acteristics so that each user of the framework can expand, propose and study
new relationships or refine existing ones with different characteristics or other
classifications of artifacts. So it is only through the massive use of the proposed
method within the community of Empirical Software Engineering that a con-
sensual and widely accepted table of this kind could be achieved. We believe
that such table would be a more helpful basis to conduct empirical studies in
model-driven engineering than usual quality models.

4 Some typical scenarios of use

The novelty of the framework introduced above lies in the particular point of
view adopted. It is more flexible in the sense that it allows to get inside Model-
Driven process and investigate the influence of various artifacts on other ones.
Then this approach supports more specialized investigation such as the relevance
of a particular transformation in comparison with another.

The first step in order to use the framework is to make explicit the dependen-
cies between studied artifacts — e.g., elementary artifact cl is produced thanks
to d1 and d2. Then the idea is to consider these variables as “typed” variables
where each “type” (requirement-, design, code-related) has its own set of mean-
ingful quality characteristics. Finally, the table of influences is used to express
the hypotheses about the characteristics involved and their relationships. Besides
being an innovative way to support empirical studies in general, the present ap-
proach particularly suits Model-Driven Engineering for two main reasons. First,
most of elementary artifacts, are supposed to be models. Since elementary ar-
tifacts are almost the primary form of expression of our framework and models
are the one of MDE, the two approaches should be compatible. Secondly, our
approach is designed to address the transformation of information, which is a
core concept of any model-driven approach.

The remainder of this Section illustrates the use of the framework on five
hypothetical experiments and highlights the benefits of the framework in those
situations. The structure of the cases is inspired by the GQM paradigm [1, 27].
Case 1

— Goal. Study the impact of the presence of a design pattern P on the main-
tainability of the produced code.

— Question. Let d1, d2 be 2 class diagrams, where d2 satisfies the same set
of requirement-related elementary artifacts REQ1 than d1, but d1 uses a
design pattern P while d2 does not; c1 & ¢2 are two pieces of java program
produced from d1, d2, respectively, through a transformation T. Is ¢2 more
maintainable than ¢1?

76

MODELS 08 Workshop ESMDE

— Metrics. To study the maintainability of the code, the experimenter could
use the effort needed to complete a maintenance task as a metric. This is con-
sistent with classical quality models which propose to decompose maintain-
ability into sub-characteristics which are mainly measurable through effort.
Though the choice of such measurement method is questionable by itself, it
could still be used as an approximation.

— Discussion. This experiment could be achieved without the support of the
framework but would miss some benefits. With our framework, this exper-
iment can be expressed as the investigation of the influence of a structural
design-related elementary artifact on the maintainability of a code-related
elementary artifact. This path is present in the table of expected influences
(Table 3.2), which means that the experiment seems relevant. Moreover, the
use of the framework highlights the fact than design patterns are part of the
design and not the code, a view that is not always admitted.

Case 2

— Goal. Study the impact of one design characteristic on the same character-
istic at the code level. For instance the goal could be to investigate whether
a focus on the maintainability at the design level does not produce more
complex code and therefore impact negatively the global maintainability of
the software product.

— Question. Let d1, d2 be 2 diagrams at the design level, where d1 is more
maintainable than d2, and ¢l & ¢2 be two pieces of java program produced
from d1 & d2, respectively, through a transformation T. Is ¢2 more main-
tainable than c17

— Metrics. This situation illustrates perfectly the case where the present ap-
proach complements and is nurtured by other related works when it comes
to selecting the adequate metrics. Indeed, we can use and integrate to the
framework the research that has been done regarding the maintainability of
UML diagrams and how to evaluate it thanks to internal metrics [12,11].
For the code maintainability, see Case 1.

— Discussion. This case is almost similar to the first one but illustrates how
the framework allows us to further investigate software quality. While the
first case was about the influence of a technique on a quality characteristic,
this case proposes to confront the quality characteristics of two entities and
see how they are related. Without the framework and its specific point of
view, this experiment — the investigation of the influence of the maintain-
ability of a design-related elementary artifact on the maintainability of a
code-related elementary artifact — would need an extra descriptive effort to
show that maintainability does not apply to the same entity on both sides
of the relationship.

Case 3

— Goal. Study the impact of one design characteristic on another characteristic
at the code level. For instance the goal could be to investigate whether a

77

MODELS 08 Workshop ESMDE

focus on the maintainability all along the design process does not impact
negatively the efficiency of the software code.

Question. Let d1, d2 be 2 design models where d1 is more maintainable
than d2 and ¢l & ¢2 be two pieces of java program produced from d1, d2,
respectively, through a transformation T. Is c¢2 more efficient than c1?
Metrics. The same principles as in Case 2 apply for d1 and d2. Metrics
related to efficiency could be specifically designed for the experiment or
taken from ISO standards.

Discussion. This case is set at the same level than Case 2 : the aim is to
study internal mechanisms of software quality by questioning the relationship
between two quality characteristics. The framework helps give sense to this
experiment : though maintainability and efficiency do not seem to be related
in any way when applied to the same entity, the framework allows us express
the fact that a relation of cause and effect exists between the two elementary
artifacts and probably between their respective quality characteristics. In
this context, the legitimacy of the question is clearer.

Case 4

Goal. Study the benefits of a given transformation methodology (or tool)
regarding the preservation of a given quality characteristic. For instance the
goal could be to question whether a transformation T preserves, improves
or worsens the complexity of the software code.

Question. Let DES be a collection of design-related elementary artifacts
(e.g., class diagrams & statecharts & sequence diagrams) and let C1, C2,.. .,
Cn be different source code — and thus global artifacts — produced by
the transformations T1, T2,...,Tn, respectively. Is C1 more complex than
C2,..., Cn?

Metrics. McCabe’s number could be used to assess complexity according
that some precaution is taken [23].

Discussion. This case illustrates how the framework can support investi-
gations about the quality of the engineering process. In previous cases, the
transformation process was fixed and the studied variable was an elementary
artifact. Here, we fix the design-related elementary artifacts and investigate
how various transformations provide various level of quality at the code level.

Case 5

Goal. Determine the relevant level of abstraction — requirement-, design-
or code-related — and the suitable models involved where it would be mean-
ingful to take a given characteristic into account — e.g., security.
Question. Let < R1,D1,C1 >, < R2,D2,C2 > and < R3,D3,C3 >
be three software products; the non-functional requirement of security is
modeled by an adequate elementary artifact since the requirement level in
< R1,D1,C1 >, since the design level in < R2, D2, C2 > and in the code
in < R3, D3,C3 >, which is the most secure product?

Metrics. Security metrics are not proposed here but could be designed
specially for the experiment.

78

MODELS 08 Workshop ESMDE

— Discussion. This case illustrates how the framework can express questions
about the “temporal” impact of the introduction of some elementary arti-
facts. It also shows how the particular point of view chosen in this approach
allows to make a quality characteristic out of a very simple attribute like the
presence of absence of a given artifact.

5 Conclusion and future work

The approach introduced in this paper is a first and currently evolving attempt
to address some limitations of software quality assessment. Though relying on a
very simple and light mechanism, the main benefit brought by this framework is
to force the experimenter to adopt a more accurate and flexible view of software.
The examples given in Section 4 are just some of the possible experimentations
that could benefit from it. In each case, the use of “typed variables” clarifies
the “dimension” involved and allows to avoid ambiguity about what the experi-
menter expects to address. Section 4 also illustrates how basic attributes like the
presence of a given elementary artifact become valuable quality criteria when
software is considered from this point of view — i.e., as a composite artifact
resulting from a network of interconnected pieces of information.

As an early work, the approach naturally lacks experimental data to con-
firm all the benefits we expect. The next step of the development will be to
apply the framework to an actual empirical study in the context of a student
development project. The table of expected influences also need experimental
confirmation, but should eventually constitute a valuable reference for anyone
interested in further transversal investigations about the internal mechanisms of
software quality.

References

1. Basili, V.R.: Using Measurement to Build Core Competencies in Software. Seminar
sponsored by Data and Analysis Center for Software. (2005)

2. Boehm, B.W., Brown, J. R., Lipow, M.: Quantitative evaluation of software quality.
In: International Conference on Software Engineering (1976)

3. Boehm, B.W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G., and Merritt, M.:
Characteristics of Software Quality. North Holland (1978)

4. Boehm, B. W.: Software Engineering Economics. 1st. Prentice Hall PTR. (1981)

5. Boehm, B. W.: A Spiral Model of Software Development and Enhancement. Com-
puter 21, 5,pp. 61-72. (1988)

6. Briand, L.C., Wust, J., Daly, J.W., Porter, D.V.: Exploring the relationships be-
tween design measures and software quality. In: object-oriented systems, Journal of
Systems and Software, 51, 3, pp. 245-273. (2000)

7. Budgen, D.: Software Design. 2. Addison-Wesley Longman Publishing Co.,
Inc.(2003)

8. Dromey, R. G.: A model for software product quality. In: IEEE Transactions on
Software Engineering, no. 2, pp. 146-163. IEEE Computer Society, Los Alamitos
(1995)

79

MODELS 08 Workshop ESMDE

9. Fenton, N. E., Pfleeger, S. L. : Software Metrics: a Rigorous and Practical Approach.
2nd. PWS Publishing Co. (1998)

10. Genero, M., Piattini, M., Calero, C.: Empirical Validation of Class Diagram Met-
rics. In Proceedings of the 2002 international Symposium on Empirical Software En-
gineering (October 03 - 04, 2002). International Symposium on Empirical Software
Engineering. IEEE Computer Society, Washington, DC (2002)

11. Genero, M., Piattini, M., Manso, E., Cantone, G.: Building UML Class Diagram
Maintainability Prediction Models Based on Early Metrics. In: Proceedings of the 9th
international Symposium on Software Metrics (September 03-05, 2003), METRICS.
IEEE Computer Society, Washington, DC (2003)

12. Genero Bocco, M., Moody, D. L., Piattini, M. : Assessing the capability of internal
metrics as early indicators of maintenance effort through experimentation :Research
Articles. J. Softw. Maint. Evol. 17, 3, pp.225-246 (2005)

13. Genero, M., Piattini, M., Calero, C.: A Survey of Metrics for UML Class Diagrams
Journal of Object Technology, 4, 9, 59-92. (2005)

14. Genero, M.: Metrics for Software Conceptual Models. World Scientific Publishing
Co., Inc. (2005)

15. Grady, R. B.: Practical Software Metrics for Project Management and Process
Improvement. Prentice-Hall, Inc, Upper Saddle River, NJ, USA (1992). Practical
Software Metrics for Project Management and Process Improvement. Prentice Hall,
p. 32.

16. Habra, N.; Abran, A., Lopez, M., and Sellami, A.: A framework for the design
and verification of software measurement methods. J. Syst. Softw. 81, 5, pp633-648.
(2008)

17. ISO/IEC 9126. Software Product Evaluation—Quality Characteristics and Guide-
lines for the User, Geneva, International Organization for Standardization. (2001)
18. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.

Kluwer Academic Publishers. (2001)

19. Kitchenham, B., Pfleeger, S. L.: Software quality: the elusive target [special issues
section]. IEEE Software, no. 1, pp. 12-21 (1996)

20. Lange, C.F.J.: Empirical Investigations in Software Architecture Completeness.
TU Eindhoven; November 12. (2003)

21. Lange, C., Chaudron, M., Muskens, J.: In Practice: UML Software Architecture
and Design Description. In: IEEE Software ,vol. 23, no. 2, pp. 40-46. (2006)

22. Larman, C. and Basili, V. R.: Tterative and Incremental Development: A Brief
History. Computer 36, 6,pp. 47-56. (2003)

23. Lopez, M., Habra, N.; Abran, A.: A Structured Analysis of the McCabe Cyclomatic
Complexity Measure. In: Proceedings of the 14th International Workshop on Software
Measurement (IWSM2004) Berlin, Germany (2004)

24. Martin, J.: Rapid Application Development. Macmillan Publishing Co., Inc.(1991)

25. McCall, J. A., Richards, P. K., Walters, G. F.: Factors in Software Quality. Nat’l
Tech.Information Service, Vol. 1, 2 and 3 (1977)

26. Pressman, R. S.: Software Engineering: a Practitioner’s Approach. McGraw-Hill
Science/Engineering/Math.(2004)

27. Van Solingen, R.: The Goal/Question/Metric Method. McGraw-Hill Education.
(1999)

28. Wohlin, C., Runeson, P.; Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Ex-
perimentation in software engineering: an introduction. Kluwer Academic Publishers
(2000)

80

