
Automated Safety Analysis for Domain-Specific

Languages

Richard F. Paige, Louis M. Rose, Xiaocheng Ge, Dimitrios S. Kolovos, and
Phillip J. Brooke

Department of Computer Science, University of York
{paige, louis, xchge, dkolovos}@cs.york.ac.uk

School of Computing, University of Teesside pjb@scm.tees.ac.uk

Abstract. Critical systems must be shown to be acceptably safe and
secure to deploy and use in their environment. But the size, scale, het-
erogeneity, and distributed nature of these increasingly complex systems
makes them difficult to verify and analyse. Additionally, domain experts
use a variety of languages to model and build their systems. We present
an automated safety analysis technique, Fault Propagation and Trans-
formation Analysis, and explain how it can be used for automatically
calculating the failure behaviour of an entire system from the failure be-
haviours of its components. We outline an implementation of the tech-
nique in the Epsilon model management platform, thus allowing it to be
used in combination with state-of-the-art model management languages
and tools, and making it applicable to a variety of different domain-
specific modelling languages.

1 Introduction

Complex systems exhibit emergent properties as a result of composing hetero-
geneous components. These components may be distributed, and may also have
substantial performance, timing, safety, and security requirements. The scale
and complexity of these systems make it difficult to apply general-purpose ver-
ification and validation technology – such as model checkers, simulators, and
theorem provers – to obtain the guarantees of acceptable behaviour that are
required. Obtaining guarantees is particularly important for safety critical sys-
tems, which normally must be certified as acceptably safe according to relevant
standards, before they are deployed in the field.

Safety analysis for complex systems is an open field of research. For high-
integrity real-time systems (HIRTS), automated safety analysis can help to
achieve the substantial requirements for reliability and safety necessary for these
kinds of systems to achieve certification. Safety analysis techniques are novel
when contrasted with traditional software analyses, which tend to emphasise
determining a product’s correctness – e.g., through proof, model checking, sim-
ulation, or abstract interpretation. For HIRTS, it is of critical interest to know
how a system behaves in the presence of failure, regardless of whether that fail-
ure is in the environment, or due to internal software or hardware error. Given



an understanding of a system’s behaviour in the presence of failure, methods to
mitigate potential hazards can be determined and engineered.

Manual safety analysis is notoriously expensive for all systems; anything that
can be done to help to automate the process of understanding system behaviour
in the presence of failures will be of benefit to industry. Moreover, safety analysis
is not in general compositional – even small changes to components (and their
corresponding failure behaviour) generally means that the whole safety analysis
has to be performed again for the entire system. Finally, engineers of safety crit-
ical systems often use a variety of domain-specific languages (DSLs), including
profiles of UML, Matlab, Simulink, Stateflow, AADL, SysML, MASCOT [13], et
cetera; safety analysis that is applicable to all these domain-specific languages
(and others) will be of substantial value.

This paper presents a fully automated and compositional safety analysis tech-
nique applicable to domain-specific languages. The technique, fault propagation
and transformation analysis, is outlined and an implementation in the Epsilon
model management toolset [10], is described in detail. The value of having an
implementation in a state-of-the-art and standards compliant toolset like Ep-
silon, built atop of Eclipse, is also explained, particularly for supporting analysis
on domain-specific and heterogeneous models.

We start with a brief overview of previous work and background, discuss the
notion of failure modelling for components, and how it supports the composi-
tional reasoning essential for safety analysis of complex systems. We describe
an implementation to allow the safety analysis to be applicable to models rep-
resented using different modelling technologies (such as EMF and MDR), and
discuss how to customise the analysis for different domain-specific languages.

2 Background and related work

2.1 Components and failures

Failure and safety analysis is generally applied to component or architectural
models of safety critical systems. In these models (which may be represented
using one of a number of different DSLs), a component is a building block of
a system, and may be represented in hardware or software. A component has
input ports and/or output ports, and transfers inputs to outputs. Components
may exhibit expected behaviour (e.g., according to a specification such as a pre-
and postcondition), but may also exhibit failures. A failure is any behaviour of a
component or system which deviates from specified behaviour [5]. Failures arise,
can be propagated, and can also be transformed in a system, e.g., as a result
of an accident or incorrect implementation. In order to determine the failure
behaviour of a system, it is necessary to be able to understand, and model, the
failure behaviours of the system’s components.

There has been previous work on modelling and understanding the failure
behaviour of systems. Traditional safety engineering techniques include Failure
Modes and Effects Analysis (which is a manual process) [7], HAZOPs guidewords-
based analyses, Fault Tree Analysis, and finite state analysis [6]. Fenelon et al



introduced FPTN [4], a notation for explicitly representing the failures behaviour
of components, and integrated FPTN with a typical safety engineering process.
However, FPTN possessed no tool support. Overall, few, if any, of these ap-
proaches have been integrated with Model-Driven Engineering standards and
tools. An exception is work on integrating Fault Tree Analysis with UML, e.g.,
as carried out by Jürjens et al; this integration was specifically for UML, and did
not support automated compositional reasoning about failures, rather focusing
on providing tool support for building fault trees and calculating probabilities
of faults occurring..

Wallace [14] proposed using a model of HIRTS system architecture as the ba-
sis for safety analysis. The failure behaviours of the components are determined
and modelled when analysing the system. The connections between units are
communication protocols. Because a communication protocol also has its own
potential failure behaviour, the protocols in the model must be treated identi-
cally to the computational components of the system – i.e., their failures are also
modelled.

In [14], a component can introduce failures (e.g., because of an exception or
crash), or may propagate failures (e.g., data that is erroneous when it arrives at
a component remains erroneous when it leaves the component), or transforms a
failure into a different kind of failure (e.g., data that arrives late may thereafter
arrive early). Furthermore, a component may correct or mask failures that it
receives. Thus, when a component receives as input a particular kind of failure,
it generates one of the following responses.

output =







normal

same failure

different failure

To support automated failure analysis, we must be able to connect models of
component failure behaviour to a system model. This can be done by represent-
ing the behaviour of architectural components – such as hardware, wires, and
network connections – using failure models. In our implementation in Epsilon,
we do this by effecting a model transformation (though it is not a traditional
mapping transformation in the classification of Czarnecki [2]).

Conceptually, failure analysis can be applied to any model, whether it is
represented in UML 2.x, SysML, AADL, or another domain-specific language.

2.2 Automating failure analysis

Assume that we have a component-and-connector model of a system, e.g., in a
DSL. The components in the system can be individually analysed – in isolation,
from the rest of the system – for their failure behaviour in response to potential
failure stimuli. This behaviour should be determined by domain and safety ex-
perts, and should consider all possible failures on input. The analysis can follow
the conventional HAZOP/SHARD [12] identification of types of failures through



a set of guidewords, such as: value failures (e.g., data is stale); timing failures
(e.g., data is arriving later); and sequence failures (e.g., omission).

Following [14], we capture the failure responses of a component to its in-
put in a simple pattern-based modelling language. Using * to indicate normal
(no failure) behaviour, the following four expressions denote example source,
sink, propagation, and transformation behaviours for a trivial single-input single-
output component (the generalisation to multiple inputs and multiple outputs
is straightforward, and is illustrated in Section 4).

* → late (failure source)
early → * (failure sink)

omission → omission (failure propagation)
late → value (failure transformation)

The first line says that any input leads to late output, whereas the second says
that early input (data arriving before its time) leads to no error, i.e., the compo-
nent sinks all errors. The third line says that an omission failure is propagated
by the component. The most complicated failure behaviour is generally trans-
formational – i.e., the last line above, where a late input leads to a value error
— the wrong value being output.

A typical component will have its failure behaviour modelled by a number
of patterns of this form, and the cumulative effect is its overall behaviour. [14]
calls this the FPTC behaviour of a component.

To represent the system as a whole, every element of the architectural model
– both components and connectors – is assigned FPTC behaviour. Given this,
we can automatically calculate the failure behaviour of a whole system as follows
(see [14] for a formal definition). Each model element that represents a relation-
ship is annotated with sets of tokens (e.g., late, early, value), which represent all
possible failures that can be propagated by this dependency. In other words, we
are informally treating the architectural model as a token-passing network. As
a result of this annotation, we can calculate the failure behaviour of the system
by calculating the maximal token sets on all dependencies in the model. This
turns out to be a fixpoint calculation (presented formally in [14]). Informally, the
calculation works as follows. Starting with the singleton set containing the no
failure (*) token as a label on every dependency, the FPTC behaviour at every
component model element is ‘run’, using the token sets on input dependencies
as the inputs to the FPTC behaviours. The output failure tokens of each compo-
nent are accumulated on the outgoing dependencies, and the system continues
to run until a fixed point is reached, i.e., the token sets no longer change.

The calculation must terminate, because the set of failure types must be
finite. [14] also shows that the calculation produces the same result no matter
in what order the relationships are analysed.

3 Implementation in Epsilon

We have implemented the failure analysis in the Epsilon model management
platform, under Eclipse. By using Eclipse, we can exploit its mechanisms for



metamodelling, modelling, and extension, as well as its substantial tool support
via plug-ins. In particular, we can manipulate the models used as the basis for
the failure analysis using other Eclipse tools, particularly model transformation
tools (e.g., to transform the architectural models into representations that can
be imported by other tools), model merging tools, and simulation tools.

The implementation has been constructed atop the existing Epsilon1 devel-
opment tools for Eclipse. Epsilon provides a model management framework, via
a suite of integrated languages. Epsilon provides a base language – the Ep-
silon Object Language (EOL) [11] – which supports basic model manipulation,
e.g., traversal of models, querying models, modifying models. EOL has many
similarities to the OMG-standard Object Constraint Language (OCL), but is
fully executable and metamodel-independent; thus, EOL (and Epsilon) can be
used to manage models from any language. By implementing the failure anal-
ysis approach within Epsilon, we thus immediately obtain independence from
UML-based languages, but also technology independence, because EOL can be
used to manage models from different technologies such as EMF, MDR/MOF, Z
models, and XML. This is particularly critical for complex systems which exhibit
heterogeneity.

An example of an EOL specification is in Listing 1.1. It allows easy traversal
of models, and modification of models, without having to operate directly at
the level of XML/XMI. The example below demonstrates the use of EOL for
comparing two models: a UML model and a Database model. The example
checks that for each class in the UML model, there is a table in the Database
model with the same name; an indicative message is produced for each UML
class.

Listing 1.1. EOL Program

1 for (class in UML!Class.allInstances()){
2 if(DBMS!Table.allinstances().exists(t|t.name=class.name)){
3 (’Found matching table for class ’+class.name).println();
4 }
5 else {
6 (’No matching table for ’+class.name).println();
7 }
8 }

The Epsilon platform includes other model management languages that have
been built on, and thus inherit from, EOL. These include a model-to-model
transformation language, a model merging language, a model-to-text transfor-
mation language, a validation language, and a refactoring language, amongst
others. Further details can be found in [10].

The FPTC analysis has been implemented and encoded directly in EOL,
based on a lightweight and reasonably generic metamodel for architectural mod-
elling; the metamodel is shown in Fig. 1. EOL was used because the model
management task to be completed – calculating a fixpoint on a model – is itera-
tive, and EOL is the only language in the platform providing iterative constructs.

1 www.eclipse.org/gmt/epsilon



The metamodel that we use as the basis of the FPTC calculations is intended
to be generic so that it can (a) provide sufficient infrastructure for the FPTC
calculations; and (b) make it reasonably straightforward to use as the target of
model-to-model transformations from other architectural modelling DSLs, such
as UML 2.x, SysML, and AADL. We have implemented several simple transfor-
mations for such source languages.

Fig. 1. Example metamodel for architectural modelling

In the architectural language of Fig. 1, systems are made up of blocks (which
represent both components and connectors). The system overall, and individual
blocks, have fault behaviour, represented as expressions. Expressions are made
up of a number of tuples (which correspond to the patterns we discussed earlier).
These tuples include sets of identifiers, where an identifier can be a wildcard (i.e.,
no-fault behaviour), a literal (i.e., a domain-specific kind of fault), or a variable.

The actual implementation, written in EOL, encodes the algorithms de-
scribed earlier. A certain amount of simple EOL infrastructure needs to be
provided (e.g., to record the behaviour of blocks, variables, and literals, and
to reset these behaviours across different runs of the analysis). The remainder
of the implementation is more complex, and can be subdivided into four main



parts (not including any visual representation of the output of the analysis, nor
how individual FPTC behaviours are expressed – we discuss this afterwards):

– the pattern matching, e.g., to match failure behaviours with inputs; this is
written as a model comparison operation in EOL. We could equally do this in
the Epsilon Comparison Language (ECL) but because the pattern matching
that we need to do is straightforward and not rule-based – and we need
to use the results of the matching in further EOL programs – we encode
the comparison directly in EOL. This is one of the benefits of having an
executable base language in Epsilon that is also computationally complete.

– the propagation behaviour, i.e., what happens when a component or connec-
tor propagates failure behaviour to its environment. As this is an algorithmic
calculation, we implement this with EOL.

– the transformation behaviour, i.e., what happens when a component or con-
nector generates new failure behaviour to its environment, based on specific
input behaviour. This could be implemented using the Epsilon Transforma-
tion Language (ETL) [8] or EOL. We chose the latter for reasons similar to
the model comparison phase: the transformation we need to carry out is not
a mapping, and is predominantly algorithmic instead of rule-based. As such,
EOL was a better fit for this transformation problem versus ETL.

– the overall system analysis, which is a fixpoint calculation over the system
model.

The matching behaviour in EOL is described in Listing 1.2. This implements
a pattern matching on blocks and sets of identifiers. The pattern matching is
implemented as a set of overloaded operations, called matches ; one matches
operation is defined for each type of model element that can be matched, e.g.,
blocks, faults, variables, identifier sets, etc. Effectively, each operation simple
compares an input (consisting of failure behaviour) against the behaviour of a
model element and returns true or false. We show three examples: for matching
sets of identifiers, for matching faults, and for matching no-fault behaviour; other
match operations are direct transliterations of the ones we show.

Listing 1.2. EOL Pattern Matching

1 operation IdentifierSet matches(inSet : IdentifierSet) : Boolean {
2
3 for (identifier in self.contents) {
4 for (inSetIdentifier in inSet.contents) {
5 if (identifier.matches(inSetIdentifier)) {
6 return true;
7 }
8 }
9 }

10 return false;
11 }
12
13 operation NoFault matches(identifier : Identifier) : Boolean {
14 if (identifier.isTypeOf(NoFault)) {



15 return true;
16 } else {
17 return false;
18 }
19 }
20
21 operation Fault matches(identifier : Identifier) : Boolean {
22 if (identifier.isTypeOf(Fault)) {
23 return identifier.type = self.type;
24 } else {
25 return false;
26 }
27 }

Failure propagation behaviour is illustrated in Listing 1.3. This EOL program
calculates output behaviour of a block from input behaviour. Effectively, when
the propagate operation is applied to a specific block in an architectural model,
it iterates through all successor blocks (i.e., all blocks that it is connected to).
After obtaining the input token set for the current block, it simply propagates
all input faults to the output block.

Listing 1.3. EOL propagation behaviour

1 operation Block propagate() {
2 var index : Integer := 0;
3
4 for (successor in self.successors) {
5 var inSet : IdentifierSet;
6 var outSet := self.outSet.contents.at(index);
7
8 -- Retrieve the corresponding in-set for this out-set
9 var pIndex : Integer := 0;

10 for (predecessor in successor.predecessors) {
11 if (predecessor = self) {
12 inSet := successor.inSet.contents.at(pIndex);
13 }
14 pIndex := pIndex + 1;
15 }
16
17 -- Propagate identifiers from out-set to in-set
18 for (identifier in outSet.contents) {
19 inSet.contents.add(identifier.clone());
20 }
21 index := index + 1;
22 }
23 }

The transformation behaviour is the most complicated part of the analysis.
The EOL program implementing the transformation calculates new failure be-
haviour from input behaviour. It applies the matches operations presented earlier
to match input failure behaviours against failure behaviours of the component.



If there is a match on the left-hand side of a pattern, then the right-hand side
failure behaviour is generated on the output of the block. The main part of the
functionality is in operation transform, shown below.

Listing 1.4. EOL transformation behaviour

1 operation Block transform() : Boolean {
2 -- Determine which expressions match
3 var applicable : Sequence(Expression);
4 for (exp in self.faultBehaviour.expressions) {
5 if (exp.lhs.matches(self)) {
6 applicable.add(exp);
7 }
8 }
9

10 var result : Boolean := false;
11 var selected : Expression;
12
13 self.toString().println();
14
15 if (applicable.size() > 0) {
16 if (applicable.size() = 1) {
17 selected := applicable.at(0);
18 } else {
19 selected := applicable.mostSpecific();
20 }
21
22 selected.toString().println();
23 result := selected.applyTo(self);
24 self.toString().println();
25 }
26 ’’.println();
27
28 return result;
29 }

There are a few subtleties to implementing the transformation behaviour.
When matching input failures against failure behaviours of a component, there
may be several matches; this is recorded in the EOL program via the variable
applicable. This is an artefact of allowing wild-card specifications of behaviour
(i.e., any fault is matched). To deal with this issue, we always select the most
specific match; this is implemented in an EOL operation called mostSpecific().

The second subtlety is in copying failure values to the output of a block. A
component may have several failures on its outputs (and indeed, it may have
many outputs), and we must be careful to record all of them in the output
expressions for the block. This is handled in the EOL operation applyTo(), which
applies a model of failure behaviour to a block’s inputs. While we omit the details
of applyTo(), it is a good example of a transformation that is not inherently
a mapping, and which would be more concise expressed using an algorithmic
specification. Another example of such a transformation was presented by Conmy



[1], where the transformation was intended to generate large numbers of stable
configurations of an adaptive system. These transformations are similar because
both involve iterative processing of models, rather than rule-based processing.
Conmy contrasted mapping transformations against algorithmic transformations
in [1] in more detail.

Finally, the overall system analysis is encoded in Listing 1.5. The failure
analysis is launched on the full system by the EOL run-time. The analysis first
initialises all blocks with their failure behaviour, and then calculates the output
sets on all blocks, until no output set changes, i.e., a fixpoint has been reached.

Listing 1.5. EOL failure analysis

1 System.allInstances().at(0).doFailureAnalysis();
2
3 operation System doFailureAnalysis() {
4 -- Initialise
5 for (block in Block.allInstances()) {
6 block.initialise();
7 }
8
9 var blocksChanged : Boolean := true;

10
11 while (blocksChanged) {
12 blocksChanged := false;
13
14 -- Calculate out sets
15 for (block in Block.allInstances()) {
16 blocksChanged := block.transform() or blocksChanged;
17 }
18
19 -- Calculate new in sets
20 for (block in Block.allInstances()) {
21 block.resetInSet();
22 }
23 for (block in Block.allInstances()) {
24 block.propagate();
25 }
26
27 (’==================================================’).println();
28 }
29 }

Epsilon is integrated with Eclipse GMF, so it is possible to create customised
GMF editors and visualisations of the results of the FPTC analysis, and of the
architectural models themselves. We present an example of this in the next
section.

This implementation has the advantage of support abstract specification,
executability, and cross-platform capabilities: the failure analysis will then be
applicable to any model that can be encoded in Eclipse’s EMF format. As many
commercial and open-source tools already support EMF (or provide injection



to EMF/Ecore) this provides substantial support for architectural modelling
frameworks.

4 Example

In this section, we introduce a concrete example to illustrate the functionality
provided by our FPTC implementation. Consider the architectural model shown
in Figure 2. The model is written in a DSL for real-time systems. The depicted
system comprises four software components, connected using three instances
of a signalling communication protocol. This protocol uses a destructive (non-
blocking) write, and a destructive (blocking) read.

Fig. 2. Architectural model of the exemplar system.

We have used a simple GMF editor for creating this model. The model must
now be transformed to include failure behaviour, so that we can perform the
failure analysis. FPTC behaviours are most easily expressed in a textual format.
In order to support this, we have integrated Epsilon with a model-generating
parser specified using oAW’s xText [3]. This allows the FPTC behaviour to be
easily expressed in a format similar to what was presented earlier. The FPTC
behaviours of the individual components and connectors is listed in Table 1.
These behaviours have been determined by domain experts knowledgeable about
the individual components and connectors and their properties.

These experts have determined that the inertial navigation and separation
autopilot components both propagate any faults that they receive. In addi-
tion the separation autopilot component acts as a source for stale value and
detectable value faults. The signalling communication protocol exhibits a rather
more complex failure behaviour, and comprises three non-trivial expressions.
The first states that, as the protocol utilises a blocking read, should the supplier
provide a value earlier than the receiver expects, no fault is produced. In the case
where the communications protocol fails to relay a message (an omission), the
receiver may block indefinitely, causing it to be delayed (encoded as a late fault).
When the communications protocol duplicates a message sent from the supplier
(a commission), the receiver may proceed with an incorrect value. Additionally,
the protocol simply propagates all other categories of fault.

Having used our GMF-based editor to record the results of our behavioural
analysis of the individual components, we can inject various different types of
faults to potential sources of errors, and run the FPTC analysis to determine
how the system would respond to these types of failures. For example, injecting



Component Behaviour

Inertial Navigation v → v

Separation Autopilot * → stale value

* → detectable value

v → v

Signal Comms Protocol early → *
omission → late

commission → value

v → v
Table 1. Behavioural properties of components.

an omission fault on the IMU component and executing our simulation toolchain
yields the results depicted in Figure 3. By examining the faults produced by the
actuator demands, it can be seen that the actuators may receive faults from the
set {*, stale value, detectable value, late}.

Fig. 3. Results of executing the simulation on the system. The faults produced by each
component are shown in italics.

Suppose the design is now changed such that a second IMU is introduced
in order to provide two-lane redundancy. Additionally, instead of the signal, a
pooling communications protocol is used between the IMU and inertial naviga-
tion components. Unlike the signalling protocol, the pooling protocol provides
a buffer from which the receiver may non-destructively read. This leads to the
rather different failure behaviour shown in Table 2. Should the pooling proto-
col omit a message from receiver to supplier, the receiver may read a previous
(stale) value from the buffer. Similarly, if the supplier is late sending a message
to the receiver, the receiver may read a stale value from the buffer. Finally, if



the protocol duplicates a message sent from supplier to receiver, the receiver
proceeds as expected, due to the data being buffered by the protocol.

Component Behaviour

Pool Comms Protocol early → *
omission → stale value

late → stale value

commission → *
v → v

Table 2. Behavioural properties of the components in the simple system.

As can be seen in Figure 4, executing the simulation on the new model
highlights that the set of faults propagated to the actuator from the actuator
demands is {*, stale value, detectable value}. As such, we can conclude that
the new model provides mitigation against faults with the categorisation late,
whereas the original model does not.

Fig. 4. Results of executing the simulation on the modified system.

This example illustrates the results that can be obtained by applying FPTC,
and the lightweight nature of its analysis – we were able to change the architec-
tural model to introduce different failure, and re-run the analysis to calculate the
overall effect on the system. The ability to automatically and quickly analyse
models makes the failure analysis technique particularly valuable for complex
and critical systems development.



5 Discussion and Conclusions

There are two additional, technical points regarding the FPTC implementation
in Epsilon that are worth noting:

– Initial implementations of the failure analysis did not provide detailed error
checking, e.g., to ensure that erroneous or inconsistent failure behaviours
were not specified for components. For example, consider a component which
was accidentally specified to deliver data both late and early; this should
ideally be caught statically, before the FPTC calculation has been run. As
part of the Eclipse/EOL implementation, we have exploited the availability
of the Epsilon Validation Language (EVL) [9] for specifying well-formedness
rules and constraints on the model. This helps us catch errors at an early
stage. We point out that this consistency/constraint checking is also fully
automated.

– As mentioned, we have provided support for constructing customised graph-
ical interfaces by integrating Eclipse’s GMF (Graphical Modelling Frame-
work) with EOL. This allows the results of the failure analysis to be pre-
sented in ways suitable and appropriate for exploration by domain experts.
This in itself is a novelty and provides functionality that is generally useful,
not just for FPTC.

We have applied the FPTC analysis as part of work carried out in the De-
fense and Aerospace Research Partnership project at the University of York,
in collaboration with BAE Systems, Rolls-Royce, QinetiQ, and the Ministry of
Defense. The FPTC toolset has been applied to a number of case studies of very
different models. The results demonstrated that the analytic technique was (a)
scaleable; (b) efficient; and (c) produced insightful results. Indeed, unexpected
failure behaviour was detected in at least one case study. These unexpected re-
sults were reported to the relevant engineers, who determined that the failure
behaviour was indeed accurate, and was in fact mitigated by hardware elsewhere
in the system (hardware that was not modelled).

We are currently working on extensions to FPTC to support probabilistic
analysis, i.e., where engineers can indicate the probability of particular types of
failures occurring. This requires extension not only to the theory underpinning
FPTC (specifically, the calculation of output token sets becomes much more
complicated, since conditional probabilistic reasoning must be used), but also
some extensions to Epsilon in order to efficiently support matrix calculations,
which are an appropriate way to implement probabilistic analysis. As well, we are
developing transformations for popular architectural modelling languages (such
as AADL and SysML) into the analysis metamodel presented in this paper, so
that FPTC can be used for these domain-specific languages as well.

Acknowledgements. The work in this paper is partially supported by the
European Commission via the MODELPLEX project, co-funded under the “In-
formation Society Technologies” Sixth Framework Programme (2006-2009), and



the Engineering and Physical Sciences Research Council (EPSRC) under the
Large-Scale Complex IT Systems project, supported by research grant EP/F001096/1.

References

1. Philippa Conmy and Richard Paige. Challenges when using Model-Driven Ar-
chitecture in the development of safety critical software. In Proceedings of 4th

Workshop on Model-Based Methodologies for Pervasive and Embedded Software.
IEEE Press, 2007.

2. Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–646, 2006.

3. Sven Efftinge. xText reference document, www.eclipse.org/gmt/oaw, 2007.
4. Peter Fenelon and John A. McDermid. An integrated toolset for software safety

analysis. The Journal of Systems and Software, 21(3):279–290, June 1993.
5. Lars Grunske. Towards an integration of standard component-based safety evalu-

ation techniques with saveccm. In QoSA, pages 199–213, 2006.
6. Constance L. Heitmeyer, James Kirby, Bruce G. Labaw, Myla Archer, and Ramesh

Bharadwaj. Using abstraction and model checking to detect safety violations in
requirements specifications. IEEE Trans. Software Eng., 24(11):927–948, 1998.

7. IEC. Analysis techniques for system reliability: Procedures for failure mode and
effect analysis. International Standard 812. IEC Geneva, 1985.

8. Dimitrios Kolovos, Richard Paige, and Fiona Polack. The epsilon transformation
language. In International Conference on Model Transformation 2008. LNCS 5063,
Springer-Verlag, 2008.

9. Dimitrios Kolovos, Richard Paige, and Fiona Polack. On the evolution of OCL
for capturing structural constraints in modelling languages. In Rigorous Object-

Oriented Methods. Springer, 2008.
10. Dimitrios S. Kolovos and Richard F. Paige. Epsilon model management platform,

www.eclipse.org/gmt/epsilon, 2008.
11. Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Epsilon Object

Language (EOL). In ECMDA-FA, pages 128–142, 2006.
12. J A McDermid, M Nicholson, D J Pumfrey, and P Fenelon. Experience with the

application of HAZOP to computer-based systems. In Compass ’95: 10th Annual

Conference on Computer Assurance, pages 37–48, Gaithersburg, Maryland, 1995.
National Institute of Standards and Technology.

13. H R Simpson. The MASCOT method. Software Engineering Journal, 1(3):103–
120, March 1986.

14. Malcolm Wallace. Modular architectural representation and analysis of fault prop-
agation and transformation. In FESCA’05. ENTCS, Elsevier, April 2005.


