An Extensible Services Orchestration Framework
through Concern Composition

Gabriel Pedraza, Jacky Estublier

LIG, 220 rue de la Chimie, BP53
38041 Grenoble Cedex 9, France

{Gabriel.Pedraza-Ferreira, Jacky}@imag.fr

Abstract. Service composition is one of the major ways tongsv applications
out of existing software components (services). floeis so far was mainly on
composition formalisms, while most of the real h&slues are related to the
many concerns that must be combined, and the timitp provided by the
current tools. In this paper we present an appr@acha platform in which a
service based application is defined through dfiérmodels along different
concerns. The FOCAS platform includes some basiceros (control, service,
and data) and provides support for composition \aitly other concerns. The
platform provides support for the definition of rfamctional concerns in the
form of annotations over the orchestration model.

The paper shows the concepts and the technologywiatf to define an
application as a composition of concerns, funclicmanot, and shows the
experience with the concerns currently supportethbyFOCAS platform.

1. Introduction

It is a common belief that the technology behindvises has the potential to
increase reuse and dynamism [16]. It can increaisserbecause many services exist
and can be directly used, even when operated by garties on foreign computers
(web services). Dynamism can be significantly inyaiw since service technology
relies on dynamic discovery and connection betwel@amt and service providers.
Moreover some service platforms like OSGi [14] pdevtransparent and dynamic
disconnection and reconnection to new servicesigeos.

These properties of service based applicationsadiygi have fostered many works,
most of them focusing on the formalism in which tbemposition has to be
described, called orchestration. The current inthlstervices orchestration standard
is WS-BPEL [6], but many other formalisms have bgaoposed [2][12][18].
However, it is now clear that the formalism itssliot the main issue, and even WS-
BPEL can be sufficient in a number of cases. Tlifcdity comes from the many
concerns that must be addressed when developingtii strength applications.

A first source of difficulty is to make interopegagervices designed independently,

and therefore potentially heterogeneous in techyyl@anguages, platforms), data
(representation and semantics), or in interactiotogols. Web services [1] [16], with

XML/WSDL/SOAP standards solved a number of thessuds, but still many
incompatibilities require mediation (data, seman#ad protocol).

A second source of difficulty is related with thetdroperability with other
company tools. The target application may addressness domains, in which large
software applications and databases are alreadjlablea The service based
application must be able to address these busimesschnological domains, and
interoperate with legacy applications, which areally not services.

A third source of difficulty is related with the -®alled non functional concerns.
Any real industrial service based application magbport a number of these non-
functional concerns like efficiency, distributioscalability, security, transactional
behavior, dynamism, etc. Of course, some work &madards addressed these issues.
Web Services standards such as WS-Security [13}SétSirityPolicy [7], WS-AT,
address some of these concerns at service level,atdding them to service
compositions must be undertaken manually, whiehhard and error-prone task.

Our goal is to propose a method, a developmentr@mvient and a runtime
platform allowing: (1) the company method and tedbgy team, to define which
concerns, functional or not are to be addresseatl t@levelop the environment that
support these concerns; (2) the software engineich is not necessarily a
technology expert, to develop easily an applicatiolearly expressing, through
models and annotations, functional as well as nowtfonal characteristics of the
target application.

The paper is structured as follows. Section 2 shilnat a service orchestration is
the composition of three models. Section 3 unvhitsv these three models are
composed, and shows how composition method is girned to any domain. Section
4 presents how abstract domains can be composedder to add non-functional
characteristics to applications. Section 5 valislatur proposition. Section 6
compares it with the state of the art. Sectionnchales the paper.

2. Services Orchestration

The first step, when building a software applicaties to decompose it in parts, in
order to reduce the complexity. But no decompasitian cope simultaneously with
the different aspects of an application. Each con¢er aspect) is a part of software
that is relevant to a particular concept, goahunpose [15].

The main idea behind service orchestration is thatvices are existing,
autonomous and independent (which is often not dhse in reality), and the
decomposition criterion is an ordering (orchestratiof services execution.

2.1. Orchestration Core Domains

Even if it is not formally expressed in the actfmmalisms, orchestration is based on
three main domains, control, services, and datatrGloexpresses the execution

ordering, service defines the computing to be perél, and data defines the
information on which the execution is to be perfednin most propositions, these
three domains are closely intertwined. In contrast, suggest defining these three
aspects independently, through models. We beligigeseparation is a major progress
since it allows expressing, in the control modekhatvis the business logic,
irrespective of details of the underlying servicGasd independent from the data
definition, which makes sense since many serviceseaisting, and each company
has already information systems in place, usedtynaber of software applications.

In our approach, a basic orchestration domain idara the composition of the
control, service and data atomic domains. Hencendb and explicit definition of
metamodels in each domain proved to be of greap, hebth conceptually, to
understand clearly what the domain is about, adkdnieally as the main support for
tools which have to process models.

2.1.1. Control Domain

In our approach, the Abstract Process Engine LaygddPEL [8] is used to express
the control model. APEL is a high level procesgjlaage containing a minimal set of
concepts that are sufficient to understand thegeepf a process model.

In APEL an activity is a step in the process thesuits in an action being
performed. The actual action to be executed iglafihed into the process model, and
it can be a service invocation (a Web service, DPSice, an OSGi service), any
kind of program execution (legacy, COTS) or evenhaman action. Ports are the
activities communication interface, each port sfiesia list of expected products.

(a) Control Meta-Model (k) Alarm Control Model

hasSubactivities +inLinkedTo
] port o[RBT
™ : Storage

Activity h d

! L.* | +name: string ————1 detout o =
-+name: String oI
hasOutputs -> .
! ! ransfer
[FhasDeskiop > | . .

paskrtres > 1 0.% | 4name: String

command

0.%

has#esponsIble
ha$Type ->
1

Processing

Role begin

+name: String ProductType defautt

+name: String

I
I
I
I
I
1 1% constains -> Product |
I
I
I
I
'

Fig.1 Control Domain Components

A Product is an object (records, data, files, doents, etc) that flows between
activities. Products are represented by variabéesny only a symbolic name and a
type which is also a symbolic name (e.gliént” is a product of typeCustomer”)
This property does not preclude of the actual matstructure and content of the real
data that will circulate in process. Dataflows cectnoutput ports to input ports,
specifying which product variables are being transfd between activities.

Graphically an activity is represented as a redeangth tiny squares on sides
which denotes its ports, a dataflow by one ling ttennects ports and products as
labels on dataflows.

Left side of Fig. 1 presents the APEL metamodet, @ght side presents an APEL
model created with our editor. The model examplarisalarm system, where the
Acquisitionactivity is in charge of collecting environmentaseares, then th&nalysis
activity performs a computation over the gatherathdfinally two parallel activities
are executed, the first-or&torageactivity makes the data persistent a&mcessing
activity triggers an action in case of abnormabdatlues.

2.1.2. DataDomain

The data domain manages the information used irconepany; it specifies the
data types (structure and content) and manageadtess to the information. This
data abstraction makes it possible to hide therbgémeity of the data used by both,
the concrete services and other company applicatiddata are represented in two
concrete syntaxes: a graphical representation (\dMks style) and as Java classes to
facilitate programmatically data handling.
Left side of Fig. 2 presents the data metamodel,tha right side presents a possible
data model for the alarm system, in which the gathemeasure is a room
temperature. Data types declared in this modeTamsperature, Average and Action.

(a) Data Meta-Model (t) Alarm Data Model

DataType 1

+name: String <- hasType 0..%
. Temperature Average Action
+name: String +unit
+shared: Boolean

ComplexType
1.%

1 hasAttributes ->

|
|
|
|
ﬁl Attribute : +value +value +description
|
|
|

Fig.2 Data Domain Components

2.13. ServicesDomain

To facilitate deployment and portability among difnt execution platforms we
express our services model at two abstractiondeydistract services are used by the
orchestration at an abstract level, and concreteices are the actual services
implemented in a given technology. Abstraction leseparation allows describing a
service independently of its implementation tecbggl Java interfaces are used as
formalism to define abstract services. These iatex$ use as types of their method
parameters simple Java types or the types definetthé Data domain presented
above. In Fig. 3 a possible service model for alaystem is presented.

public interface TenperatureService {
public Tenperature get Tenperature();
public Average average(Tenperature[] tenperatures);
public void save(Average average);
public void doAction(Action action);

Fig.3 Abstract Service Definition

2.2 Orchestration Core Model Composition

We present now how domain models are composedilwh druorchestration model.

2.21. Composing Control and Data M odels

Composing control and data, in our case, meansciasisg instances of the
ProductTypeconcept defined in the control model with instenoé theDataType
defined in the data model. By example tHeasureproduct type defined in the
control model corresponds to tfiemperaturdype defined in data model. The Fig. 4
presents our generic model composition tool (Cgdeked in this case to create
associations between control and data models.

Models Mappings
This is the description of models section This is the description of mappings section
ActDemoSec.apel ProDemoSec.product Left Element | Right Element |
Default Default Default i
Map Temperature Measure Temperature
Awerage Average Average
Action Command Action

Fig.4 Composing control and data (Codele)

2.2.2. Composing Control and Service M odels

Composing control and services consists in estahljsa relationship between an
activity in control model and an abstract serviperation in the service model. In our
alarm example we establish the following linkéccquisition-getTemperature
Analysis-averageStorage-saveandProcessing-doActian

& select Service Dperaktion _ | EI|5|

Choose a folder

O PressureService
EIO TemperatureService

=l
getTemperaturel)
average(Temperature[])

savelfverage)

doaction] Action)

Enc
- =

Fig.5 Activity-Abstract Service Link

In Fig. 5, selecting thProcessinglisplays the abstract services whose signature is
compatible with the data “owned” by the activityost often, only one is possible.

3. Domain Composition : Linksand Metalinks

The composition presented above is powerful endaogtreate an application using
service orchestration technology. But other corgecorresponding to specific
application requirements are occurring in spedifisiness domains. These concerns
must be composed with those presented above totheeapplication requirements.

Composing two domains requires specifying relatijps between concepts
present in their metamodels, called metalinks, ezidtionship between elements
pertaining to both models, called links. Metalintescribe the semantic relation
between concepts of the two domains.

In a domain, the metamodel describes the abstyaxtts in which models are
expressed. Following most meta-environment strataggxecution time, the model is
transformed (reified) into instances of the abstsgatax classes. The metamodel also
describes the domain operational semantics thrdhghabstract syntax class, plus
some other classes. These classes constituteesiprigter of the models once reified.

A strong requirement of our approach is that thenaas to be composed must not
be modified at all, i.e. models and interpreterssimioe kept unchanged. In our
approach [9][10], the composition is performed defj metalinks between
metamodel concepts, along with the code that Spedifie semantics of the metalink.
But if a metalink is defined between concept X afidthen links must be defined
between some instances x of X and some instanoé¥yi.e. links must be defined
between model elements. Fig. 6 shows how two dosrain be composed.

Models and links are reified thus it is possiblegrecution time, to navigate the
links and the models, and to create/modify/delietesland model instances, allowing
meta-level introspection and complete reflectioa. @ynamic model evolution).

Domain (X+Y)

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr Emergent
Domain X Concepts Domain Y
Meta 1 Meta
Model X Meta-Link Model Y
Conform to Conform to
Conform to
Model X Model Y
Link

Execute By Execute By

Synchronization

Code

Interpreter X Interpreter Y

For example, Fig. 4 shows how the generic modelpmmition tool (Codele) has
been customized to compose Control and Data mod@eistomization is possible
because a metalink has been defined betweeRrtductTypeconcept in the Control
metamodel and thdéataType concept in the Data metamodel. In the Control
metamodel @roductTypehas only a symbolic name, nothing is known at alblo
nature of products that are flowing between adéisit Conversely, in the Data
metamodel we define the structure of entities,rmihing is known about the actions
performed on them. In this example, the metalingregses a specialization relation
allowing making precise what is really circulatingtween activities.

At model level, links between instances of two @pts must be defined. The
composition defines thatMeasure(in control model) will be &emperaturdin Data
model), in the same way links are created betwearage-Averagand Commane
Action, in Fig. 4 model composition for the alarm systempigsented. Model
composition is realized without modification of theriginal models which
significantly increases reuse possibilities. Ona taagine using the same control
model applied on another Data model, by exampleude Pressureinstead of
Temperatureype.

Control Domain) Data Domain
i
'
) hasSubactivities inLinkedT ProductType - <n{1et S bk > DataType i
q>_, +name: String s +name: String o
= Activity (: i Port H pe
[} +name; String f<Cr——r——| + Strif 2 1 3 i
Rl FhasDesktop -» | +name: String hasTypel-> ! Attribute
=l 1 1% o.* '
IS AL 1 o | +name: String
8 | haskntries > | constains -> | Product ! ComplexType| _! 1.+ |+shered: Boolean
) — > . St ' e
= <>ha-s0wtputs > T ' has
'
i
.. L L L L L T T,
'
— Acquisition o link T Temperature
st ¢ i +value
— 1 +unit
Q i
q>,) value T Tink : Average
; alysis i in
:' i o ! +value
[} detaut '
8 : Action
> link : “+description
end H
'
'
'

Fig.7 Control and Data Domain Composition

Interpreters have also been composed to provideuére capacity to composed
models. Interpreters are composed based in mesatiafinitions, all public methods
on related concepts are intercepted, and when methce invoked, actions in the
opposite domain can be performed. Additional codestnibe written to define the
composition semantics as is presented in Fig. Ghdrparticular case @ontrol and
Data domains, when &roductis created in the control interpreter, a corresiyum
Data is created in the data interpreter. Fig. 7 sunmaarhow the control and data
domains have been composed, and how models of Adppfication are composed.

3.1. Workflow Example

We have illustrated how domains can be composeti thie Control and Data
domains; indeed, it is how the core orchestratiomain has been developed. But the
same technique can be applied to compose the cohesiration domain with any
other domain of interest, to fit specific businasgds.

We have defined a workflow domain as the compasitibthe core orchestration
domain, with document and resource domains. Theore# that the data circulating
in a traditional workflow or an office automatiogstem are documents (files). The
document domain is in charge of managing and cgpfjfies, composition is defined
by a metalink betweebataTypeand Documentconcepts. In a traditional workflow,
most activities are performed by humans. The resowtomain expresses how
resources (company structure, divisions, humans),oeganized, the corresponding
instances being stored in an LDAP repository foaregle. Hence this relation is
defined by a metalink betwedctivity andRoleconcepts.

Fig. 8 shows how we have defined and implementegpmcess support system. It

is important to notice that this composition pracesstructured, and fully reuses the
previous orchestration domain composition.

Resource }~——-~——| Control
Workflow

Domain Orchestration Domain

Document

Fig.8 Workflow Domain

4. Abstract Domain Composition: Annotations

The above composition technique can only be appdieddomains in which it is
possible to define an interpreter, and in which bandefined models, independent
from the other domain models. Unfortunately, maoyndins, and most notably the
non functional domains, do not satisfy this requieat. For example, we can define a
security domain which metamodel contains concepilee |authentication,
confidentiality, integrity, etc. But it is not pdske to define a security model
independently from the associated application: idemttiality makes sense only when
applied to a particular data for example. A dom@invhich independent models
cannot be created is said to be abstract; it cdmbtantiated” only when applied to a
concrete domain that “inherits” the abstract dondiaracteristics.

The composition of an abstract domain with a carecdomain is based on an
annotation technique, the composition schema isgmted in Fig. 9. First, metalinks
express the relationship between both domainshanfarm of syntactic restrictions
used to constrain annotation declarations. Thesteigions indicate which concepts
of X abstract domain can be applied on which cotscepY concrete domain.

At model-level, elements of a concrete model of &mdin are annotated with
concepts of the X domain metamodel respecting #sdrictions imposed in the
metalinks definition. Annotations can have attrésuindicating how the annotation
will be processed by the code generator. Annotatiois use metalinks definition to
permits only correct annotations on concrete domadels.

The composition is created at an abstract levelcdeseveral code generators can be
developed to adapt orchestration to different textinconstrains. Finally the code
generator, receiving as input the model and itotations, and having knowledge of
X and Y domain metamodels and of Y interpreter enpéntation conventions,
generates code which is weaved with the interpretele to produce a customized
execution of composite X+Y domain.

777777777777777777777777777777777 Domain (X->y)
Abstract Domain Y
Domain X

Meta Meta
Model X Meta-Link Model Y
C t H
ortiorm ° Conform to
; Annotates
Annotations
on Y Model Roceld
' Code Execute By
............ ...) Q.. EE——
Generator
Generate —Interpreter Y
Code Weavin

Fig.9 Abstract Domain Composition Schema

There are two open issues in abstract domain catigroapproach: (1) validation
of the annotations semantic, and (2) code genaratidering. Former issue is about
the correctness of a set of annotations, metabinkg give a syntactical validation but
nothing is said about the validity of overall arat@ns on model. Validation can be
implemented at two levels in our approach, at editime when annotations are
declared or at generation time..

Order of code weaving is an existing problem in A@pproaches, the order in
which aspects are weaved with the base code cangehthe semantics of the
resultant code. In the same way the order of géineraode of different concerns in
our approach can change (or eliminate) the exetw@nantic of previous abstract
domain compositions.

In comparison with AOP, our approach does not feavepen joint point model,
only state changes in Activities can be used a# jpdints. Moreover the additional
behavior i.e. advices is embedded into the codesrgéor in the form of code
templates, and pointcuts are defined by quantificai.e. using the annotations
declarations. Finally the weaving process is redliin generation phase. At technical
level our approach uses AOP, but at user levelailoeomposition is performed, and
AOP technology is not visible at all.

4.1. Security Example

Let us illustrate our annotation technique showliogy the security concern was
composed with the base orchestration domain. Inratarm system example, one can
imagine that the alarm application is executed implant floor. Three security
requirements are necessary: data circulating irsylsteem must be confidential, data
must not be modified by third parties, and more ontgnt, malicious actions
performed on plant equipments must be avoided.

The identified concepts in security abstract donsie authentication, meaning
that a service invocation must be performed bysté&d resource; confidentiality, to
indicate that the data exchanged must not readjraedrity to indicate that the data
exchanged between services must no be modifieHitd/parties.

Security Domain Control Domain

1
I
'
'
'
1
1 I?asiuhamjies
1
I
' Activity |< s
_ —) : name: Skring L 1 1 +name: String
0] Authentication <<meta-links > H thasDesktop =
5 +type: String : ! 1>
- H | hasEntries 3>,
— ! .
g Confidentiality : hasOutputs ->
o H
I ! oortitains ->
H H <<metalinks> ;
6 Integrity : Product
s L
I — H <<meta-links> et
'
_______ e g i g Ay S
begin BoliSHOREN s
) Storage
L—annotation o e S
] defout
5 annotation value average
e type=user/pass e Anass o
- 5] nd
% deteuit =
§ type=certificate annotation command
begin Processing end
annotation 5 &

defautt

Fig. 10 Security and Control: Abstract Domain Composition

Metalinks specify the following syntactical restitms: Authenticationannotation
can only be declared ofctivities while Confidentiality and Integrity concepts can
only annotateproductswhen they flow between activities. Fig. 11 shovesvhthe
security metamodel and metalinks definitions hagerbused to partially generate an
extension over the control model editor. This egtem permits only to annotate
concepts with appropriate annotations.

In our alarm exampleAcquisition and Processingactivities are both annotated
with Authentication but with different values for the type attribut@lue product is
annotated to be confidential asdmmandproduct to maintain integrity. In contrast
with domain composition, in abstract domain compmsj abstract models do not
exist per se, instead abstract metamodel concaptgate model level elements of the
concrete metamodel. In our security example, sgcoretamodel concepts annotate
the orchestration model as presented in Fig. 10.

In our security/orchestration example, for usenemience, only the control model
is annotated. This is possible due to the followdogain composition properties:

- Asymmetric nature of orchestration compositiorevéhcontrol is considered as a
central domain.

- Introspection property of domain composition whallows the code generator as
well as the generated code to navigate into contgposshestration models.

E Input
E Cutput
begin End
== 0thers * r re
[=] Comment
ki

£l |

[ActivityROOT 53]

Problems | Error Log | Console | Cross References | Debug | Activities | Product types ‘ Progress ‘

9 ActivityROOT: Acquisition
Basic Full Mare: ¥l 9

Grounding Security Properties: Authentication

Ext Sample Authentication Type: @ Login/Password

Abstract Security Q %.509 Certificate

Fig. 11 Security Annotation Extension: Alarm System Segufitoperties

We have developed a code generator to guarantagitgeproperties in web
services orchestration. It first validates annotadiand then generates code using the
Apache WSS4J library which is an implementationV¥$-Security standard. The
code generator processes the control model anoiogaéind changes the Web service
invocation semantic accordingly. If an activitydanotated withAuthentication an
authentication header is added to SOAP messagé®itinvocation of associated
service, in the same way data encryption is usednwtroducts are annotated as
confidentialor to maintain integrity.

The same generator is used whatever the modef®inrchestration domain. The
generator also extends the model elements definitith attributes such that the
annotation information will be found, at executiam the reified model elements,
extending introspection to the abstract domain awsitipn. However, due to the
generative approach, reflection is not possibleyadng authentication at run-time
for example is not possible.

5. Evaluation

Our approach has been validated first with the taoson of FOCAS, which is the
extensible service orchestration framework desigteedupport our approach, and
second with the development of real applicationsdltaboration with our industrial

partners.

FOCAS environment is built on top of Eclipse IDEddBMF. The metamodel of
each concrete core domain (control, data and ®=)yis defined by an Ecore model,
and the associated editor is either hand coded IAR¥ generated by EMF
framework. FOCAS has a high level view of domaingl gheir relations, using its
interface, developers hardly ever have to deattlyrevith Eclipse artifacts.

We realized very soon that our domain compositexrhmology is too complex to
be undertaken manually even by domains expertsimapy goal of FOCAS was to
fully support domain composition, hiding its ungém complexity (use of Aspect J,
metamodel manipulation, relationship semantics). &ith FOCAS, adding a new
concrete domain (concern) to the environment ctsis specifying the metalinks
between the new domain and the core metamodel @Gongle metalinks editor, and
in providing (in Java) their semantics. Adding awvnabstract domain consists in
specifying the metalinks between the new domain taedcontrol metamodel, from
which an extension of the control editor is geretatsee Fig. 11). Then, the code
generator (optionally the annotation validator) tade written, it must implement
some FOCAS interfaces and use the JET technolodpe tlully integrated into the
environment.

It is much simpler to develop a service based apptin satisfying different
concerns using model composition than in the fiaudl way; nevertheless,
composing model by hand is not so easy. The otbal @f FOCAS is to provide a
framework which fully hides the many artifacts, epdnd activities required by such
applications. FOCAS automates the model composttsh (see Fig. 4, Fig. 5), and
generates most (and often all) the code requiredatce the application executable.

We have used our tool and approach to build repliegiions in association with
some of our industrial partners. The process supystem presented in section 3.1,
which is a domain composition that has been usegehys by different partners.

The alarm system presented along this paper igngl{ed) implementation of
real system for a plant floor production that wevéhaleveloped for our industrial
partner Thales. In that application, we used DPW®l @ecurity properties
implemented using WSS4J framework; but our new qpeteerator use the Rampart
library (security framework in Axis 2).

Other abstract domains are under way most notalilg distribution
(choreography), dynamic and deployment abstractailmsn All these experiences
have shown that FOCAS dramatically simplifies segviased application design and
development.

6. Reated work

Domain composition has been addressed in two mags: model and metamodel
merging on the one side and models/metamodels symizlation and weaving on the
other side. The first camp focuses on the semanfiagperators like match, merge,
weave applied to two models, and several platfohase been developed, like
AMMA [19], Rondo [20], EOL [21], MOMENT [22].

Metamodeling environments have been developed gpasti model composition.
GME (Generic Modeling Environment) builds new metal®ls using union and
inheritance, while XMF (eXecutable Metamodeling ifgg uses a specific language
XSync for model synchronization.

All these approaches produce new models and metmadhich most often they
do not support domain execution, and that imposeshbaild all the models and the
associated tools. A company asset is made (amomgr ahings) of the models
developed and tuned along the years, and of thel@expertise in using the domain
languages. For that reason we strongly emphasip@aitiocomposition that fully
respects the models and the tools developed forea gomain.

In [4], composition is split into a core processdaa set of business rules.
Orchestration models are described in BPEL4AWS lagguand business rules in a
rules language. Composition of rules can be implgetkof two ways, the first uses
an aspect oriented variation of BPEL4WS or usingbuwsiness rules engine
synchronized with the execution of process endiihe. principal advantage presented
in [4] is the capability to reuse the businessswded a certain degree of flexibility
because rules can evolve independently of the eticdi®mn model. In our approach
we consider business rules as particular case mposition with abstract domain,
i.e., annotations.

In [4] and [5] a Web service composition is spiita a core process and a set of
rules. Business rules express company policieschwiprovides some flexibility
because rules can evolve independently of the etct®mn core model. In [5] rules
are used to guide the execution environment in ib@ydre-binding and self-
reconfiguring services when their properties do nmatch the environment
requirements or when execution context changesol@ing between orchestration
specification and rules allows for separation afic@ns. In [4] and [5] composition
of arbitrary domains is not addressed.

In [17] at high level tool is built to add securjiglicies to services orchestration. A
GUI is used with a set of patterns to help userdefining policies, which are then
translated into WS-SecurityPolicy language. Thiprapch uses a high abstraction
level to specify security concerns in services cositipn, but does not enforce these
properties at runtime, which contrasts with our rapph where specification and
runtime are both addressed, and for a wide rangeraferns.

In BPEL4J [3] Java code snippets are inserted orthestration specified in
BPEL. BPEL4J gives BPEL complete calculus capahilitit the Java code is tangled
into the process definition and makes it orchestnatodels difficult to understand,
concerns are coded in ad-hoc way into each orctiestr BPEL4People in [11] adds
process interaction with human beings, adding apomition between orchestration
and resource domains. These solutions require #&geguextensions such as
introducing new activity types, which is difficud implement and is not supported
by different implementations.

7. Conclusion

The fundamental concept of separation of concerwiiely accepted, and indeed
used in a number of engineering disciples. In safénengineering, it is well known
that no single decomposition can afford for modmiag correctly all the relevant
concerns. Aspect Oriented Programming (AOP) is w level technique for
separation of concern implementation in which aaloyt concerns (aspects) can be
composed (weaved) with a central reference program.

Our goal is to modularize each concern inside aalomand to compose an
arbitrary number of domains at a conceptual legstablishing metalinks between
concepts and links between models. In this work ave focusing on services
orchestration applications. For that reason, thee cBOCAS platform is an
orchestration system based on the predefined cdtigrosf three domains (control,
service and data). The composition technology wep@se makes that any other
concern (domain) can be composed with the coreestrdttion, extending the FOCAS
platform to the support of “any” business of teclogécal concern.

This method does not work for domains in which niedmnnot be defined in
isolation, generally the non-functional domains.e3& domains, called abstract
domains, require a new composition technique cadledotation. In FOCAS, the
orchestration model can be simply annotated witicepts coming from the abstract
domain metamodel, and the corresponding code isrgted, conferring new
properties to the orchestration application. Thpragch allows including a number
of non-functional concerns into an existing servimehestration application. In
contrast with other approaches, both domain cortipasiand abstract domain
composition are fully respectful of the base domaind require no change at all of
the existing tools domains and models.

The FOCAS system has shown not only the feasitbfithhe approach, but through
real experiments, it has shown that concern cortipostan be undertaken at a high
conceptual level and that it is a viable and pramgispproach.

Future work includes extending the validation, depimg other concrete and
abstract domains, and developing service basedcapiph in various contexts. More
fundamentally, we will try to identify which clagg non-functional properties cannot
be supported by our approach, and to address snctintext, the difficult issue of
concern interactions.

We believe that this new technology is a step fodwm the application of
separation of concern approach to process driveplicagion, and software
engineering in general.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, H.: Weérvices - Concepts, Architectures and
Applications. Springer Verlag (2003)

2. Arkin, A.: Business Process Modeling Language. iotalSpecification available at
http://www.bpmi.org/(2002)

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

Blow, M., Goland, Y., Kloppmann, M., Leymann, F..aBf G., Roller, D., Rowley, M.:
BPELA4J: BPEL for java. A Joint White Paper by BEA aBt¥ (2004)

Charfi, A.., Mezini, M.: Hybrid Web Service Compositi Business Processes Meet Business
Rules. ICSOC’04: Proceedings of the 2nd Internaticd®ahference on Service Oriented
Computing, New York, ACM Press (2004) 30-38

. Colombo, M., Nitto, E. D.,, Mauri, M.: SCENE: A Serei Composition Execution

Environment Supporting Dynamic Changes Disciplinetiroigh Rules. ICSOC’06:
Proceedings of the 4th International Conference envi& Oriented Computing, Chicago,
Springer Berlin (2006) 191-202

Cubera, F. et al.: Web Services Business Procesauficie Language. Specification available
athttp://docs.oasis-open.org/wsbpel/2.0/0S/wsbpe-2S.pdf(2007)

Della-Libera, G.et al: Web Services Security Pollanguage. Specification available at
http://specs.xmlsoap.org/ws/2005/07/securitypolisysecuritypolicy.pdf (2003)

. Estublier, J., Dami, S., Amiour, M.: APEL: A graphl yet executable formalism for process

modeling. Automated Software Engineering: An In&ional Journab(1) (1998) 61-96
Estublier, J., lonita, A.D., Vega, G.: A Domain Casjfiion Approach, Las Vegas,
International Workshop on Applications of UML/MDA Software Systems, CSREA (2005)
1-7

Estublier, J., Villalobos, J., Tuyet LE, A., Sariles S., Vega, G.: An Approach and
Framework for Extensible Process Support Systenctute Notes in Computer Science
2786(2003) 46-61

Kloppmann, M., Koening, D., Leymann, F., Pfau, Rickayzen, A., von Riegen, C.,
Schmidt, P., Trickovic, |.: WS-BPEL Extension fordpée — BPEL4People. A Joint White
Paper by IBM and SAP (2005)

Leymann, F.: Web Service Flow Language (WSFL 1IBM, Specification available at
http://www.ibm.com/software/solutions/webserviced/SFL.pdf(2001)

Nadalin, A. et al: Web Services Security: SOAP MgssSecurity 1.1. Specification available
at http://www.0asis-open.org/committees/downloap/p6790/wss-v1.1-spec-0s-
SOAPMessageSecurity.pdf (2006)

OSGi Alliance: OSGi 4.0 release. Specification mkde athttp://www.osgi.org(2005)

Ossher, H., Tarr, P.: Multi-Dimensional Separatioh Concerns and the Hyperspace
Approach. In: Proceedings of the Symposium on Sa#wArchitectures and Component
Technology: The State of the Art in Software Depetent (2000).

Papazoglou, M.P., Heuvel, W.: Service oriented itgctures: approaches, technologies and
research issues. The VLDB Jour@é(3) (2007) 389-415

Tatsubori, M., Imamura, T., Nakamura, Y.: Best-HeactPatterns and Tool Support for
Configuring Secure Web Services Messaging. ICWS’'@ferhational Conference on Web
Services, San Diego, IEEE Computer Society(2004)-281

Thatte, S.: XLANG: Web Services for Business Prodessign. Microsoft, Specification
available ahttp://www.gotdotnet.com/team/xml_wsspecs/xlangi@dk.htm (2001)

Didonet Del Fabro, M. and F. Jouaulodel Transformation and Weaving in the AMMA
Platform in Workshop on Generative and Transformational Teahesqin Software
Engineering (GTTSEROO5. Braga, Portugal.

Melnik, S., E. Rahm, and P.A. BernstelRondo: A Programming Platform for Generic
Model Managemenin Proceedings of the 2003 ACM SIGMOD International @ogrice on
Management of Dat€2003.

Kolovos, D.S., R.F. Paige, and F.A.C. Polakklipse Development Tools for Epsilon
Eclipse Summit Europe, Eclipse Modeling Symposiiciober 2006. Esslingen, Germany.
Boronat, A., J.A. Carsi, and |. Rama@sitomatic Support for Traceability in a Generic Mbd
Management Frameworkin European Conference on Model Driven Architecture -
Foundations and Applicationlovember 2005. Nuremberg (Germany).

