

An Extensible Services Orchestration Framework
through Concern Composition

Gabriel Pedraza, Jacky Estublier

LIG, 220 rue de la Chimie, BP53
38041 Grenoble Cedex 9, France

{Gabriel.Pedraza-Ferreira, Jacky}@imag.fr

Abstract. Service composition is one of the major ways to get new applications
out of existing software components (services). The focus so far was mainly on
composition formalisms, while most of the real hard issues are related to the
many concerns that must be combined, and the limited help provided by the
current tools. In this paper we present an approach and a platform in which a
service based application is defined through different models along different
concerns. The FOCAS platform includes some basic concerns (control, service,
and data) and provides support for composition with any other concerns. The
platform provides support for the definition of non-functional concerns in the
form of annotations over the orchestration model.
The paper shows the concepts and the technology allowing to define an
application as a composition of concerns, functional or not, and shows the
experience with the concerns currently supported by the FOCAS platform.

1. Introduction

It is a common belief that the technology behind services has the potential to
increase reuse and dynamism [16]. It can increase reuse because many services exist
and can be directly used, even when operated by third parties on foreign computers
(web services). Dynamism can be significantly improved since service technology
relies on dynamic discovery and connection between client and service providers.
Moreover some service platforms like OSGi [14] provide transparent and dynamic
disconnection and reconnection to new services providers.

These properties of service based applications logically, have fostered many works,
most of them focusing on the formalism in which the composition has to be
described, called orchestration. The current industrial services orchestration standard
is WS-BPEL [6], but many other formalisms have been proposed [2][12][18].
However, it is now clear that the formalism itself is not the main issue, and even WS-
BPEL can be sufficient in a number of cases. The difficulty comes from the many
concerns that must be addressed when developing industrial strength applications.

A first source of difficulty is to make interoperate services designed independently,
and therefore potentially heterogeneous in technology (languages, platforms), data
(representation and semantics), or in interaction protocols. Web services [1] [16], with

XML/WSDL/SOAP standards solved a number of these issues, but still many
incompatibilities require mediation (data, semantics and protocol).

A second source of difficulty is related with the interoperability with other
company tools. The target application may address business domains, in which large
software applications and databases are already available. The service based
application must be able to address these business or technological domains, and
interoperate with legacy applications, which are usually not services.

A third source of difficulty is related with the so-called non functional concerns.
Any real industrial service based application must support a number of these non-
functional concerns like efficiency, distribution, scalability, security, transactional
behavior, dynamism, etc. Of course, some work and standards addressed these issues.
Web Services standards such as WS-Security [13], WS-SecurityPolicy [7], WS-AT,
address some of these concerns at service level, but adding them to service
compositions must be undertaken manually, which is a hard and error-prone task.

Our goal is to propose a method, a development environment and a runtime
platform allowing: (1) the company method and technology team, to define which
concerns, functional or not are to be addressed, and to develop the environment that
support these concerns; (2) the software engineer, which is not necessarily a
technology expert, to develop easily an application, clearly expressing, through
models and annotations, functional as well as non functional characteristics of the
target application.

The paper is structured as follows. Section 2 shows that a service orchestration is
the composition of three models. Section 3 unveils how these three models are
composed, and shows how composition method is generalized to any domain. Section
4 presents how abstract domains can be composed in order to add non-functional
characteristics to applications. Section 5 validates our proposition. Section 6
compares it with the state of the art. Section 7 concludes the paper.

2. Services Orchestration

The first step, when building a software application, is to decompose it in parts, in
order to reduce the complexity. But no decomposition can cope simultaneously with
the different aspects of an application. Each concern (or aspect) is a part of software
that is relevant to a particular concept, goal, or purpose [15].

The main idea behind service orchestration is that services are existing,
autonomous and independent (which is often not the case in reality), and the
decomposition criterion is an ordering (orchestration) of services execution.

2.1. Orchestration Core Domains

Even if it is not formally expressed in the actual formalisms, orchestration is based on
three main domains, control, services, and data. Control expresses the execution

ordering, service defines the computing to be performed, and data defines the
information on which the execution is to be performed. In most propositions, these
three domains are closely intertwined. In contrast, we suggest defining these three
aspects independently, through models. We believe this separation is a major progress
since it allows expressing, in the control model, what is the business logic,
irrespective of details of the underlying services and independent from the data
definition, which makes sense since many services are existing, and each company
has already information systems in place, used by a number of software applications.

In our approach, a basic orchestration domain is made of the composition of the
control, service and data atomic domains. Hence, formal and explicit definition of
metamodels in each domain proved to be of great help, both conceptually, to
understand clearly what the domain is about, and technically as the main support for
tools which have to process models.

2.1.1. Control Domain
In our approach, the Abstract Process Engine Language APEL [8] is used to express
the control model. APEL is a high level process language containing a minimal set of
concepts that are sufficient to understand the purpose of a process model.

In APEL an activity is a step in the process that results in an action being
performed. The actual action to be executed is not defined into the process model, and
it can be a service invocation (a Web service, DPWS service, an OSGi service), any
kind of program execution (legacy, COTS) or even an human action. Ports are the
activities communication interface, each port specifies a list of expected products.

Activity

+name: String

Port

+name: String

Dataflow

Product

+name: String

constains ->

0..*1hasEntries ->

1 1..*

hasOutputs ->

1 1..*

+hasDesktop ->

1 1

ProductType

+name: String

hasType ->

1

0..*

+inLinkedTo

transfer

0..*

0..1

hasSubactivities

Role

+name: String

hasResponsible

Fig. 1 Control Domain Components

A Product is an object (records, data, files, documents, etc) that flows between

activities. Products are represented by variables having only a symbolic name and a
type which is also a symbolic name (e.g. “client” is a product of type “Customer”).
This property does not preclude of the actual nature, structure and content of the real
data that will circulate in process. Dataflows connect output ports to input ports,
specifying which product variables are being transferred between activities.

Graphically an activity is represented as a rectangle with tiny squares on sides

which denotes its ports, a dataflow by one line that connects ports and products as
labels on dataflows.

Left side of Fig. 1 presents the APEL metamodel, and right side presents an APEL
model created with our editor. The model example is an alarm system, where the
Acquisition activity is in charge of collecting environment measures, then the Analysis
activity performs a computation over the gathered data, finally two parallel activities
are executed, the first-one Storage activity makes the data persistent and Processing
activity triggers an action in case of abnormal data values.

2.1.2. Data Domain
The data domain manages the information used in the company; it specifies the

data types (structure and content) and manages the access to the information. This
data abstraction makes it possible to hide the heterogeneity of the data used by both,
the concrete services and other company applications. Data are represented in two
concrete syntaxes: a graphical representation (UML class style) and as Java classes to
facilitate programmatically data handling.
Left side of Fig. 2 presents the data metamodel, and the right side presents a possible
data model for the alarm system, in which the gathered measure is a room
temperature. Data types declared in this model are Temperature, Average and Action.

Temperature

+value
+unit

Average

+value

Action

+description

DataType

+name: String

Attribute

+name: String
+shared: Boolean

ComplexType

hasAttributes ->
1..*

1

<- hasType

1

0..*

Fig. 2 Data Domain Components

2.1.3. Services Domain
To facilitate deployment and portability among different execution platforms we

express our services model at two abstraction levels. Abstract services are used by the
orchestration at an abstract level, and concrete services are the actual services
implemented in a given technology. Abstraction level separation allows describing a
service independently of its implementation technology. Java interfaces are used as
formalism to define abstract services. These interfaces use as types of their method
parameters simple Java types or the types defined in the Data domain presented
above. In Fig. 3 a possible service model for alarm system is presented.

 public interface TemperatureService {
 public Temperature getTemperature();
 public Average average(Temperature[] temperatures);
 public void save(Average average);
 public void doAction(Action action);
}

Fig. 3 Abstract Service Definition

2.2. Orchestration Core Model Composition

We present now how domain models are composed to build an orchestration model.

2.2.1. Composing Control and Data Models
Composing control and data, in our case, means associating instances of the
ProductType concept defined in the control model with instances of the DataType
defined in the data model. By example the Measure product type defined in the
control model corresponds to the Temperature type defined in data model. The Fig. 4
presents our generic model composition tool (Codele) used in this case to create
associations between control and data models.

Fig. 4 Composing control and data (Codele)

2.2.2. Composing Control and Service Models
Composing control and services consists in establishing a relationship between an
activity in control model and an abstract service operation in the service model. In our
alarm example we establish the following links: Acquisition-getTemperature,
Analysis-average, Storage-save, and Processing-doAction.

Fig. 5 Activity-Abstract Service Link

In Fig. 5, selecting the Processing displays the abstract services whose signature is

compatible with the data “owned” by the activity. Most often, only one is possible.

3. Domain Composition : Links and Metalinks

The composition presented above is powerful enough to create an application using
service orchestration technology. But other concerns corresponding to specific
application requirements are occurring in specific business domains. These concerns
must be composed with those presented above to meet the application requirements.

Composing two domains requires specifying relationships between concepts
present in their metamodels, called metalinks, and relationship between elements
pertaining to both models, called links. Metalinks describe the semantic relation
between concepts of the two domains.

In a domain, the metamodel describes the abstract syntax in which models are
expressed. Following most meta-environment strategy, at execution time, the model is
transformed (reified) into instances of the abstract syntax classes. The metamodel also
describes the domain operational semantics through the abstract syntax class, plus
some other classes. These classes constitute an interpreter of the models once reified.

A strong requirement of our approach is that the domains to be composed must not
be modified at all, i.e. models and interpreters must be kept unchanged. In our
approach [9][10], the composition is performed defining metalinks between
metamodel concepts, along with the code that specifies the semantics of the metalink.
But if a metalink is defined between concept X and Y, then links must be defined
between some instances x of X and some instances y of Y, i.e. links must be defined
between model elements. Fig. 6 shows how two domains can be composed.

Models and links are reified thus it is possible, at execution time, to navigate the
links and the models, and to create/modify/delete links and model instances, allowing
meta-level introspection and complete reflection (i.e. dynamic model evolution).

Meta
Model X

Model X

Interpreter X

Meta
Model Y

Model Y

Interpreter Y

Emergent
Concepts

Meta-Link

Link

Synchronization
Code

Conform toConform to

Execute ByExecute By

Conform to

Domain X Domain Y

Domain (X+Y)

Fig. 6 Domain Composition Schema

For example, Fig. 4 shows how the generic model composition tool (Codele) has

been customized to compose Control and Data models. Customization is possible
because a metalink has been defined between the ProductType concept in the Control
metamodel and the DataType concept in the Data metamodel. In the Control
metamodel a ProductType has only a symbolic name, nothing is known at about the
nature of products that are flowing between activities. Conversely, in the Data
metamodel we define the structure of entities, but nothing is known about the actions
performed on them. In this example, the metalink expresses a specialization relation
allowing making precise what is really circulating between activities.

At model level, links between instances of two concepts must be defined. The
composition defines that a Measure (in control model) will be a Temperature (in Data
model), in the same way links are created between Average-Average and Command-
Action, in Fig. 4 model composition for the alarm system is presented. Model
composition is realized without modification of the original models which
significantly increases reuse possibilities. One can imagine using the same control
model applied on another Data model, by example, to use Pressure instead of
Temperature type.

M
et

am
od

el
L

ev
el

M
o

de
l L

ev
el

Control Domain Data Domain

link

link

link

value average

command

Fig. 7 Control and Data Domain Composition

Interpreters have also been composed to provide execution capacity to composed

models. Interpreters are composed based in metalinks definitions, all public methods
on related concepts are intercepted, and when methods are invoked, actions in the
opposite domain can be performed. Additional code must be written to define the
composition semantics as is presented in Fig. 6. In the particular case of Control and
Data domains, when a Product is created in the control interpreter, a corresponding
Data is created in the data interpreter. Fig. 7 summarizes how the control and data
domains have been composed, and how models of Alarm application are composed.

3.1. Workflow Example

We have illustrated how domains can be composed with the Control and Data
domains; indeed, it is how the core orchestration domain has been developed. But the
same technique can be applied to compose the core orchestration domain with any
other domain of interest, to fit specific business needs.

We have defined a workflow domain as the composition of the core orchestration
domain, with document and resource domains. The reason is that the data circulating
in a traditional workflow or an office automation system are documents (files). The
document domain is in charge of managing and copying files, composition is defined
by a metalink between DataType and Document concepts. In a traditional workflow,
most activities are performed by humans. The resource domain expresses how
resources (company structure, divisions, humans), are organized, the corresponding
instances being stored in an LDAP repository for example. Hence this relation is
defined by a metalink between Activity and Role concepts.

Fig. 8 shows how we have defined and implemented our process support system. It
is important to notice that this composition process is structured, and fully reuses the
previous orchestration domain composition.

Control Data

Service

Resource Document

Orchestration Domain
Workflow
Domain

Fig. 8 Workflow Domain

4. Abstract Domain Composition: Annotations

The above composition technique can only be applied on domains in which it is
possible to define an interpreter, and in which can be defined models, independent
from the other domain models. Unfortunately, many domains, and most notably the
non functional domains, do not satisfy this requirement. For example, we can define a
security domain which metamodel contains concepts like authentication,
confidentiality, integrity, etc. But it is not possible to define a security model
independently from the associated application: confidentiality makes sense only when
applied to a particular data for example. A domain in which independent models
cannot be created is said to be abstract; it can be “instantiated” only when applied to a
concrete domain that “inherits” the abstract domain characteristics.

The composition of an abstract domain with a concrete domain is based on an
annotation technique, the composition schema is presented in Fig. 9. First, metalinks
express the relationship between both domains, in the form of syntactic restrictions
used to constrain annotation declarations. These restrictions indicate which concepts
of X abstract domain can be applied on which concepts of Y concrete domain.

At model-level, elements of a concrete model of Y domain are annotated with

concepts of the X domain metamodel respecting the restrictions imposed in the
metalinks definition. Annotations can have attributes indicating how the annotation
will be processed by the code generator. Annotation tools use metalinks definition to
permits only correct annotations on concrete domain models.
The composition is created at an abstract level, hence several code generators can be
developed to adapt orchestration to different technical constrains. Finally the code
generator, receiving as input the model and its annotations, and having knowledge of
X and Y domain metamodels and of Y interpreter implementation conventions,
generates code which is weaved with the interpreter code to produce a customized
execution of composite X+Y domain.

Meta
Model X

Meta
Model Y

Model Y

Interpreter Y

Meta-Link

Annotates
Conform to

Execute By

Abstract
Domain X

Domain Y

Domain (X->Y)

Code
Generator

Generate
Code Weaving

Annotations
on Y Model

Conform to

Fig. 9 Abstract Domain Composition Schema

There are two open issues in abstract domain composition approach: (1) validation

of the annotations semantic, and (2) code generation ordering. Former issue is about
the correctness of a set of annotations, metalinks only give a syntactical validation but
nothing is said about the validity of overall annotations on model. Validation can be
implemented at two levels in our approach, at edition time when annotations are
declared or at generation time..

Order of code weaving is an existing problem in AOD approaches, the order in
which aspects are weaved with the base code can change the semantics of the
resultant code. In the same way the order of generation code of different concerns in
our approach can change (or eliminate) the execution semantic of previous abstract
domain compositions.

In comparison with AOP, our approach does not have an open joint point model,
only state changes in Activities can be used as joint points. Moreover the additional
behavior i.e. advices is embedded into the code generator in the form of code
templates, and pointcuts are defined by quantification i.e. using the annotations
declarations. Finally the weaving process is realized in generation phase. At technical
level our approach uses AOP, but at user level, domain composition is performed, and
AOP technology is not visible at all.

4.1. Security Example

Let us illustrate our annotation technique showing how the security concern was
composed with the base orchestration domain. In our alarm system example, one can
imagine that the alarm application is executed in a plant floor. Three security
requirements are necessary: data circulating in the system must be confidential, data
must not be modified by third parties, and more important, malicious actions
performed on plant equipments must be avoided.

The identified concepts in security abstract domain are: authentication, meaning
that a service invocation must be performed by a trusted resource; confidentiality, to
indicate that the data exchanged must not read; and integrity to indicate that the data
exchanged between services must no be modified by third parties.

value
average

command

annotation

annotation

annotation

annotation

type=user/pass

type=certificate

Control Domain

M
et

am
o

d
el

L
ev

el
M

o
d

el
 L

ev
el

Security Domain

Fig. 10 Security and Control: Abstract Domain Composition

Metalinks specify the following syntactical restrictions: Authentication annotation

can only be declared on Activities while Confidentiality and Integrity concepts can
only annotate products when they flow between activities. Fig. 11 shows how the
security metamodel and metalinks definitions have been used to partially generate an
extension over the control model editor. This extension permits only to annotate
concepts with appropriate annotations.

In our alarm example, Acquisition and Processing activities are both annotated
with Authentication, but with different values for the type attribute, value product is
annotated to be confidential and command product to maintain integrity. In contrast
with domain composition, in abstract domain composition, abstract models do not
exist per se, instead abstract metamodel concepts annotate model level elements of the
concrete metamodel. In our security example, security metamodel concepts annotate
the orchestration model as presented in Fig. 10.

In our security/orchestration example, for user convenience, only the control model

is annotated. This is possible due to the following domain composition properties:
- Asymmetric nature of orchestration composition where control is considered as a

central domain.
- Introspection property of domain composition which allows the code generator as

well as the generated code to navigate into composed orchestration models.

Fig. 11 Security Annotation Extension: Alarm System Security Properties

We have developed a code generator to guarantee security properties in web

services orchestration. It first validates annotations and then generates code using the
Apache WSS4J library which is an implementation of WS-Security standard. The
code generator processes the control model annotations and changes the Web service
invocation semantic accordingly. If an activity is annotated with Authentication, an
authentication header is added to SOAP messages in the invocation of associated
service, in the same way data encryption is used when products are annotated as
confidential or to maintain integrity.

The same generator is used whatever the models in the orchestration domain. The
generator also extends the model elements definition with attributes such that the
annotation information will be found, at execution, on the reified model elements,
extending introspection to the abstract domain composition. However, due to the
generative approach, reflection is not possible; removing authentication at run-time
for example is not possible.

5. Evaluation

Our approach has been validated first with the construction of FOCAS, which is the
extensible service orchestration framework designed to support our approach, and
second with the development of real applications in collaboration with our industrial
partners.

FOCAS environment is built on top of Eclipse IDE and EMF. The metamodel of

each concrete core domain (control, data and services) is defined by an Ecore model,
and the associated editor is either hand coded (APEL) or generated by EMF
framework. FOCAS has a high level view of domains and their relations, using its
interface, developers hardly ever have to deal directly with Eclipse artifacts.

We realized very soon that our domain composition technology is too complex to
be undertaken manually even by domains experts. A primary goal of FOCAS was to
fully support domain composition, hiding its underlying complexity (use of Aspect J,
metamodel manipulation, relationship semantics, etc). With FOCAS, adding a new
concrete domain (concern) to the environment consists in specifying the metalinks
between the new domain and the core metamodel using Codele metalinks editor, and
in providing (in Java) their semantics. Adding a new abstract domain consists in
specifying the metalinks between the new domain and the control metamodel, from
which an extension of the control editor is generated (see Fig. 11). Then, the code
generator (optionally the annotation validator) has to be written, it must implement
some FOCAS interfaces and use the JET technology to be fully integrated into the
environment.

It is much simpler to develop a service based application satisfying different
concerns using model composition than in the traditional way; nevertheless,
composing model by hand is not so easy. The other goal of FOCAS is to provide a
framework which fully hides the many artifacts, code, and activities required by such
applications. FOCAS automates the model composition task (see Fig. 4, Fig. 5), and
generates most (and often all) the code required to make the application executable.

We have used our tool and approach to build real applications in association with
some of our industrial partners. The process support system presented in section 3.1,
which is a domain composition that has been used by years by different partners.

The alarm system presented along this paper is a (simplified) implementation of
real system for a plant floor production that we have developed for our industrial
partner Thales. In that application, we used DPWS and security properties
implemented using WSS4J framework; but our new code generator use the Rampart
library (security framework in Axis 2).

Other abstract domains are under way most notably the distribution
(choreography), dynamic and deployment abstract domains. All these experiences
have shown that FOCAS dramatically simplifies service based application design and
development.

6. Related work

Domain composition has been addressed in two major ways: model and metamodel
merging on the one side and models/metamodels synchronization and weaving on the
other side. The first camp focuses on the semantics of operators like match, merge,
weave applied to two models, and several platforms have been developed, like
AMMA [19], Rondo [20], EOL [21], MOMENT [22].

Metamodeling environments have been developed to support model composition.

GME (Generic Modeling Environment) builds new metamodels using union and
inheritance, while XMF (eXecutable Metamodeling Facility) uses a specific language
XSync for model synchronization.

All these approaches produce new models and metamodels which most often they
do not support domain execution, and that impose to rebuild all the models and the
associated tools. A company asset is made (among other things) of the models
developed and tuned along the years, and of the people expertise in using the domain
languages. For that reason we strongly emphasize domain composition that fully
respects the models and the tools developed for a given domain.

In [4], composition is split into a core process and a set of business rules.
Orchestration models are described in BPEL4WS language and business rules in a
rules language. Composition of rules can be implemented of two ways, the first uses
an aspect oriented variation of BPEL4WS or using a business rules engine
synchronized with the execution of process engine. The principal advantage presented
in [4] is the capability to reuse the business rules and a certain degree of flexibility
because rules can evolve independently of the orchestration model. In our approach
we consider business rules as particular case of composition with abstract domain,
i.e., annotations.

In [4] and [5] a Web service composition is split into a core process and a set of
rules. Business rules express company policies, which provides some flexibility
because rules can evolve independently of the orchestration core model. In [5] rules
are used to guide the execution environment in binding, re-binding and self-
reconfiguring services when their properties do not match the environment
requirements or when execution context changes. Decoupling between orchestration
specification and rules allows for separation of concerns. In [4] and [5] composition
of arbitrary domains is not addressed.

In [17] at high level tool is built to add security policies to services orchestration. A
GUI is used with a set of patterns to help users in defining policies, which are then
translated into WS-SecurityPolicy language. This approach uses a high abstraction
level to specify security concerns in services composition, but does not enforce these
properties at runtime, which contrasts with our approach where specification and
runtime are both addressed, and for a wide range of concerns.

In BPEL4J [3] Java code snippets are inserted into orchestration specified in
BPEL. BPEL4J gives BPEL complete calculus capability, but the Java code is tangled
into the process definition and makes it orchestration models difficult to understand,
concerns are coded in ad-hoc way into each orchestration. BPEL4People in [11] adds
process interaction with human beings, adding a composition between orchestration
and resource domains. These solutions require language extensions such as
introducing new activity types, which is difficult to implement and is not supported
by different implementations.

7. Conclusion

The fundamental concept of separation of concern is widely accepted, and indeed
used in a number of engineering disciples. In software engineering, it is well known
that no single decomposition can afford for modularizing correctly all the relevant
concerns. Aspect Oriented Programming (AOP) is a low level technique for
separation of concern implementation in which arbitrary concerns (aspects) can be
composed (weaved) with a central reference program.

Our goal is to modularize each concern inside a domain, and to compose an
arbitrary number of domains at a conceptual level, establishing metalinks between
concepts and links between models. In this work we are focusing on services
orchestration applications. For that reason, the core FOCAS platform is an
orchestration system based on the predefined composition of three domains (control,
service and data). The composition technology we propose makes that any other
concern (domain) can be composed with the core orchestration, extending the FOCAS
platform to the support of “any” business of technological concern.

This method does not work for domains in which models cannot be defined in
isolation, generally the non-functional domains. These domains, called abstract
domains, require a new composition technique called annotation. In FOCAS, the
orchestration model can be simply annotated with concepts coming from the abstract
domain metamodel, and the corresponding code is generated, conferring new
properties to the orchestration application. The approach allows including a number
of non-functional concerns into an existing service orchestration application. In
contrast with other approaches, both domain composition, and abstract domain
composition are fully respectful of the base domain, and require no change at all of
the existing tools domains and models.

The FOCAS system has shown not only the feasibility of the approach, but through
real experiments, it has shown that concern composition can be undertaken at a high
conceptual level and that it is a viable and promising approach.

Future work includes extending the validation, developing other concrete and
abstract domains, and developing service based application in various contexts. More
fundamentally, we will try to identify which class of non-functional properties cannot
be supported by our approach, and to address in this context, the difficult issue of
concern interactions.

We believe that this new technology is a step forward in the application of
separation of concern approach to process driven application, and software
engineering in general.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, H.: Web Services - Concepts, Architectures and
Applications. Springer Verlag (2003)

2. Arkin, A.: Business Process Modeling Language. Intalio, Specification available at
http://www.bpmi.org/ (2002)

3. Blow, M., Goland, Y., Kloppmann, M., Leymann, F., Pfau, G., Roller, D., Rowley, M.:

BPEL4J: BPEL for java. A Joint White Paper by BEA and IBM (2004)
4. Charfi, A.., Mezini, M.: Hybrid Web Service Composition: Business Processes Meet Business

Rules. ICSOC’04: Proceedings of the 2nd International Conference on Service Oriented
Computing, New York, ACM Press (2004) 30–38

5. Colombo, M., Nitto, E. D., Mauri, M.: SCENE: A Service Composition Execution
Environment Supporting Dynamic Changes Disciplined Through Rules. ICSOC’06:
Proceedings of the 4th International Conference on Service Oriented Computing, Chicago,
Springer Berlin (2006) 191–202

6. Cubera, F. et al.: Web Services Business Process Execution Language. Specification available
at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf (2007)

7. Della-Libera, G.et al: Web Services Security Policy Language. Specification available at
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf (2003)

8. Estublier, J., Dami, S., Amiour, M.: APEL: A graphical yet executable formalism for process
modeling. Automated Software Engineering: An International Journal 5(1) (1998) 61–96

9. Estublier, J., Ionita, A.D., Vega, G.: A Domain Composition Approach, Las Vegas,
International Workshop on Applications of UML/MDA to Software Systems, CSREA (2005)
1–7

10. Estublier, J., Villalobos, J., Tuyet LE, A., Sanlaville, S., Vega, G.: An Approach and
Framework for Extensible Process Support System. Lecture Notes in Computer Science
2786(2003) 46–61

11. Kloppmann, M., Koening, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen, C.,
Schmidt, P., Trickovic, I.: WS-BPEL Extension for People – BPEL4People. A Joint White
Paper by IBM and SAP (2005)

12. Leymann, F.: Web Service Flow Language (WSFL 1.0). IBM, Specification available at
http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf (2001)

13. Nadalin, A. et al: Web Services Security: SOAP Message Security 1.1. Specification available
at http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf (2006)

14. OSGi Alliance: OSGi 4.0 release. Specification available at http://www.osgi.org/ (2005)
15. Ossher, H., Tarr, P.: Multi-Dimensional Separation of Concerns and the Hyperspace

Approach. In: Proceedings of the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development (2000).

16. Papazoglou, M.P., Heuvel, W.: Service oriented architectures: approaches, technologies and
research issues. The VLDB Journal 16(3) (2007) 389–415

17. Tatsubori, M., Imamura, T., Nakamura, Y.: Best-Practice Patterns and Tool Support for
Configuring Secure Web Services Messaging. ICWS’04: International Conference on Web
Services, San Diego, IEEE Computer Society(2004) 244–251

18. Thatte, S.: XLANG: Web Services for Business Process Design. Microsoft, Specification
available at http://www.gotdotnet.com/team/xml_wsspecs/xlangc/default.htm (2001)

19. Didonet Del Fabro, M. and F. Jouault. Model Transformation and Weaving in the AMMA
Platform. in Workshop on Generative and Transformational Techniques in Software
Engineering (GTTSE). 2005. Braga, Portugal.

20. Melnik, S., E. Rahm, and P.A. Bernstein. Rondo: A Programming Platform for Generic
Model Management. in Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data. 2003.

21. Kolovos, D.S., R.F. Paige, and F.A.C. Polack. Eclipse Development Tools for Epsilon. in
Eclipse Summit Europe, Eclipse Modeling Symposium. October 2006. Esslingen, Germany.

22. Boronat, A., J.A. Carsi, and I. Ramos. Automatic Support for Traceability in a Generic Model
Management Framework. in European Conference on Model Driven Architecture -
Foundations and Applications. November 2005. Nuremberg (Germany).

