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Abstract. Security is among the most successful applications of aspect-
oriented concepts. In particular, in role-based access control, aspects cap-
ture access conditions in a quite modular way. The question we address
in this paper is how can aspects be generated from access control policies
under a validated process?

We present a metamodel-based transformation from SecureUML, a role-
based access control language, to an abstract aspect language. Within
this model-driven engineering context, a security policy is represented
as an instance of SecureUML’s metamodel and the generated aspect is
represented as an instance of the abstract aspect language metamodel.
Invariants specified on the merged metamodel of SecureUML and the
abstract aspect language are checked to validate the generated aspect
with respect to the given security policy.

We have prototyped our approach as a Java application on top of IT-
P/OCL, a rewriting-based OCL evaluator. It outputs validated AspectJ
code from a SecureUML policy.

1 Introduction

The use of aspects [16] in security is among the most successful uses of aspect-
oriented concepts, both at the specification and coding levels (e.g. [21, 6, 13, 11,
20, 15]).

In particular, aspects capture, in a modular way, the control conditions of
role-based access control (RBAC) [12] policies. An RBAC policy describes the
constraints that a given user, within a certain role, must fulfill in order to per-
form an action, that is, access, a controlled system. Essentially, access control
constraints can be understood as preconditions to calls for controlled resources.

Preconditions can be directly represented as the so called before advices in
aspects. Before advices are program statements that are executed before an
(user-defined) identifiable execution point, or join point in aspect-oriented ter-
minology, is reached. An example of such a join point is a call to a particular
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method. A join point can be intercepted using pointcut declaration in an aspect-
based language, which essentially defines a pattern that matches whenever the
desired join point is executed, such as a method call.

The benefits of generating aspect-code from RBAC policies is twofold: (i)
we modularly represent access control constraints as pre-conditions captured as
before advices in an aspect and (ii) the generated code is automatically called
from the client code (whose access is being controlled) by the so called weaving
process. The first benefit is actually shared with other approaches such as object-
oriented design by contract. However, weaving is only supported by aspect-based
languages. (See Section 2 for an example.)

The literature in the connection of aspects and RBAC is rich. In [21] the
authors use aspect-oriented modeling to specify access control concerns. In [6] the
focus is on web applications. The authors propose an aspect-oriented approach
to declarative access control for web applications. In [13] they use aspects to
implement the RBAC reference model [22]. In [11] the authors present quite
clearly how aspects can be used to implement access control policies but identify
deployment problems. They foresee that automating the generation process from
higher-level descriptions is a must. The proposals in [20, 15] research in this
direction. In [20] the authors present how role-slicing models are translated into
aspect code. The proposal in [15] uses aspect-oriented modeling to represent
security concerns and generates aspect code.

The question we address in this paper is how can one automatically generate
aspects for access control policies under a rigorous development method, that is,
within a validated generation process?

To answer this question we propose a model driven architecture approach
(MDA) [18]. Moreover, we follow the model-driven security (MDS) ideas [1].
In MDS, we quote, “designers specify system models along with their security
requirements and use tools to automatically generate system architectures from
the models, including complete, configured access control infrastructures.” It is
argued that this approach “bridges the gap between security analysis and the
integration of access control mechanism into end systems. Moreover, it integrates
security models with system design models and thus yields a new kind of model,
security design models.”

We have defined a transformation from role-based access control policies,
modeled in the RBAC-based language SecureUML, defined in [1], to aspects,
modeled in a simple abstract aspect-oriented language, a subset of constructs
commonly found in aspect-oriented languages, which essentially defines point-
cuts and before advices. The aspect concepts we believe are the necessary ones
to represent access control. Our approach is a metamodel-based one, that is,
we consider the metamodels of the languages involved in the transformation.
Therefore, a security policy is understood as an object model of the SecureUML
metamodel and the generated aspect is an object model of the aspects meta-
model.

The validation of the transformation process smothly integrates with the val-
idation of SecureUML policies proposed in [7]. There, SecureUML policies are
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validated by evaluating the OCL invariants of the SecureUML metamodel over
policies captured as object models. We extend their approach, in the context
of MDA, by proposing that model transformations from SecureUML policies to
code could be validated on the merged metamodel of SecureUML and target lan-
guage. Therefore, we consider the merged metamodel of SecureUML and aspects
to guarantee conformance of a generated aspect with respect to the given secu-
rity policy. We name transformation invariants the invariants associated with
the merged metamodel.

Our MDA approach thus applies the metamodel transformation and model
merging approaches from [18]. Moreover, it neither requires a new specification
language, such as QVT [19], for its specification, nor commits to a particular
implementation. A fact that we believe to be positive in the sense of using the
same languages from the modeling phase (UML and OCL) and not imposing a
particular implementation framework. A point of view that we believe is shared
with [2]. At the implementation level, any programming language can be used
as long as the implementation preserves the transformation invariants.

We have prototyped our approach on top of the rewriting-based OCL evalua-
tor ITP/OCL [10, 4]. The prototype is implemented in Java and essentially loads
ITP/OCL with all the above mentioned metamodels and invariants. When given
an object model of a security policy as input the transformer generates an object
model of an aspect. The invariants of the merged metamodel are then evaluated
on the union of the object models of security policy and aspect, following the
Design by Contract [17] idea of run-time monitoring of assertions. If they hold,
the transformer outputs an aspect using AspectJ as concrete syntax.

To summarize our contribution in one paragraph: we propose an automatic
and validated and code generation process from role-based access control policies
into aspect code. Each policy gives rise to an aspect. The validation of the aspect
generation is model-based. The generated aspect is validated by evaluating the
OCL invariants, defined for the model of SecureUML and aspects, on model
instances that represent the security policy and aspect. We have prototyped our
approach on top of an OCL evaluator.

This paper is organized as follows. In Section 2 we illustrate how a
SecureUML policy may be represented by an aspect. Section 3 presents
our metamodel-based transformation approach to aspect generation from Se-
cureUML access control policies. Section 4 discusses a prototype implementation
to our approach. Section 5 algebraically formalizes the notions of merged meta-
model, transformation invariants and validation of the transformation invariants
algebraically. Finally, Section 6 concludes this paper with final remarks.

2 From SecureUML Policies to Aspect Code

An access control policy in SecureUML specifies which (user) roles are given
permissions to perform actions over resources under certain authorization con-
straints. SecureUML has a loose semantics, in an algebraic sense [14], with re-
spect to the resources which access may be controlled. Our resource language of
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choice, called ComponentUML, defines resources to be entities which may have
attributes, methods, and association ends. Attributes, methods, and association
ends are also resources which access may be controlled.

As an example, consider the SecureUML policy specified by the model in
Figure 1. The model specifies the access control over the entity TRC (for test
report configuration). Users under three different roles may access a TRC :
Test Operator, Test Supervisor or Test Administrator. These roles are related
under role inheritance. The most “powerful” role is a Test Administrator, who
inherits the access controls permissions from the Test Supervisor role. The lat-
ter inherits from the Test Operator role. Therefore, the Test Operator role is the
less powerful one.

For a user to execute the (atomic) create action over TRC, under a
Test Operator role, then the authorization constraint attached to the permis-
sion NewPrivate must hold. This permission means that the parameter p owner
of the create action must be equal to the name of the user (denoted by Se-
cureUML’s special variable caller) and also that the parameter p scope of the
create action must be equal to the constant Private. To perform the same ac-
tion under the role of Test Supervisor the permissions NewGlobal or NewPrivate
(since Test Supervisor inherits permissions from Test Operator) must hold.

<<Role>>

Test_Operator

<<Role>>

Test_Supervisor

<<Role>>

Test_Administrator

<<Entity>>

TRC

+owner: String

+scope: TypeOfScope

+name: String

+create(p_scope:TypeOfScope,p_owner:String,
        p_name:String)

+delete()

<<Permission>>

NewPr iva te

+create: AtomicExecute

p_owner = caller.name and p_scope = Private

<<Permission>>

NewGlobal

+create: AtomicExecute

p_owner = caller.name

Fig. 2. Modeling the access control requirements.

– the use of a specific method, isServiceGranted(topic), to test whether the
logged-in user belongs (either directly or indirectly) to the group associ-
ated with topic in the UserRights document; this method is provided by a
component IUserAdmGet.

To translate SecureUML+ComponentUML models to the company’s C++-
based technology, we proceeded as follows:

Step 1 In the UserRights document, we define as groups the roles depicted
in the diagram, preserving the hierarchy among them. For example, the
following XML code is part of the UserRights document that we have used
to translate the roles and their hierarchies specified in the model depicted in
Figure 2.

<VIRTUAL_USER_GROUPS>
<VIRTUAL_USER_GROUP name="L1">

<USER_GROUP name="Test_Administrator"/>
</VIRTUAL_USER_GROUP>

<VIRTUAL_USER_GROUP name="L2">
<USER_GROUP name="Test_Supervisor"/>

<VIRTUAL_USER_GROUP_REF name="L1"/>
</VIRTUAL_USER_GROUP>

<VIRTUAL_USER_GROUP name="L3">
<USER_GROUP name="Test_Operator"/>

<VIRTUAL_USER_GROUP_REF name="L2"/>
</VIRTUAL_USER_GROUP>

</VIRTUAL_USER_GROUPS>

Fig. 1. An Example Access Control Policy

The model in Figure 1 is a quite simplified version of the models produced in
an industrial project with a major Spanish technology company, which results
are reported in [8].

From this model, essentially, we produce an abstract class, that represents
an interface to a concrete implementation of the TRC entity, and an aspect,
that implements the access control to TRC ’s methods. For each TRC method,
only create in this example, we declare, in the TRCAccessControl aspect, a
pointcut, identified by createPC, to capture a call to create, and a before advice.
The advice is triggered whenever create is called and checks if the authorization
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constraints for NewGlobal or NewPrivate hold. It raises an exception otherwise.
The abstract class and aspect for the TRC access control policy in Figure 1 is
presented below.

abstract class TRC {
int scope ; String owner ; String name ;

abstract TRC create( int p_scope, String p_owner, String p_name )

throws Exception ;

}

aspect TRCAccessControl {
static Role caller ;

TRCAccessControl() { caller = Env.getUserRole() ; }
pointcut createPC(int s, String o, String n) :

call(TRC TRC.create(int, String, String)) && args(s,o,n) ;

before(int s, String o, String n) throws Exception : createPC(s,o,n)

{
if (caller instanceof TestSupervisor)

if (o == caller.name) return ;

else throw new

Exception("Current user may not create a TRC.") ;

if (caller instanceof TestOperator)

if ((s == TypeOfScope.PRIVATE) && (o == caller.name)) return ;

else throw new

Exception("Current user may not create a TRC.") ;

throw new Exception("Current user has role "+caller+

" and may not create a TRC.") ;

}
}

In our example, whenever the method create, from the class TRC, is called
(represented by pointcut createPC), the associated before advice will be exe-
cuted before the body of the method create. Therefore, the aspect modularly
captures the access control requirement and the aspect weaving process trans-
parently integrates it with the client code, which, in our example, calls method
create from class TRC.

We have implemented an automatic and validated process for generating
aspect code from SecureUML policies. Our translation follows the MDS ideas
mentioned in the introductory section. The transformation process is the subject
of Section 3.

3 Transforming SecureUML Policies into Aspects

Our approach consists on a validated and automatic transformation from Se-
cureUML policies to aspect code. The target language of our transformation is
an abstract aspect-oriented language, that we call Aspects for Access Control
(AAC) which has abstract classes, protected attributes, methods, aspects, point-
cuts and before advices as language constructs; the elements that appear to be
necessary from the aspect-oriented paradigm to code access control.
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The proposed transformation is thus a transformation between domain-
specific languages: the source captures access control policies and the target
an aspect language for access control. The transformation function essentially
relates each component that requires access control security (called an entity
in SecureUML terminology) into an abstract class and an aspect. The abstract
class represents an interface that a concrete implementation component of the
controlled component must implement. The aspect implements the access con-
trol constraints that must hold when a component’s method (overloaded from
the associated abstract class method) is called.

We use metamodels to specify and validate the transformation process, fol-
lowing the MDA approach and aiming at a smooth integration of the trans-
formation process into the modeling phases. The syntax of each language (i.e.
SecureUML and AAC) is specified as a metamodel in UML, together with its
OCL invariants that capture the structural constraints of the given metamodel.
We extend the model-based validation process for SecureUML proposed in [7]
by defining the metamodel of SecureUML merged with AAC that disjointedly
unites the two languages, adds new relationships among their classes and new in-
variants over the merged language. It specifies when an AAC model is a properly
generated one from a given security policy.

In our proposal, validation means to check the invariants for a given access
control policy, for the generated abstract class and aspect and all of them to-
gether, that is, for the generated abstract class and aspect with respect to the
given access control policy. The validation process should occur in two different
moments in time:

1. Before the transformation is applied: the invariants of the SecureUML meta-
model are applied to the given access control policy. This step guarantees
that the given access control policy is well-formed.

2. After the transformation is applied:
(a) The invariants of the AAC metamodel are applied to the generated ab-

stract class and aspect. This step guarantees that they form a valid AAC
model per se.

(b) The invariants of the merged metamodel of SecureUML and AAC are
applied to both the security policy and the generated abstract class and
aspect.

The validation process is automatic and is implemented on top of ITP/OCL
tool, an OCL evaluator. This is the subject of Section 4.

This section continues as follows: in Section 3.1 we discuss the metamodels
for each language and in Section 3.2 we outline the transformation function from
SecureUML to AAC.

3.1 A Metamodel-based Approach

A metamodel defines the elements of a language, relationships between elements
of a language and assertions that constraint the relationships between the ele-
ments of a language.

6



We chose UML’s class diagrams to specify a language. Therefore, a meta-
model essentially consists of classes, attributes, methods, associations between
classes (with roles and multiplicities) and generalizations between classes. OCL
is our specification language of choice to specify invariants on metamodels.

SecureUML Metamodel SecureUML1 provides a language for modeling
Roles, Permissions, Actions, Resources, and Authorization Constraints, along
with their Assignments, i.e., which permissions are assigned to which roles, which
actions are assigned to which permissions, which resources are assigned to which
actions, and which constraints are assigned to which permissions. In addition,
actions can be either Atomic or Composite. The atomic actions are intended
to map directly onto actual operations of the modeled system. The composite
actions are used to hierarchically group more lower-level ones and are used to
specify permissions for sets of actions.

SecureUML leaves open what the protected resources are and which ac-
tions they offer to clients. These are specified in a so-called dialect and de-
pend on the primitives for constructing models in the system design modeling
language of choice. ComponentUML is our dialect of choice. It is a simple lan-
guage for modeling component-based systems. Essentially, it provides a subset
of UML class models: Entities can be related by Associations and may have
Attributes and Methods. Therefore, by using SecureUML+ComponentUML, it
is possible to model the permissions that an user playing a given role has over
an entity, an attribute, a method or an associations, i.e., the actions such an
user can execute while trying to access the resource. The metamodel of Se-
cureUML+ComponentUML is given in Figure 2. Note that the security policy
drawn in Figure 1 shows an instance of SecureUML+ComponentUML meta-
model.

Fig. 2. The SecureUML+ComponentUML metamodel

1 The material in this subsection is adapted from [8].
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AAC Metamodel The elements of the AAC metamodel are: ResClass (where
the prefix Res stands for resource), ResAttribute, ResMethod, ResGetMethod,
ResSetMethod, Aspect, Pointcut, BeforeAdvice, RoleClass and Env. The meta-
classes ResClass, ResAttribute and ResMethod represent elements of the gen-
erated abstract class after the application of the transformation function to a
SecureUML policy. A ResMethod has two subclasses: ResGetMethod and ResSet-
Method. The metaclasses Aspect, Pointcut and BeforeAdvice represent elements
of the generated aspect. The metaclass RoleClass represents Roles as classes.
The metaclass Env represents the environment that must provide user run-time
information such as the user’s current role and the user’s name.

An instance of ResClass may have many ResAttributes and ResMethods. An
instance of an Aspect may have many Pointcuts and each Pointcut has one and
only one BeforeAdvice. Moreover, an instance of an Aspect must be related with
one and only one ResClass and each Pointcut must be associated with a single
ResMethod. The metaclass RoleClass is related to itself.

An example of OCL invariant for this metamodel is that each ResMethod in
a ResClass must have one Pointcut in the Aspect associated with the ResClass.
This invariant could be called consistency between ResMethod and Pointcut. The
OCL invariant below declares that the navigation from a ResMethod through its
link to its Pointcut and then its Aspect should point to the same object as
navigating through the ResMethod ’s ResClass and then its Aspect.

context ResMethod inv:
self.allInstances()−>forall(rm |
rm.Pointcut-ResMethod.Aspect-Pointcut = rm.Class-ClassMethod.Aspect-Class)

The Merged Metamodel The classes in the merged metamodel of SecureUML
and AAC are given by the disjoint union of the classes in the metamodel of
SecureUML and the classes in the metamodel of AAC. The relations in the
merged metamodel of SecureUML and AAC are given by the disjoint union
of the relations on each metamodel including new relations that associate the
classes on each metamodel. Moreover, it specifies which properties must hold
so that an instance of the merged metamodel of SecureUML and AAC is well-
formed. That is, if an AAC model is a valid abstract class and aspect for the
given SecureUML policy, with respect to the invariants defined in the merged
metamodel.

In the merged metamodel, an Aspect is associated with one and only one
Entity and such metaclass is related to a single ResClass to represent the class
of an entity. A ResMethod is associated with one and only one Method, and a
ResAttribute is associated with a single Attribute. The subclasses of ResMethod,
ResGetMethod and ResSetMethod, are related to Attribute in order to indicate
the getters and setters of the attributes, if any. In addition, an AuthorizationCon-
straint is associated with one and only one BeforeAdvice that will implement
the constraint but such an advice may include the implementation of several
constraints.
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Fig. 3. A subset of the merged metamodel

An example of an OCL invariant over the merged metamodel is shown below.2

The invariant specifies that for each Method, there exists a ResMethod in the
ResClass associated with the Method ’s Entity, such that, for each ResMethod, the
BeforeAdvice in the ResMethod ’s Pointcut is associated with the ResMethod ’s
Authorization Constraints.

The invariant uses two auxiliary operations:
(i) ResMethod::validateResMethodConstraints(Method m):Boolean and
(ii) Method::getMethodResMethods:Set(ResMethod). The second one, which dec-
laration is not shown, returns the ResMethods associated with a given Method.
The first operation, shown below, checks if the given Method is associated with
the current ResMethod (denoted by the special OCL variable self ) and if the Au-
thorizationConstraints in the BeforeAdvice associated with the Method ’s Point-
cut are the same as the given Method ’s AuthorizationConstraints, returned by
the function Method::allMethodConstraints().

context Method inv:
self.allInstances()−>forAll(m | (m.getMethodResMethods())−>

exists(rm | rm.validateResMethodConstraints(m)))

context ResMethod::validateResMethodConstraints(m:Method):Boolean body:
(self.Method = m) and
(self.Pointcut-ResMethod.Pointcut-Advice.Advice-AuthorizationConstraints =
m.allMethodConstraints())

2 The complete set of invariants for the merged metamodel can be found in http:

//maude.sip.ucm.es/~cbraga/transformationInvariants.pdf.
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3.2 The Transformation Function

For a given SecureUML policy the transformation function produces for each
Entity an abstract class and an aspect. The abstract class (ResClass) represents
the interface that has to be fulfilled by a concrete implementation for the given
Entity. This abstract class is comprised by attributes (ResAttribute) and meth-
ods (ResMethod) that represent their Entity ’s counterparts in the SecureUML
policy and moreover: (i) with all attributes declared with protected visibility
(that is, only directly accessible by instances of the given class or its heirs) and
(ii) with the so called “getters” and “setters” methods for each attribute, that
is, methods to, respectively, read and update the state of each attribute.

The Aspect generated by the transformation function controls the calls to the
methods of the generated ResClass. For each ResMethod there exists a Pointcut
and a BeforeAdvice. The Pointcut is declared as a call to the given ResMethod.
The BeforeAdvice implements the permissions of the resource associated with
the ResMethod, as follows:

– If the given ResMethod is a “getter” method to a ResAttribute then the
body of the BeforeAdvice implements the AuthorizationConstraints of the
read permissions of the attribute associated with the ResAttribute guarded
by the given ResMethod. (Read permissions are those related with Atomic
Read, Attribute Full Access, Entity Read and Entity Full Access actions in a
SecureUML policy.)

– If the given ResMethod is a “setter” method to a ResAttribute then the body
of the BeforeAdvice implements the AuthorizationConstraints of the write
permissions of the Attribute associated with the ResAttribute controlled by
the given ResMethod. (Write permissions are those related with AtomicUp-
date, AtomicDelete, Attribute Full Access, Entity Update and Entity Full
Access actions in a SecureUML policy.)

– If the given ResMethod is associated with a Method then the body of Be-
foreAdvice implements the AuthorizationConstraints of the permissions of
the Method associated with the given ResMethod.

The AuthorizationConstraints are essentially predicates over the state of their
associated Entity. We assume, for the sake of simplicity of this explanation, that
each of them is already coded in the concrete syntax of our target language. The
implementation of an AuthorizationConstraint is a condition which first tests
for the user’s Role, with respect to the AuthorizationConstraint ’s Role, and then
checks for the AuthorizationConstraint ’s predicate.

The body of a BeforeAdvice is essentially a sequence of conditions. It may
return successfully (then allowing a ResMethod to be called) if the user has
an appropriate Role and fulfills the AuthorizationConstraints of at least one of
the Permissions associated with the given ResMethod. Otherwise it returns an
error (for instance, by raising an exception) if no Permission is fulfilled or if
the user does not have an appropriate Role that copes with any of the Permis-
sions. Therefore, the conditions in the body of a BeforeAdvice are ordered by

10



the Role associated with the AuthorizationConstraint that the condition imple-
ments, starting from the most powerful one (e.g. an administrator) to the least
powerful one (e.g. an operator).

Each Role is transformed into a RoleClass. The Role hierarchy relationship
is captured as a RoleClass inheritance relationship.

4 Monitoring Transformation Invariants

We have implemented the transformation function described in Section 3.2 as a
prototype Java application on top of the OCL evaluator ITP/OCL. Our imple-
mentation is a three-tiered application. The higher layer implements the trans-
formation function, the middle layer is a Secure UML policy manager and the
bottom layer is an OCL evaluator.

The OCL evaluator is a “wrapper” Java class that provides access to IT-
P/OCL. Essentially, it defines methods for:

– Creation of class and instance diagrams.
– Creation and deletion of classes, relationships between classes, objects and

links between objects.
– Evaluation of OCL queries on instance diagrams.
– Evaluation of OCL invariants on instance diagrams.

The SecureUML policy manager is implemented as a Java class that instan-
tiates the OCL evaluator with the SecureUML metamodel as class diagram. The
SecureUML policy manager defines an API to create SecureUML policies and
operations to query a SecureUML policy. A SecureUML policy is represented
internally as an instance diagram of the SecureUML metamodel. Operations
on a SecureUML policy are translated into OCL expressions and executed as
queries in the OCL evaluator instance held by the SecureUML policy manager.
Moreover, it implements all the invariants and operations over the SecureUML
metamodel defined in [7].

The SecureUML to aspect transformer is implemented as a Java class that
extends the SecureUML policy manager. Given a SecureUML policy, the trans-
former instantiates a set of Java classes that faithfully represent the AAC meta-
model described in Section 3.1. The instantiation process follows the transfor-
mation defined in Section 3.2. The set of Java objects produced in memory by
the transformer are then traversed in order to generate an object model of AAC
in the underlying instance of the OCL evaluator. Finally, all the invariants are
checked and the abstract class and aspect are written into the output using
AspectJ syntax together with Java classes for each role with the appropriate
inheritance relationship.

The metaclass Env is translated to a Java class named Env with a single
method with signature Role getUsrRole(). This method returns the role of the
current user. The prototype generates a simple implementation for getUserRole
just for the purpose of our experiment. This implementation is shared with the
application that the generated aspect is connected with. Of course, a more robust
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component could have been targeted that takes advantage of user information
from the underlying operational system, for example.

Note that the function that produces the concrete syntax in AspectJ could be
overloaded to produce different concrete syntax for Design by Contract languages
such as Eiffel, JML or Spec#. For these languages the generated abstract class
would be annotated with preconditions representing the access control assertions.
Of course, in this case, the weaving process is not automatic and explicit calls
to the methods implementing the pre-conditions would have to be written.

5 An Algebraic Interpretation of the Merged Metamodel
and Transformation Invariants

Our approach is a particular instantiation of a general process for OCL evalu-
ation over object diagrams which is formalized algebraically and implemented
using rewriting techniques [9]. In this section we first outline the process and its
algebraic specification [14] and then relate the concepts of merged metamodel
and transformation invariants with elements in this general process.

The OCL evaluation process comprises, essentially, the generation of equa-
tional specifications from class diagrams, object diagrams, and OCL expressions
and then evaluation of the OCL expressions by equational simplification using
standard rewriting techniques.

A class diagram is captured as an order-sorted signature in an equational
theory that includes other equational theories for the UML predefined types,
declares sorts for each class in the class diagram, declares sorts for the collections
of each class in the class diagram, declares operators for each class attribute, and
operators for the roles on each relation in the class diagram.

An object diagram, which is also represented as an equational theory, first
includes the equational theory that represents its associated class diagram, in
extending mode, that is, new sort elements may be introduced but without
identifying previously defined ones. Second, it defines constant operations to
represent each object in the object diagram, of the appropriate sort, that is,
the sort that represents the object’s class. Third, it defines equations relating
the operators that capture the relations’ roles with the constant operators that
represent the objects, or collections of them.

An OCL expression is also formalized as an equational theory. Recall that an
OCL expression is evaluated in the context of an object diagram. Therefore, the
equational theory for an OCL expression first extends the equation theory for the
object diagram that represents the context of evaluation of the OCL expression.
Second, a number of OCL operations are overloaded for the sorts that represent
the classes in the class diagram associated with the given object diagram. Third,
a number of equations are defined to implement the necessary OCL primitive
functions (such as allInstances or includes) used in the given OCL expression,
for the given object diagram, together with equations that represent the actual
OCL expression.
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The evaluation process for OCL expressions may be summarized with the
following formula:

QueryTheory(OD, e) ` QueryTerm(e) = AsTerm(v)

where QueryTheory(OD, e) is the equational theory resulting from the ap-
plication of the mapping QueryTheory to the object diagram OD and the
OCL expression e, that is, the process described in the previous paragraphs;
QueryTerm(e) is a term in the theory QueryTheory(OD, e) representing an OCL
expression and AsTerm(v) is also a term in the theory QueryTheory(OD, e) that
represents the value to be produced by the evaluation of the OCL expression e.

In our experiment, the merged metamodel is the equational theory resulting
from the inclusion in protected mode of the equational theory that represents the
class diagram for the metamodel of SecureUML with the equational theory that
represents the class diagram of the metamodel of AAC. Inclusion in protected
mode is more restrictive than in extending mode. It requires that no new sort
elements are added and that no old elements are identified with new ones. Our
prototype does not check for inclusion in protected mode as it would require
theorem proving [3]. A solution could be to apply renaming to the model elements
to guarantee uniqueness. This is not currently implemented. Note, however, that
this would be the case for the general merging of any given two models. We
manually guarantee it while merging the metamodels for SecureUML and AAC.

The transformation invariant is the equational theory resulting from the
transformation of the associated OCL expressions. The validation of the trans-
formation invariant is given by the equational simplification of the QueryTerm
that represents the transformation invariant in the context of the equational
theory given by the extension of the equational theory of the merged metamodel
with the equational theory that represents the object diagram containing the
given security policy and the generated abstract class and aspect.

6 Final Remarks

The use of aspects in security is among the most successful uses of the AOP
paradigm. In particular, we refer to [20, 15, 21] as representatives of the use of
AOP in access control.

In [20] the authors formalise role-slices to specify access control policies and
a compilation process from access control policies into aspect code. The compi-
lation process is described as a functional program. The process appears to be
quite precise however there is no indication of a correctness proof or any valida-
tion of the proposed process. In [21] the authors propose the use of aspects at
the modeling level (similarly to [15]) but analysis is left to future work.

The approach followed in [15], we quote, “translates security aspects specified
as UMLsec stereotypes as concrete security mechanisms on the modelling level”.
They analyze, with a theorem prover, first-order logic (FOL) formulae generated
out of control flow graphs obtained from the produced source code and associ-
ated security requirements. Their approach appears to be similar to [1, 5] where
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the target of the transformation process is a FOL theory that can be reasoned
about. Our approach is part of the so called lightweight formal methods. We
aim at validation instead of the verification approach in [15, 1, 5]. Our approach
allows the validation of each and every instance of the application of the trans-
formation function over an access control policy and generated (abstract class
and) aspect. We do not aim at allowing for the proof of general (inductive) prop-
erties that would require theorem proving but rather an approach following the
pragmatic ideas of Design by Contract (DbC). In [1] the authors propose two
transformations from SecureUML policies targeting two different object-oriented
frameworks. We complement that effort with another transformation to aspects
that further extends the code generation ideas in [7, 8]. Moreover, we extend [7]
by applying validation to transformation invariants.

What appears to be novel in our MDS approach from RBAC policies to code
is to generate validated AspectJ code. The use of aspects modularly code permis-
sion’s constraints. We validate our transformation using a merged metamodel of
the abstract syntax of the languages involved, focusing on the transformation
invariants that specify structural constraints that the implementation of the
transformation has to cope with. We do not commit ourselves to any particular
transformation specification language or implementation language. The specifi-
cation of the transformation occurs under the same model-based approach used
during design. The transformation invariants are then checked by a tool during
runtime, following DbC’s run-time assertion monitoring idea. Also, the gener-
ation of different concrete syntax, besides AspectJ, can be targeted such as a
DbC-based language.

We believe that our approach thus contributes to the efforts both of code
generation for model driven security [1] and perhaps to model driven architecture
itself, in the context of [2]. We foresee the continuation of this work with more
experimentation, in particular on the exploitation of the notion of transformation
contracts over merged metamodels, and by enhancing our tool support for OCL
evaluation and SecureUML policy manager, both in terms of efficiency.
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