
Understanding and Representing

Deployment Requirements for Achieving

Non-Functional System Properties

Moran Kupfer1 and Irit Hadar1

1 Department of Management Information System, University of Haifa

Haifa, Israel

{msrugo, hadari}@mis.haifa.ac.il

Abstract. Deployment requirements describe the precise, desired configuration

of a software system. They relate the system’s non functional requirements to

its architecture, providing a basis for making decisions about design trade-offs

in terms of the resulting system's non functional properties. The purpose of this

position paper is to propose a research direction towards developing an

approach for reasoning about deployment decisions. Its main objective is to

quantitatively evaluate and select between different potential architecture

solutions in order to shorten customer time-to-value and increase satisfaction.

In this paper we analyze the relationship between deployment requirements and

non-functional properties, and discuss work in progress of developing a

deployment-based methodology for evaluating software architecture.

Keywords: Non-functional, properties, requirements, deployment, model-

driven software engineering, ontology.

1 Introduction

Requirement Engineering (RE) is the part of software engineering that is concerned

with the definition, formalization and analysis of the requirements that a potential

system must have to accomplish specific organizational needs [7]. Requirements are

divided into two types: Functional Requirements (FR) and Non-Functional

Requirements (NFR). In order to meet these requirements, the resulting system,

installed in the customer’s site, is expected to encompass two types of properties:

functional and non-functional respectively. However, some of the non-functional

properties required from the system emerge during the design phase, taking into

account the new constrains the software system’s design poses, in addition to the

customer’s original requirements.

NFR in Software Engineering (SE) present a systematic and pragmatic approach

for building quality into software systems. Systems must exhibit software quality

attributes, such as accuracy, performance, security and modifiability [5]. The specific

non-functional deployment requirements (NFDR), which are all NFR related to

deployment, are often not included in the original software requirements; part of the

reason is that these requirements are not always known until the developers start

designing the system [2]. The importance of NFR, and specifically of NFDR, stems

from their contribution to the overall quality of the resulting system. When defined,

they are usually detailed at the system level; when not defined, they are derived from

other requirements, thus it is hard to formally represent them at all levels and

determine whether they can be met.

This position paper presents an ongoing research, aimed at exploring the field of

software systems deployment requirements and the resulting non-functional

properties. The research main goal is to find ways to formally represent and validate

NFDR. More specifically, the objectives of this investigation include: (1) developing

ontology and a symbolic representation for formally representing and managing

deployment requirements; (2) deriving component deployment requirements from the

system's requirement; (3) understanding and capturing designers' reasoning in

deployment decision making; and, (4) defining a set of measures adequate for

supporting deployment decision making.

This paper is organized as follows: Section 2 presents the background including

literature review with regard to the issues of NFR and deployment; Section 3 focuses

on the research objectives and questions; Section 4 presents the study design; the

preliminary results are presented in Section 5; and finally, Section 6 summarizes the

expected contribution of this study.

2 Theoretical Background

2.1 Non-Functional Requirements

NFR are typically described as attributes of a system that contribute to the overall

quality of the product [14]. These attributes include quality of service parameters and

system properties However, NFR are usually hard to unambiguously define, represent

and manage.

Once NFR are defined, they serve as selection criteria for choosing among

different design choices. Errors of NFR omission are acknowledged to be among the

most expensive and difficult to correct [14]. Poorly defining NFR leads to low quality

solution and thus user low satisfaction and interest in the resulting system. In order to

overcome this problem, several formalizations to NFR have been made over the

years. For example, many researchers agree that developing formal definitions of

NFR using the Goal Concept helps to evaluate whether they can be met (e.g. [6], [7]

and [14]). The Goal Concept [14] is relevant for the elicitation, elaboration,

structuring, specification, analysis, negotiation, documentation and modification of

stakeholder’s requirements. It is divided into 4 types of goals:

1. Functional Goals - services that the software is expected to deliver.

2. Non-Functional Goals - quality requirements that the software should satisfy.

3. Hard Goals – objective satisfaction verification, established using formal

verification techniques.

4. Soft Goals – similar to hard goals, except that the criteria for whether it is

achieved depend on customer satisfaction rate.

Knowing which qualities are needed to fulfill each goal is essential for developing

correct and adequate systems [1]. There are many types of NFR frameworks within

the Goal Concept approach, such as: A Process-Oriented Framework where goals

represent NFR, design decisions and arguments in support or against other goals [14];

An Agent-Oriented Framework where goals are used to model agents' relationships

and eventually link organizational needs to system requirements [7]; and, Goal-

Directed Framework where a goal is a non-operational objective to be achieved by the

composite system [6]. The goal of all types of framework is to help integrating NFR

into the software development process. The framework itself is a tool designed to help

evaluating, during system development, whether the NFR can be met.
In summary, NFR have limitations, many of which stem from their definition

problem. One way to overcome the definition limitation was introduced by the

literature using different formalization methods based, for example, on the Goal

Concept presented above. Such formalization frameworks may enable to

unambiguously define and evaluate: (1) whether a specific set of NFR can be met;

and, (2) the effect they are expected to have on the resulting system. One of the

objectives of our research is to study this and other frameworks and, based on them,

find a specific solution for representing and validating deployment requirements.

2.2 Deployment Requirements

After developing a software system, all the activities that make it available for use are

called software deployment [4]. Researchers refer to software deployment as a

process which consists of several interrelated activities with possible transitions

between them (e.g., [4] and [17]). Deployment is also defined as the processes

between acquisition of software and execution of software [17], and can be

characterized as the transformation of one software system configuration to another,

based on the set of property values [9]. Deployment is the first step of component

management life cycle, after development is completed. It is made up of component

publishing, discovery, dependency resolution, downloading, installation,

configuration and launching [9]. A deployment process covers post-development

activities such as release, install, configure, plan, launch, de-install and de-release

[12]. We will focus at the deployment requirements for the release activity, which is

the interface of the deployment process with the development process.

The release activity [4] must determine the resources required by a software

system to correctly operate at the target site. It must also collect the information that

is necessary for carrying out subsequent activities of the deployment process; this

information may be derived from a variety of sources including the developers'

knowledge about the system structure and operation, the customer's knowledge about

the current deployed applications and computational environment at the customer site,

etc.

Deployment requirements are a type of NFR, thus face similar challenges. For

example, some researches (e.g. [3]) suggest that NFR do not relate to a specific

component and cannot be evaluated without observing the system as a whole.

Moreover, NFR are defined in general and cannot be viewed as a single requirement

but as a collection of requirements. Nevertheless, in the context of NFDR it is

important to be able to define deployment requirements for a single component, for

purposes such as deploying alternative combinations of components [12], or

adding/removing a specific component to/from an existing deployed system, etc.

The Software Deployment Descriptor (SDD) project [16] of the Organization for

the Advancement of Structured Information Standards (OASIS) defines the attributes

of a deployable component and its infrastructure, providing a model driven approach

for installation, configuration and change management of applications in order to

make good deployment decisions regarding a specific component. Lau and Ukis [13]

suggest augmenting component's interface with metadata describing the component's

behavior in order to understand its run-time behavior and thus help to deploy the

component. According to them, deciding how to deploy a component depends much

on its behavior, which is usually unknown, thus they emphasize the crucially of the

designer's experience for making such decisions.

In our work we aim at capturing expert designers’ reasoning in this context, in a

way that will support others in making good deployment decision. For this aim a

representational framework and relevant ontology will be developed, based on

existing modeling frameworks. Ontology describes the concepts and relationships that

are important in a particular domain, providing a vocabulary for that domain as well

as a computerized specification of the meaning of terms used in the vocabulary [15].

Basically, ontology provides shared software engineering concepts- what they are,

how they are related and can be related to one another, for representing and

communicating software engineering knowledge [8]. To the best of our knowledge,

no current ontology and no formal definition for deployment requirements exist.

2.3 Model-Based Representation

Abstraction, which is one of the most basic principles of software engineering, can be

supported by visual models. Models provide an abstract representation of the

developed system and can be iteratively refined and finally transformed into a

technical implementation, i.e., a software system.

Model-Driven Software Development (MDSD) is an SE approach, consisting of

the application of models and model technologies for elevating the level of

abstraction at which developers create and evolve software. This approach is aimed at

both simplifying (making it easier for the developer) and formalizing (standardizing,

so that automation is possible) the various activities and tasks that comprise the

software life cycle. MDSD imposes structure and common vocabularies so that its

artifacts are useful for their main purpose in their particular stage in the life cycle, for

the underlying need to: 1) link between related artifacts and 2) serve as a

communication medium between participants in the project [10].

In MDSD, models are used for many purposes, including reasoning about problem

and solution domains and documenting the stages of the software life cycle; the result

is improved software quality and time-to-value, as well as reduced costs.

Component models technologies have been developed for supporting the

processes of development and handling of complex software systems, allowing the

decomposition of systems and the use of software components in a distributed

processing environment [11]. In this research we aim to embed formal representation

of deployment required properties within the architectural artifact of component

models.

Deployment of systems' component is one of the most burning problems for the

majority of component models (e.g., [3], [11] and [12]). To deploy a component-

based system, each component must first be instantiated, then interconnected and

configured. Defining the requirements for deployment involves identifying the

components’ non-functional requirements for achieving the systems’ non-functional

properties.

3 Objectives and Questions

The main objective of this research is developing a formal framework for model-

based representation of requirements related to deployment, which are NFR in nature.

It will be based on frameworks from literature, using existing visual representations,

expanding and adapting them to this use and basing them on proper ontology.

In addition, this research aims at understanding deployment decisions reasoning as

a basis for supporting deployment requirements management and usage. For this aim,

software designers are observed and questioned when making deployment related

decisions. Furthermore, a full literature survey is conducted for learning about

suggested deployment strategies. Based on observations and literature, the research

objective is to understand and model deployment reasoning and develop a

corresponding formal representation, which will be easy to use and comprehend by

the relevant stakeholders.

Deployment decisions should be made in light of a target function, aiming for high

quality of the system deployed under given constraints. However, in order to support

deployment decisions it is essential to identify concrete measures as a basis for

decision making and evaluation of the proposed solutions. Such measures can be

static (e.g. component coexistence and dependencies) and dynamic (e.g. load,

performance, volume). This research aims at identifying the relevant measures that

influence and are influenced by deployment decisions, in order to provide guidance in

deployment decision making.

Another objective is to examine the possibility of deriving deployment

requirements to individual components. For this aim we empirically explore whether

such derivation of NFDR from system to component is possible, and if so – how.

The research focuses on the following questions:

(1) What are NFDR?

(2) How can NFDR be formally represented within a model-driven software

development framework?

(3) What are the considerations and reasoning underlying deployment decisions?

(4) What measures influence and are influenced by deployment decisions?

4 Research Method and Settings

This ongoing research explores current practices in research and industry for

supporting requirements and representing information in architecture solutions. A

field study is being performed for observing and interviewing designers during their

deployment decision making. The case study is conducted in a large IT management

software provider company which applies development methodologies emphasizing

architecture. The study participants include R&D, design and implementation groups,

all involved in the deployment of a security product. The data collection is conducted

using interviews and observations.

In order to understand deployment, a better understanding of the policy and

coordination modeling needs to be achieved. Qualitative research methods and tools

are used to uncover and understand what lies behind the deployment decision making

process. Specifically, the grounded theory approach used in this study is a qualitative

research method that collects data about a phenomenon from its natural settings, in

order to ground the findings or formulated theories in the field, with the researcher

serving as the main research instrument. The purpose of the grounded theory method

is to build a theory that is faithful to and illuminates the area under study [18].

5 Preliminary Results

The first stage for representing NFDR is to understand their relation to the systems’

NFP. This enables representing them in architectural terms (i.e. components and

connectors) as well as identifying a process for evaluating and choosing between

different deployments choices (i.e. reflecting the reasoning behind deployment

decisions).

Figure 1 presents a conceptual model for understanding the relations between

requirements and architecture in the Component-Based Software Engineering

approach as extracted from the field. A specific NFR, provided by a stakeholder, may

be used for deriving NFDR, which are realized into component NFP, and thus can be

assessed.

Fig. 1. From requirement to architecture: The deployment perspective

For example, a customer requests the following NFR: sending a message through

the system will occur in less than a defined time unit. This specific NFR constrains

the system NFP SEND_MESSEGE to the requested time unit. The NFDR derived

from this NFR define the required system’s NFP configuration setting (such as

memory usage, disk usage, load balance etc.), for achieving the NFP constraint. Since

there can be more than one configuration, it is required to perform evaluation analysis

for choosing the most suitable NFDR.

The evaluation analysis uses the assessment method, which takes into

consideration the most influential measurement (as perceived by the designers) and

the component’s NFP involved, in order to evaluate the required satisfaction level.

Figure 2 presents a conceptual model for transforming NFR into a software

solution. The NFDR are derived from the customer’s NFR, and define configuration

setting for system’s NFP. This leads to possible architecture models. Then, an

evaluation analysis is applied to choose between them. Finally, the most satisfying

architecture model is selected.

Fig. 2. The transformation process from requirements to solution architecture

The conceptual models presented above enable understanding NFDR and their

relation with system NFP, as well as representing them in architectural terms. Further

exploration of the transformation process will enable to develop an evaluation

process, encompassing relevant measures for choosing between different deployment

choices. This phase is currently taking place within our research work.

5 Conclusion

In this paper we presented an ongoing research work for understanding and

representing deployment requirements in order to achieve predefined non-functional

properties, as well as some preliminary results obtained so far. The final results of this

study will offer a methodology for defining, representing and validating NFDR in

model-driven software development projects. This methodology will enable to

evaluate different architecture solutions and deployment configurations prior to the

installation of the system at the customer’s site. Such methodology is expected to

reduce time investment in deployment decision making and increase the quality of the

deployment process and the deployed systems, both in terms of customer's experience

and deployment team support.

Acknowledgement: This work is supported by funding from CA Labs, CA Inc.

We thank Amir Jerbi, Ethan Hadar and Andreas Seibel for their helpful cooperation.

References

1. Adam, S. and Doerr, J. (2007) "On the Notion of Determining System Adequacy by

Analyzing the Traceability of Quality", Advanced Information System Engineering, 19th

International Conference, CAiSE 2007, pp. 325-329

2. Apte, A. (2002) "Java™ Connector Architecture: Building Custom Connectors and

Adapters", Sams Publishing

3. Burge, J.E. and Brown, D.C. (2003) "NFR: Fact or Fiction?", Computer Science Technical

Report, Worcester Polytechnic University, Link: http://web.cs.wpi.edu/~dcb/Papers.

4. Carzaniga, A., Fuggetta, Hall, R.S., Heimbigner, D., van der Hoek, A. and Wolf, A. (1998)

"A Characterization Framework for Software Deployment Technologies", Technical Report

CU-CS-857-98, Department of Computer Science, University of Colorado, Link:

http://serl.cs.colorado.edu/~carzanig/papers/CU-CS-857-98.pdf

5. Chung, L., Nixon, B.A. and et, al. (2000) "Non-Functional Requirement in Software

Engineering", Kluwer Academic Publisher

6. Dardenne, A., van Lamsweerde, A. and Fickas, S. (1993) "Goal-directed requirements

acquisition", Science of Computer Programming, Vol. 20, Issue 1-2, pp. 3-50

7. Donzelli, P. and Bresciani, P. (2004) "Improving Requirements Engineering by quality

Modeling A Quality-based Requirements Engineering Framework", Journal of Research and

Practice in Information Technology, Vol. 36 Issue 4, pp. 277-294

8. Gruber, T. (1995) "Towards principles for the design of ontologies used for knowledge

sharing", International Journal of Human-Computer Studies, 43(5/6), 907-928.

9. Hall, R.S., Heimbigner, D, and Wolf, A.L. (1999) "A Cooperative Approach to Support

Software Deployment Using the Software Dock", ISCE.

10. Hailer, B. and Tarr, P. (2006) “Model-Driven development: The good, the bad, and the

ugly”, IBM Systems Journal, Vol. 45, November 3, 2006.

11. Hofman, A. and Neubauer, B. (2005) "Deployment and Configuration of Distributed

Systems", System Analysis and Modeling, Lecture Notes in Computer Science, Vol. 3319,

pp. 1-16

12. Hnětynka, P. (2005) "Making deployment process of distributed component-based software

unified", Ph.D. Thesis, Department of Software Engineering, Faculty of Mathematics and

Physics, Charles University in Prague. Link: http://dsrg.mff.cuni.cz/publications/Hnetynka-

PhD-thesis.pdf

13. Lau, K.K. and Ukis, V. (2006) "Deployment Contracts for Software Components", Pre-print

CSPP-36, School of Computer Science, the University of Manchester

14. Mylopoulos, J., Chung, L. and Nixon, B. (1992) "Representing and Using Nonfunctional

Requirements: A Process-Oriented Approach", IEEE Transactions on Software Engineering,

Vol. 18 Issue 6, pp. 483-497

15. Noy, N. F. and McGuinness, D.L. (2000) "Ontology Development 101: A Guide to Creating

Your First Ontology", Stanford University, Link: http://protege.stanford.edu/overview/

16. Organization for the Advancement of Structured Information Standards (2007). "Solution

Deployment Descriptor Specification 1.0", OASIS working draft

17. Object Management Group (2004), "Deployment and Configuration of Component-based

Distributed Applications Specification", OMG working draft, Link:

http://www.omg.org/docs/ptc/04-08-02.pdf

18. Strauss, A. and Corbin, J. (1990) Basics of Qualitative Research Grounded Theory

Procedures and Techniques, Sage Publications, Inc

