Modeling Usability in Model-Transformations

Andreas Petter!, Alexander Behring! Miroslav Zlatkov', Joachim Steinmetz',
and Max Miihlhiuser!

Technische Universitat Darmstadt, Department of Computer Science,
Telecooperation, Hochschulstr. 10, D-64289 Darmstadt, Germany,
{a,petter ,behring,zlatkov, j oachim,max}@tk .informatik.tu-darmstadt.de

Abstract. Developers of transformation rules for user interface models
should have the option to support usability in their transformations. As
different aspects of usability highly depend on each other, transforma-
tion rules should be able to model these dependencies. We provide an
example how this can be done in a transformation language through a
QVT Relations dialect.

Keywords: usability, model transformation, constraint solving

1 Introduction

When users assess the quality of software systems, one of their major concerns
is the usability of user interfaces. The first impression of users will often be the
user interfaces, even before using an application. They will tend to judge the
application exactly at this first glance, although the functional features of an
application might be completely different from the quality of the user interfaces.

However, in the case of ubiquitous computing creating user interfaces is a
problem. Applications must run on a large set of devices, each being equipped
with different hardware to interact with users. This possibly results in a large
set of user interfaces - in the worst case one set per device. Additionally, applied
context-awareness is common in ubiquitous computing. This raises the number
of interfaces to be tested for usability even further. Having such a large amount
of user interfaces to be tested for usability is hardly feasible. It is of course
similarly or even more laborious to develop these many interfaces. As a result
automatic means should be used to develop and test the user interfaces. It would
be advantageous to develop user interfaces which are usable by design.

Automation of developing and testing for quality of user interfaces relies on
a formalization of usability. Furthermore, the formalization must be usable in
appropriate development and testing tools. Today, not all aspects of usability
can be modelled in a formal way, e.g. "I feel that my software looks bad. 1
want it to be changed”. However, even a partial model of usability can help to
shorten development and testing phases. The model will then help in the aspects
it covers and prevents developers of reinventing these, giving them more time to
think about unhandled aspects or to refine the model, if the transformation is
not satisfying.



The next section presents the current state of the art. The third section
presents the approach. In the fourth section we show how we used optimization
in conjunction with an abstract user interface, followed by a section with an
example transformation. Finally, we present our conclusions from the transfor-
mations and work to be done in the future.

2 Related Work and Problems Modeling Usability

Developing user interfaces automatically requires tools that can rely on a for-
malization of usability. Our goal is to demonstrate how to support the developer
while he develops transformation rules. These transformation rules consider us-
ability aspects in the transformation declaration. Features are identified, which
a model transformation language should support that transformation developers
are able to formalize their usability goals in their transformation rules.

First, we looked at different types of definitions of usability to find out which
type of support should be provided for developing model transformations. Us-
ability has many different aspects and therefore is hard to define. One of the
more commonly used definitions can be found in ISO 9241-11, which defines it
to be based on the effectiveness and efficiency to perform a task as well as users’
satisfaction with the interface. Several other models of usability [1,2] have been
defined, but most of them are not formal enough to be used in tools. Other
mostly qualitative metrics for usability are listed in style guides (e.g. [3]), which
usually give a set of guidelines how a "good” user interface should look like.
Almost all guidelines are not usable in model transformations or testing tools,
because of their informal definition. For formal metric based approaches usabil-
ity is mostly defined via quantitative measures, e.g. time to complete a task. A
well known example is Fitt’s law and its multidimensional variants [4]. Fitt’s
law is used often as a basis for more complex metrics, e.g. the one presented in
[5]. It can be applied to perform optimization of user interfaces and therefore we
studied it while we designed our model transformation language extension.

To construct user interfaces for many different target devices model driven
engineering has been used (e.g. [6-9]). The common approach is to define models,
called "abstract user interfaces”, which abstract from device specific properties.
Thereby, a single abstract user interface allows to describe interfaces for a mul-
titude of devices at once, such that developers do not need to develop each one
separately, called ”concrete user interfaces”. This usually is the case with the
classical way to engineer user interfaces. Some of the approaches use model-
to-model transformations (e.g. [7,10-12]) to transform abstract user interfaces
to concrete user interfaces, to further automate the process. This would be an
ideal point during this automation to take usability aspects into account. Re-
sulting user interface models should have the best quality possible, such that the
interfaces only need to be refined as little as possible by hand.

A key challenge when taking this route is, that it is more difficult to model
mutually dependent properties of usability within model-to-model transforma-
tion rules. This is due to the nature of current model-to-model transformation



languages; they perform graph matching (also called ”pattern matching”) to se-
lect elements in source models and usually consider updating the target model
to be directly related to the elements of the source models. As rules can not
easily take into account the target model elements of other rules, they usually
can not perform mutually dependent operations on target model elements such
as would be done in constraint solving. Therefore, approaches tend to consider
aspects only, which can be handled within those mutual independent rules.

Many rules which describe usability are not mutually independent. This can
be illustrated by a simple example: ambient lighting and finger thickness both
might affect button sizes for touchscreens of small devices. Because of this reason
we concluded that common model transformation languages are not well suited
to model usability in model-to-model transformations alone.

A different route is taken by approaches, which use constraints and opti-
mization functions to model usability of user interfaces (e.g. [13-15]). Hereby,
a constraint is a mathematical expression, which limits values of variables in
the constraint. Especially in the case of modelling mutual dependent aspects,
these approaches benefit from the possibility to use variables in several different
constraints. The constraint solving algorithm then computes a solution for the
complete set of constraints taking into account an optimisation function to get
optimum values for the variables. This is especially useful to model mutual de-
pendent aspects of usability. Gajos and Weld implemented an approach, which
is able to display an abstract user interface model on many different devices [13]
based on constraint solving and optimization. However, constraint solvers are
usually not well suited to define model-to-model transformations as their main
concern is to calculate a (mathematical) solution to a set of (mathematical)
constraints. This means that the process of using models as their input is not
self-explanatory as the models need to be transformed into an appropriate set
of constraints and optimization functions.

In order to avoid the process to support usability, an appropriate transforma-
tion language is needed. We concluded that it would be advantageous to merge a
model transformation language, handling models, and a constraint solver, han-
dling constraints. This allows for both, using models and mutual dependent
aspects in transformations, finally resulting in a new transformation engine.

3 Approach

Our idea is to support user interface developers creating multiple Uls in their
transformations and therefore facilitate to model usability in transformations.
We assume that most model-to-model transformations which try to support
usability in the transformation rules will transform an abstract user interface
model into a more platform specific model. A model-to-model transformation
language therefore needs to provide special support for this pattern. Furthermore
a good model-to-model transformation should at least support constraints on
user interface component sizes and should at least support Fitt’s law, because
this is the most common approach taken to mathematically describe usability.



Following this approach, our model-to-model transformations transform ab-
stract user interface models into user interface models, which are more spe-
cific with regard to the intended platforms. The transformation is an automatic
means to implement a simplification of ” AUT Refinement” [16], which originally
has been mostly designed to be used by hand. AUI Refinement is an application
of the MDA [17] to the development of user interfaces. The transformations were
implemented in QVT Relations [18].

While we developed these transformations [8] we noticed that we cannot
use constraints of target platforms within transformations and are not able to
set sizes for user interface components. The reason is that component sizes are
highly dependent on each other, because positions and spaces usually should not
overlap. To model these usability properties in transformations, and especially
the mutual dependent aspects, we recognized the need for constraint solving and
therefore the need for an extension of model-to-model transformation languages.

Currently our model-transformation language extension is based on QVT Re-
lations. Our choice was motivated because of its declarative nature, as declarative
model transformation languages potentially ease developing model transforma-
tions due to several reasons [19].

3.1 Metamodel

This work focuses on the transformation of user interface models. It is very
similar to the one used in [13]. The user interface models are comprised of a
model of components that can be used, and a description of the user interface.

The compoents can be abstract (cannot be rendered directly) or concrete (can
be rendered). With increasing level of the hierarchy the components are more
concrete. E.g. “multiple entry component” is on the upper level while “list” is a
specializiation and therefore situated on the lower level.

A sketch of the user interface is being represented in an abstract user in-
terface model which is consisting of some of the components of the hierarchy.
Additionally, the components are being enhanced by the type of input which is
implemented by the component.

After the transformation, which is explained later on, the user interface model
can be rendered because it will only consist of concrete components.

However, our work does not focus in the development of the metamodels.
We see that almost any common widget library can easily be enhanced to fulfill
the purpose of the final rendering as well as the generation of the hierarchy of
components that can be rendered.

4 Usability Model Using Optimization

To develop a transformation language that can be used as a means to develop
transformations that handle usability properties, we first modelled some aspects
of usability to determine necessary language constructs. Therefore we created
an abstract user interface model which is then mapped on a description of a



concrete user interface with an automated process. This has been done using the
OPL language, which is implemented in the ILOG CPLEX/CP optimization
toolkit [20].

To formally describe usability we used a set of constraints and an optimiza-
tion function. The mapping process we developed produces a new user interface.
During the mapping it determines which user interfaces are "better” in terms of
the optimization function and shall be used at last. The cost described by the
optimization function is an estimation of the time, which is needed to use the
interface. This is often used as a metric for usability testing (time to complete a
task).

Starting from a model similar to the one given in [13], we produced a user
interface description, which is then optimized using the optimization function.
This model is a simplified user interface description, which in fact is nothing
more than a tree of types. Every type is associated with a set of different user
interface components, e.g. the type string array (basically a ”list”) is associated
with a list of radio buttons or a drop-down list. These user interface components
are used as the target description of the resulting user interface. During the
constraint solving step the types are transformed into one of the associated user
interface components.

Additionally, the associated user interface components have constraints like
minimum size or if they can contain other user interface components. If they
contain other components, the size of the component limits the size of the inner
components.

To model usability all components are used in a metric [5] for an optimization
function, as it was done in [13]. As it is the most common class of user interfaces
our approach supports GUI components. For each GUI component the optimiza-
tion function can then be formulated as a sum of the time to navigate to the
component (with the mouse) and the time to manipulate the component (e.g.
enter information). Determining manipulation time can be modelled fairly easy,
it may be determined by the KLM [21]. For navigation time Fitt’s law may be
applied in a version that supports two dimensions of navigation [4], because GUI
components have a width and a height.

Finally, the result of the optimization function is the sum of all costs of all
costs of the user interface components. To be able to determine the navigation
from component to component it must be determined how the user is going to
navigate through the components. Unlike the approach presented in [13], which
assumes an existing route (although it may be defined by the designer) through
the user interface components, our optimization function takes into account all
possible ways to navigate through the components. Because of its independence
from a single guessed way or existing ways to navigate, our evaluation function
can be applied before the user interface has ever been used. As soon as a path to
navigate is known, it can also be used to optimize it to support faster navigation
and provide an optimal solution in that specific case. Therefore, both scenarios
are supported.



5 Transforming from QVT Relations Extension

After some aspects of usability have been defined we have constructed a transfor-
mation language supporting our notion of usability. It is able to at least handle
our description of usability presented in the last section. This does not guarantee
that other formal definitions of usability can also be used with the transforma-
tion language. However, since we based our language on a Fitt’s law example,
at least a large subset of all formal and quantitative usability definitions can be
used in transformations as many definitions are based on it. The transformation
language is based on QVT Relations. To execute a transformation, it is partially
transformed into the mapping given in the previous section.

As a start to determine the effectiveness of the language, we tried to perform
parts of the transformation from our QVT Relations dialect to the OPL language
by hand. We give a small example of our dialect.

A classical QVT Relation transformation consists of several relations, each
being a transformation rule. Every relation is a mapping of model elements of
the source models to model elements of the target models. Furthermore several
variables can be defined, which can store attribute values or model elements
and can be used in the relation within the declaration of attributes of model
elements.

In the simplified example shown in figure 1 there is a single relation ” UICom-
ponentToUIComponent” which has two domains associated to the ”source” and
the "target” model. In the relation an abstract UIComponent (of type ”lofn”,
the string array type) is transformed into a more concrete UIComponent. There
are two types of target components: a drop-down list and a list of radio buttons.
Both set different constraints on the width and height of the user interface com-
ponent to be displayed and both may be used in similar user interfaces and a
manipulation time ("tman”). However, the optimization function (see first line
of listing) selects appropriate components according to a minimization function.
This function, which is simplified for the given example, is essentially the op-
timization function based on Fitt’s law, which we used in OPL. However, it is
modified to use attributes instead of variables and one can see that multiple
model elements are calculated using a single term, instead of multiple, which
would have the case for OPL. Tnav is a shortcut for the term that models Fitt’s
law.

Constraints on attributes can be directly used in OPL by creating a new
variable in OPL for each attribute. Then the new OPL variables can be used in
the optimization function, too. The minimization function is then transformed
to the OPL function by adding variables and rolling out sigma (summation)
terms into a sum of minimization functions for each component.

Currently we are implementing the transformation engine, which is capable
of both handling EMOF (Eclipse Modeling Framework) and a subset of pos-
sible constraints in QVT Relations transformations. It is based on the MDT
Eclipse OCL plugin. Transformations are executed using PROLOG and we are
evaluating using ILOG for the optimization within the transformation engine.



minimize sigma(Tnay + auiT.tman) ...
relation UICompnentToUIComponent {
pn: String;
n:Integer;
domain source auiS:UlIComponent {
type="10fn",
numentries=n,
name=pn

¥
alternative domain target auiT: UlComponent {
name=pn,
type="DropDownList",
height > 10,
width > 30,
numeEntries=n.
numEntries > 4,
tman=KLM_TIME_TO_CLICK*(numEntries + 1)
X
alternative domain target auiT: UIComponent {
name=pn,
type="RadioList",
height > 5,
width > 40,
numEntries=n,
numEntries < 8,
numEntries > 1,
tman=KLM_TIME_TO_CLICK*numEntries

Fig. 1. QVT relation example with optimization

6 Conclusions and Further Research

Our contribution is twofold. First, we identified problems when modeling us-
ability within common transformation languages if transformation rules depend
on each other and second we gave an example how to model some aspects of
usability within a newly created QVT Relations dialect.

In the future we will further work on the transformation language and its
implementation, the transformation engine.

More aspecs of usability should be formalized. We are looking at a style guide
to select rules that can be used within the transformation language.

References

1. Abowd, G.D., Coutaz, J., Nigay, L.: Structuring the space of interactive system
properties. In: Proceedings of the IFIP TC2/WG2.7 Working Conference on En-
gineering for Human-Computer Interaction, North-Holland (1992) 113-129



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

. Winter, S., Wagner, S., Deissenboeck, F.: A comprehensive model of usability. In:

Proc. Engineering Interactive Systems 2007, Salamanca, Spain, Springer (2007)
Apple: Apple human interface guidelines (2005)

MacKenzie, I.S., Buxton, W.: Extending fitts’ law to two-dimensional tasks. In:
CHI ’92: Proceedings of the SIGCHI conference on Human factors in computing
systems, New York, NY, USA, ACM (1992) 219-226

Sears, A.: Layout appropriateness: A metric for evaluating user interface widget
layout. IEEE Trans. Softw. Eng. 19(7) (1993) 707-719

Paterno, F., Santoro, C.: One model, many interfaces. In: Proceedings of CADUI
2002, Valenciennes, France (May 2002)

Sottet, J.S., Calvary, G., Favre, J.M.: Towards model driven engineering of plastic
user interfaces. In Pleuss, A., Van den Bergh, J., Hussmann, H., Sauer, S., eds.: Pro-
ceedings of Model Driven Design of Advanced User Interfaces 2005. Volume 159 of
CEUR Workshop Proceedings., Montego Bay, Jamaica, online CEUR-WS.org/Vol-
159 /paperb.pdf (October 2 2005)

EMODE-Consortium: Deliverable d2.3 - modelltransformation. Technical Report
TR-5, Telecooperation Research Division, TU Darmstadt, Darmstadt (July 2006)
ISSN 1864-0516.

Nichols, J.: Automatically Gnerating High-Quality User Interfaces for Appliances.
PhD thesis, Carnegie Mellon University (2006)

Limbourg, Q.: Multi-Path Development of Multimodal Applications. PhD thesis,
Université Catolique de Louvin (2004)

Trapp, M., Schmettow, M.: Consistency in use through model based user inter-
face development. In: Proceedings of CHI 2006 Workshop ”"The Many Faces of
Consistency in Cross-Platform Design”. (2006)

Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.: Derivation of a dialog
model from a task model by activity chain extraction. In: DSV-IS. (2003) 203-217
Gajos, K., Weld, D.S.: Supple: automatically generating user interfaces. In: TUI
’04: Proceedings of the 9th international conference on Intelligent user interfaces,
New York, NY, USA, ACM Press (2004) 93-100

Badros, G.J.: Extending Interactive Graphical Applications with Constraints. PhD
thesis, University of Washington (2000)

Browne, T., Davila, D., Rugaber, S., Stirewalt, R.E.K.: The mastermind user
interface generation project. Technical report, Georgia Institute of Technology
(1996)

Behring, A., Petter, A., Flentge, F., Miihlh&duser, M.: Towards multi-level dia-
logue refinement for user interfaces. In: Workshop on User Interface Description
Languages. (Apr 2008) April 5-10, 2008, Florence, Italy.

OMG, J. Miller, J.M.: Mda guide version 1.0.1. OMG (June 2003) document
number: omg/2003-06-01.

OMG: Meta object facility (mof) 2.0 query/view/transformation specification.
OMG (July 2007) ptc/07-07-07.

Lawley, M., Raymond, K.: Implementing a practical declarative logic-based model
transformation engine. In: SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing, New York, NY, USA, ACM (2007) 971-977

ILOG: Cplex. Internet (2008) http://www.ilog.com/products/cplex/.

Kieras, D.: Using the keystroke-level model to estimate execution times. Technical
report, University of Michigan (2001)



