
MDE for publishing Data on the Semantic Web

Guillaume Hillairet, Frédéric Bertrand, Jean Yves Lafaye

{guillaume.hillairet01, fbertran, jylafaye}@univ-lr.fr
Laboratoire Informatique Image Interaction,

University of La Rochelle, FRANCE

Abstract. Publishing local data on the Semantic Web entails providing a
shareable semantic data representation. We present a complete MDE approach
that allows importing data sources into an RDF repository. At a preliminary
stage, the object domain model is mapped to an ontology and to a persistence
model. Specifying mappings requires a model annotation performed by a
domain expert. All other processes are automated and data transformations are
generated from the mappings via model weaving techniques.

Keywords: MDE, Semantic Web, Ontology, RDF

1 Introduction

Due to the expansion of the Semantic Web [2], three technical spaces presently rise
up in the information system design landscape. The object space, which evolves into
the Model Driven Engineering (MDE) space, allows implementing software
applications and uses several languages and libraries. The second space concerns data
persistence, mainly through relational databases management systems. The third
space deals with resource description and is the core of the Semantic Web. It allows
publishing RDF data on the Web as well as OWL ontologies, and ensures that
machines can interpret and combine data.
Publishing existing data on the Semantic Web supposes defining bridges between
technical spaces. Data persistency is mainly achieved through relational databases
systems. In order to ease the use of relational data in enterprise application, several
approaches, mainly based on the Active Record pattern [9], propose an object
relational mapping (ORM) solution [1] [4]. This is an example of such a bridge,
tending to cope with the so-called ‘impedance mismatch’ between distinct
formalisms. More recently, some academic and industrial tools started offering quite
homologous solutions for bridging relational and RDF data representations [3] [5]
[10] [14].
Our opinion is that the gap between relational and RDF data models, is too wide for
being crossed over in a single step, i.e. with a direct mapping. In fact, we advocate for
introducing an object-oriented domain model as an intermediate between the
relational and RDF layers. Despite the differences existing between the object and
RDF model [16], their similarities (notion of classes and class hierarchy) remain
higher than those existing between the relational and the RDF model. We assume that

the first step which maps the relational and object models is already conveniently
addressed by the literature (as evoked above). So, we can focus on the second step
that aims at filling the gap between object and RDF data models. The core of our
proposal consists of specifying the mapping between the object-oriented domain
model and one or more ontologies. The general use case for our work is the
following: within the context of Software and Information System design, we assume
that an object-oriented domain model does exist, which stands as a reference model
for both software applications and database management systems. In order to raise
interoperability and data sharing, we propose an object-ontology mapping tool that
allows two kinds of data access. The first one follows the ETL [13] (extract,
transform and load) pattern for publishing objects (possibly loaded from relational
database) as RDF triples. The second data access offer by our tool is an on-demand
mapping that translates SPARQL [19] queries into HQL [1] (Hibernate Query
Language) that can be executed over the object-oriented domain model.
The remainder of the paper is organized as follows. Section 2 presents our motivation
for developing this work and provides a small example that will be kept as an
illustration until the end of the paper. Section 3 describes the overall architecture of
our proposal. Section 4 outlines the mapping language between the object and
ontology modelling spaces and gives some examples. Section 5 presents the ETL
approach for publishing objects and relational data as RDF resources. Section 6
presents the on-demand mapping implementation. Related works are quoted in
Section 7 before concluding in Section 8.

2 Motivation

Developing the Semantic Web entails publishing existing relational database content
in an OWL/RDF format. In this paper, we present a model driven approach for
publishing data that have been created, or loaded, by object-oriented applications and
that are finally stored in RDF repositories. We show how MDE allows a better coping
with such an architectural complexity. Most of the computer applications presently
rely on object-oriented modeling, while most of the data are stored in relational
databases. We take account of this situation and propose to use the object-oriented
domain model as the basis for defining a mapping between object-oriented data and
RDF data sources.
Before going further, let’s clarify our insight on the usage of domain ontologies and
object-oriented domain models. Despite one common objective which is to capture
the main concepts of a domain, and in addition to technical and syntactic
discrepancies, the viewpoints and final use are differing. The object-oriented domain
model is a basis for designing both robust software application and persistent data
layers. The matter is not so to give unambiguous definitions of terms (which are
usually shared by domain users) as to list the prominent elements and specifies the
constraints and mutual relationships [15]. Domain ontology, also capture main
concepts and terminology but are fitted to reasoning, browsing and querying which
are the facilities required in the semantic web context. Conversely, they generally are
not adapted to software and database design. The solutions brought to ontology data

persistency are efficient for semantic queries but lack integrity constraint definition
and checking; they are not convenient for update insert and overall delete operations.
Practically, the question of creating RDF data (individuals) conforming to a special
ontology arises in two contexts
− In case an existing ontology is available that fits the data, direct data sharing is

facilitated. Since existing ontologies essentially are consensual, then local data then
prove to be presented through a shared knowledge view and vocabulary.

− In case no existing ontology is satisfactory, a special new ontology has to be
created so as to account for the local data semantics. However, in order to ensure
that this new ontology semantics is not ambiguous and can practically be shared,
all genuine concepts should extend actual concepts of an existing ontology. This is
easily achieved by using such ontology matching facilities as, for instance, those
provided in OWL.

Since an ontology may capture some aspects of the data but fails to capture others,
one domain model may need to be mapped to several ontologies. Whatever the
choice, defining a correspondence between the ontologies and the data to be published
is mandatory. We claim that the domain model is a key representation, standing as a
pivot model halfway between the persistence and ontology models. Let’s notice that
the persistence layer may indifferently be implemented in any manner, say relational
or XML, with no special impact upon the overall approach.

Fig. 1: An object-oriented domain model for a cultural application (excerpt).

A short example depicted in Fig. 1 shows the domain model of a museum while Fig. 2
gives an excerpt of the object-ontology mapping between the domain model and
several ontologies. Let’s now consider the museum example, and illustrate our overall
approach. Using appropriate functions provided by modeling tools, the object-
oriented domain model may lead to provide a relational schema which is made of
tables that are associated to domain model classes. The resulting database is
populated by domain data. In order to publish the data on the Semantic Web, an

ontology is needed that will account for the concepts underlying the domain model.
Fig. 2 shows what links can be specified when weaving the domain model and the
ontology to be generated. In this example, the resulting ontology merges three
existing ontologies (e.g. foaf, dbpedia, geonames) and a novel one (museum).

Fig. 2: Mapping the object-oriented domain model with ontologies.

3 Overall Approach

We already evoked the object-relational mapping that links the domain model to the
corresponding database. We pointed out the so-called impedance mismatch. We take
advantage of the important academic work on this subject and do not account for how
the object-relational mapping is achieved. Conversely, we focus on the object-
ontology mapping which is quite similar and has less been studied. Our approach can
be split into three steps:
1. Specifying the correspondence between domain model elements and ontology

concepts by means of the mapping language we developed. This step requires a
human domain expert who operates in a specially designed software environment
that aids and controls his actions. The role of the expert is mainly to select,
constrain and combine elements in the domain model, using operators such as
restriction, intersection, union, subsumption, equivalence… and map or create
corresponding concepts in the ontology. The result is a mapping specification.

2. Actual generation – on the basis of the mapping specification - of the ontology
that describes the data semantics.

3. Populating the knowledge base which is associated to the ontology (individuals)
from the relational data. This step involves both the object-relational and object-
ontology mappings.

According to our approach, the object-relational mapping also is represented by a
weaving model. It links the domain model to the database. We choose to consider the
domain model as a metamodel (EMF model) at the M2 level (MDE). Doing so, the
domain data may be represented at the M1 level. Then, domain model instances
appear as M1 model elements that comply to their M2 metamodel. In contrast, using
plain UML class diagrams with instances and classes appearing at a same level would
have led to an unnecessary complication of the weaving and transformation processes.
Our mapping language between an object model and several ontologies is defined by
a textual grammar. It is then processed and translated into weaving models,
themselves being specified with the AMW model weaver [6] (Atlas Model Weaver).
Importing and transforming the data from the database so as to populate the
knowledge base is achieved via a series of model transformations, implemented in
ATL [11] (Atlas Transformation Language), as shown in Fig. 3.

Fig. 3: Linking the modelling spaces to one another

4 Defining ontological views over domain models

This section presents the implementation and use of the mapping language we defined
so as to specify the correspondence between the domain model and one (or more)
ontology. For sake of conciseness, the complete language grammar cannot be
presented here.

4.1 The Domain model / Ontology mapping Language by example

We use the object-oriented domain model in Fig. 1 as an example that outlines our
mapping language. The ontology in Fig. 2 appears as a view being defined upon the

domain model thanks to the mapping language. The mapping language
implementation we outline hereunder links an EMF metamodel to several OWL
ontologies.
A mapping specifies correspondences between compatible elements, such as: a
package and an ontology; an EMF class and an OWL class; an EMF attribute and an
OWL datatypeProperty, etc. More complex mappings are allowed, in order to express
1-N or N-1 correspondences between compatible elements. In the following, we give
examples of such simple and complex mappings.

4.1.1 Simple Mapping
A simple mapping accounts for a 1-1 correspondence between a domain model
element and an ontology concept, as shown in the listing below. A mapping instance
contains the keyword map followed by the element to be mapped (package, class,
attribute or reference). The mapping body is similar to the object language structure,
i.e. a class mapping should be nested in a package mapping, a property mapping
within a class mapping etc…

1 prefix foaf: "http://xmlns.com/foaf/0.1/";
2 prefix geonames: "http://www.geonames.org/ontology#";

3 map package Museum with museum: "http://museum#" {
4 map class Museum with museum:Museum {
5 uriPattern = "http://museum/" + self.name;
6 subClassOf = {geonames:Feature}
7 properties = {
8 map attr name with museum:name;
9 map ref artworks with museum:artworks;
10 map ref city with geonames:locatedIn;
11 }
12 }
13 map class Director with foaf:Person {
14 properties = { map attr lastName with foaf:family_name; }
15 }
16 }

Listing 1: An example of simple mappings

The package mapping specifies which the corresponding target ontology is. In the
museum example, the target ontology is given the same name as the source object
model (museum), and a special URI. Let’s notice that the museum ontology does not
yet exist. It is still an abstract ontology in wait of being generated at a further step, in
accordance to the specified mapping. When the package is to be mapped to an
existing ontology, the latter should be declared via its namespace in the prefix header
of the mapping. In the example above, the FOAF ontology1 is referenced that way,
and all FOAF concepts hence are made available for further mappings. EMF class
mapping examples are given, such as for Museum and Director, which are
respectively mapped to the museum class in the novel ontology and to Person in
FOAF. A class mapping comprises the following clauses:

1 http://foaf-project.org

− uriPattern: specifies the URI of the RDF resource corresponding to the ontology
class target. The URI definition is specified via an OCL expression that returns a
String. OCL allows browsing the domain model for pruning relevant attributes on
which OCL functions can be applied for eventually build the required URI pattern.

− subClassOf is an OWL keyword (from the ontology matching language) and here
indicates that the mapped element in the new ontology refers to a yet existing
ontology concept. Other OWL keywords can be used to express other appropriate
kinds of relationship. (e.g. : museum in our museum ontology is a kind of Feature
in the geonames ontology)

− properties: specifies the correspondences between properties of the model class
(attribute, reference) and the ontology properties. The property mapping clause
distinguishes between map attr that links an attribute to a datatypeProperty and
map ref that links a reference (association) to an objectProperty.

4.1.2 Complex Mapping
A complex mapping represents a 1-N or N-1 correspondence between model and
ontology elements. Our language, accepts these mappings in a simple way. Complex
mappings appear as a series of simple mappings being defined within a same context
(see Listing 2 where museum is mapped twice).

1 map class Artwork (self.kind = #Painting) with museum:Painting {
2 uriPattern = "http://museum/painting/" + self.name;
3 properties = {
4 map attr name with dbpedia:title;
5 map attr creationYear with museum:creationYear;
6 map ref museum with dbpedia:museum;
7 map ref museum with geonames:locatedIn;
8 map ref hasArtist with dbpedia:artist;
9 }
10 }

11 map class Artwork (self.kind = #Sculpture) with museum:Sculpture {…}

12 map class Artist(self.creates->forAll(e | e.kind = #Painting))
 with museum:Painter {
13 uriPattern = "http://museum/person/"
 + self.firstName + self.lastName;
14 subClassOf = {foaf:Person}
15 properties = {
16 map attr firstName with foaf:firstName;
17 map attr lastName with foaf:family_name;
18 }
19 }

20 map Artist(self.creates->forAll(e | e.kind = #Sculpture))
 with museum:Sculptor {…}

Listing 2: A complex mapping example

All Class mapping clauses with source Artwork belong to the same context and then
define a complex 1-N mapping. More precisely, the Artwork domain class is split into
two ontology target classes that distinguish between painting and sculpture. The
opposite mapping is consequently typed N-1. In such complex mappings of classes,

the selection of the subsets that define the concrete classes in the ontology is achieved
by means of OCL constraints whose context is the source class in the domain model.
Complex mappings may also concern properties. For instance, in Listing 2, the
museum reference in the Artwork class is mapped to both dbpedia:museum and
geonames:locateIn properties. This 1-N mapping allows setting two distinct views
(cultural vs geographical) upon the same domain model property.

4.2 Weaving between Domain Models and Ontologies

The language presented here, conforms to a textual syntax that aids an expert in
specifying correspondences between the domain model and an ontology. We ground
our proposal upon MDE principles. The mapping is viewed as a special model,
namely a weaving model that records the set of correspondences. Building the
weaving model involves several model transformations.

Fig. 4: Several processes are combined for building the mapping file.

1. The mapping possibly is fully defined by the expert. Nevertheless, a basic default
mapping may be provided on request. It results from applying standard
transformation rules from UML to OWL (UML2OWL2), as given in the ODM
specification [17]. We implemented these rules via a model transformation

2 http://www.eclipse.org/m2m/atl/usecases/ODMImplementation

process. Starting from this basic original mapping model, the expert is then only
in charge of validation and extension tasks, so as to build the final mapping he
wants.

2. In case existing ontologies are not sufficient to provide all needed concepts
underlying the domain model referenced in the mapping and of interest for data
publication, a novel local ontology should be generated. This is achieved by a
model transformation that takes both the domain model and the mapping model
as inputs and provides the desired OWL ontology as an output.

3. The last step consists in translating the mapping model to a weaving model
representation. We use the AMW model weaver environment to implement the
weaving process. So, we had to build a weaving metamodel specific to AMW.
This process merges a series of transformations (text to model, model to model).

5 Populating the knowledge base

Up to now, we worked at an abstract level, dealing with classes and concepts. From
now on, in order to effectively publish data on the Semantic Web, concrete data
should be made reachable through a web interface. The natural solution is to make an
import from the data source into an RDF repository so that the information to publish
could be accessed via a web browser. We argued for putting the domain model as a
pivot in our method, in consequence, the importation splits up in several consecutive
operations we sketch hereafter. First we provide an object view upon the data in the
data source according to the domain model, and then we give an ontology view upon
the object data. Views are defined as mappings at the data level that lead to weaving
models. The weaving models permit to generate transformation rules that can perform
the importation process. Using such a high-order transformation is mandatory since
the object model at hand cannot be known a priori.
The two following subsections respectively address one of the two steps described
above. The main benefit of MDE is that it allows linking transformations and dealing
in a modular way with the numerous models we need here, with no significant
increase of the complexity. Besides, it supplies traceability of the transformations.
The example deals with relational persistent data, but dealing with – say – XML data
would only require fitting the mapping of the domain model to the new persistent
format, all other concerns remaining unchanged.

5.1 From Object data to RDF data

The first step concerns the translation of objects (represented at the M1 layer) into
RDF resources. Here we see the benefits of putting the domain model at the M2 layer.
Doing so, we have a clear separation between objects (M1 layer) and domain classes
(M2 layer). This leads to a simplification of the transformation rules specification.
Otherwise, we would have been faced to dealing with UML domain classes and
objects at the same level (M1 layer).
The implementation is done using a high-order transformation technique, in order to
generate the required transformation. Let MM2RDF.atl be the transformation that

converts a M1 model into an RDF model. As depicted in Fig 5, MM2RDF.atl is
generated by the high-order transformation OAM2ATL.atl. The latter takes the
mapping model and its related models (domain model and ontology model) as input.
It is here made clear that the use of a high-order transformation is inescapable since
MM2RDF.atl rules depend of the domain model which is a variable model.
The role of OAM2ATL.atl is to screen the weaving model, and for each class mapping
clause (map class), it generates a specific ATL rule in the MM2RDF.atl file. This
resulting ATL transformation extracts an RDF data representation from a model
conforms to the domain model.

Fig. 5: Model Transformation process for obtaining an RDF repository from a model.

The following listings show some significant excerpts of the MM2RDF.atl
transformation. Listing 3 shows how an instance of the Museum class is translated
into an RDF Resource. For each domain model class that appears in the mapping, an
equivalent rule is generated. The RDF metamodel used in this transformation is
derived from the ODM specification, and has been extended in order to ease
transformation specifications. Each RDF resource is the subject of some statements
(see Line 7). For instance, the lazy rules, makeDataStatement and
makeObjectStatement, respectively create the desired statement from a class attribute,
and from an association (see Listing 4).

1 rule Museum2Resource {
2 from m : Museum!Museum
3 to r :
4 RDF!Resource (
5 uri <- m.getURI(),
6 subjectOf <- Sequence { type,
7 thisModule.makeDataStatement(m, m.name, 'name'),
8 m.artworks->collect(e |
 thisModule.makeObjectStatement(m, e, 'artworks')),
9 thisModule.makeObjectStatement(m, m.city, 'city'))}
10),

11 type : RDF!Statement (...)

Listing 3 Generated ATL code excerpt for translating a Museum instance into an RDF
Resource.

1 lazy rule makeObjectStatement {
2 from s : OclAny, o : OclAny, pname : String
3 to r : RDF!Statement (
4 subject <- s,
5 predicate <- p,
6 object <- o
7),
8 p : RDF!Property (...),
9 }

Listing 4: Statements and properties are created by lazy rules.

5.2 From Relational data to Object data

In this paper, we assume that a relational database is in situ available, whose schema
has been obtained by applying an object-relational mapping upon the domain model
and the database schema. In our current implementation, we rely on the Hibernate3
framework, for the object-relational mapping definition (more precisely the TENEO4
project which is dedicated to EMF persistency). The weaving model that represents
the object-relational mapping is thus obtained from the Hibernate mapping definition.
The database schema is captured by applying a schema discovery process with the
help of the Hibernate framework. It allows defining a projector from the database
onto the MDE technical spaces. The concrete data are modelled accordingly, by
sending queries to the database. We then apply a model transformation similar to the
one presented in section 5.1. The last step that imports relational data into an OWL
knowledge base can now be achieved through exploiting the sole object-ontology
mapping.

6 Querying the RDF Store

The process we presented above publishes data as an OWL knowledge base. It can be
viewed as implementing a data warehouse via the Extract-Transform-Load principle
(ETL) [13], in which resident data are translated in order to fit the target system
format. In our approach, the target system is an OWL ontology whose content is made
of RDF triples. Data access is achieved by use of a RDF query language, e.g.:
SPARQL [19]. An example of such a SPARQL query is given hereafter. Let’s
suppose the user wants to list artworks present in “Le Louvre”.

1 prefix dbpedia: <http://dbpedia.org/property/>

3 http://www.hibernate.org
4 http://www.elver.org/

2 prefix museum: <http://museum#>
3 select ?art
4 where {
5 ?art dbpedia:museum ?museum .
6 ?museum museum:name "Le Louvre"
7 }

Listing 5: A SPARQL query on the museum ontology.

Here, we assume that the knowledge base has been generated and completely
populated from an existing database. Performing a query then only involves the
knowledge base that finally can be a RDF file or a Sesame5 RDF database.

Fig. 6: Model Transformation process for Query rewriting

However, translating and importing the whole data base into an RDF repository, does
not seem - in most cases - the best solution, since it implies to replicate data and carry
out a synchronization process with heavy redundancy. We advocate for a better
practice, which directly answers the ontology query by querying the original data
source. Implementing this approach led us to specify an automated rewriting process
that relies on the specification of the chain of mappings and finally translates a
SPARQL query into a set of SQL statements.
The rewriting process naturally is developed within the MDE paradigm and
potentially applies to any persistent data source format. Fig. 6 gives an overview of
the series of model transformations that lead to the result. More precisely, on the
museum example, the initial SPARQL query is first translated into an equivalent HQL
query upon the domain model, which in turn is rewritten as a SQL query on the
relational database. The model transformations that are responsible for that rewriting
process take both the object-ontology and object-relational mappings and weaving
models into account, in order to exploit the element correspondences for translating

5 http://www.openrdf.org

the terms of one query into its counterpart in the target language. For example, the
SPARQL query in Listing 3 gives the corresponding HQL query in Listing 4.

1 select art
2 from Museum museum, Artwork art
3 where art.museum = museum and museum.name = 'Le Louvre';

Listing 6: HQL query resulting from a rewriting process from SPARQL.

The resulting HQL query can be rewritten by Hibernate according to the data source
format (e.g.: SQL).

7 Related Works

The works connected to our approach belong to various but complementary domains.
Those that treat of the UML and RDF(S) correspondence [7] [8] [18], and especially
the ODM specification from the OMG [17] that sets up basic useful although limited
transformation rules, helped us in defining the abstract syntax of our mapping
language between an object model and an ontology. Linking metamodels and
ontology through weaving models has also been proposed by Klapper [12] who
suggests the use of ontology alignment techniques in order to automatically build the
weaving model. This seems of interest for us in case we try to map a model to an
existing ontology, but is out of concern when creating a new ontology is the goal.
Another kind of related works treats of data integration by means of an ontological
view, and more generally of the semantic web. The question still is to implement RDF
knowledge bases providing access to existing data source. Bizer with D2RQ [3], Chen
[5] and de Laborda [14] come with works having goals very close to ours. They
propose a direct mapping of the knowledge base to the data source. Conversely, a part
of our contribution is to rely on the domain model (and not on the persistence model)
as a pivot element in the process of correspondence design.

8 Conclusion

This paper grounds on the MDE technique and presents a contribution that aids
publishing data on the semantic web. A complete process for building a RDF/OWL
knowledge base from existing possibly heterogeneous and distributed databases is
specified. Our proposal is semi-automated, but the expert is only involved in the
mapping definition step (between the domain model and the ontology). One novel
aspect of our work is that we give a prominent role to the domain model in the overall
process. It comes as a pivot model standing as a midterm between the data source and
the ontology. It embodies a sizeable part of the business knowledge and bears more
information about the domain terminology and concepts than – for instance - the flat
relational model that generally results from complex normalization and de-
normalization processes, far from any semantic concern. It also keeps simpler and

focuses on permanent and essential features, while an ontology is intended to also
account for subsidiary concerns.
Finally, when splitting the mapping process by introducing the intermediate domain
model, we gain in modularity, and robustness. Transformations are more explicit and
simpler since the gap is less at each step. We also gain in being less dependent on the
persistency technology. In case the database schema is modified, only one
transformation step is involved and subject to update.
Our proposal not only permits to create an ontology that describes exported data, but
also to create data that conform to an existing ontology. In order to get free from
controlling the consistency between the database and the RDF triples, we presently
implement an automated ‘on the fly’ rewriting process that translates SPARQL
queries into SQL or XML queries. Consequently, the data can be kept in their original
persistence system, with no replication in an RDF repository, while being subject to
the queries a user can directly express in terms of the ontology.

References

1. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications, 2007.
2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American 284

(2001) 28-37
3. Bizer, C., Seaborne, A: D2RQ-Treating Non-RDF Databases as Virtual RDF Graphs. 3rd

International Semantic Web Conference (ISWC2004), Hiroshima, Japan (2004)
4. Castro, P., Melnik, S., Adya, A.: ADO.NET entity framework: raising the level of

abstraction in data programming, in: Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2007, pp. 1070–1072.

5. Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., Yin, A., Wu, Z.: Towards a
Semantic Web of Relational Databases: a Practical Semantic Toolkit and an In-Use Case
from Traditional Chinese Medicine.

6. Del Fabro, M.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A Generic Model
Weaver. Proc. of the 1ères Journées sur l'Ingénierie Dirigée par les Modèles (2005)

7. Djuric, D., Gasevic, D., Devedzic, V.: Ontology Modeling and MDA. Journal of Object
Technology 4 (2005) 109-128

8. Falkovych, K., Sabou, M., Stuckenschmidt, H.: UML for the Semantic Web:
Transformation-Based Approaches. Knowledge Transformation for the Semantic Web 95
(2003) 92-107

9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
10. Hu, W., Qu, Y.: Discovering Simple Mappings Between Relational Database Schemas and

Ontologies. ISWC/ASWC 4825 (2007) 225-238
11. Jouault, F., Kurtev, I.: Transforming Models with ATL. Model Transformations in Practice

Workshop at MoDELS Vol. 3844, Montego Bay, Jamaica (2005) 128–138
12. Kappel, G., Kapsammer, E., Kargl, and al., M.: Lifting metamodels to ontologies: A step to

the semantic integration of modeling languages. ACM/IEEE 9th International Conference
on Model Driven Engineering Languages and Systems, Genova, Italy (2006)

13. Kimball, R., Margy, R.,. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd edition, Wiley, 358-362. (2002)

14. de Laborda, C.P., Conrad, S.: Bringing Relational Data into the SemanticWeb using
SPARQL and Relational. OWL. IEEE Computer Society Washington, DC, USA (2006)

15. Larman C., Applying UML and Patterns, An introduction to Object-Oriented Analysis and
design and The Unified Process 2nd edition, Prentice Hall, 2001

16. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: object-oriented semantic
web programming. Proceedings of the 16th international conference on World Wide Web
(2007) 817-824

17.OMG. Ontology Definition Metamodel OMG Adopted Specification, November 2007.
http://www.omg.org/docs/ptc/07-09-09.pdf

18. Parreiras, F.S., Staab, S., Winter, A.: On marrying ontological and metamodeling technical
spaces. Proceedings of the 6th joint meeting of the european software engineering
conference and the 14th ACM SIGSOFT symposium on Foundations of software
engineering (2007) 439-448

19. Prud’hommeaux, E., Seaborne, A., others: SPARQL Query Language for RDF. W3C
Recommendation (2008)

