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Abstract. In state-of-the-art of MDE platforms semantic technologies such as 
ontologies are rarely used. Our aim is to understand the role of ontologies in 
supporting model-driven engineering, in particular MDE platforms. MDE 
platforms may benefit from semantic technologies in formal model semantics 
and automated reasoning on different levels of the metamodelling architecture. 
We present an ontology-aware MDE platform architecture and outline some 
application scenarios where ontologies and automatic reasoning may bring 
benefit to such platforms. Additionally, an example of using ontologies for 
verification checks of mapping models in the course of metamodel composition 
is illustrated. 
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1   Introduction 

In state-of-the-art MDE platforms semantic technologies such as ontologies are rarely 
used. Currently, such platforms focus on aspects such as metamodelling, metamodel 
composition, model integration, and model transformation [1]. We are convinced that 
MDE platforms may benefit from semantic technologies particularly in formalizing 
semantics of models on different metamodelling levels, which in turn allows for 
application of automated reasoning. 
Based on this hypothesis, in this research-in-progress paper, we discuss first how a 
MDE platform architecture may be extended to be considered as ontology-aware 
(section 2). Referring to the introduced architecture, we describe some possible 
application scenarios where ontologies and automatic reasoning may bring benefit to 
such platforms (section 3). Out of these scenarios, we highlight in more detail an 
example from the metamodel composition domain, to illustrate how an ontology-
based approach may enhance quality of process by supporting verification checks of 
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metamodel mappings (section 4). Finally, we summarize the discussion and give 
outlook for future work. 

2   Architecture of Ontology-aware MDE Platforms 

Metamodelling platforms are software environments providing means for the 
management of models and metamodels. Usually, such model-aware platforms allow 
for: (1) definition, storage and maintenance of models and modelling languages, (2) 
execution of mechanisms working on models, metamodels and the meta-metamodel 
and (3) guidance on how to apply a metamodelling language and/or modelling 
languages together with corresponding mechanisms to produce metamodels and/or 
models [2]. Besides these capabilities, metamodelling platforms need to meet other 
functional and non-functional requirements such as multi-productability, web-
enablement, multi-client ability, adaptability, extensibility, scalability and 
interoperability [3]. 
The architecture for MDE platforms may be seen as an incarnation of the generic 
metamodelling platform architecture [2]. Furthermore, adding the ontology aspect, we 
envision an enriched MDE platform architecture including semantic technologies as 
depicted in fig. 1. 
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 Fig. 1. Logical Architecture for Ontology-aware Model Driven Engineering Platforms 

The root core architectural element is the meta-metamodel which defines the concepts 
available for the definition of modelling languages. Based on it, the metamodel 
library contains metamodels of defined modelling languages. The metamodel library 
conforms to the meta-metamodel and, in turn, forms the foundation of the model 
repository, in which all models are stored.   
As an extension to models on different levels, the ontology repository serves as 
storage of the semantics of models, metamodels and the meta-metamodel. Semantics 
can be formally described by using the notion of ontology [4]. Reasoning on 
ontologies is part of the ontology-aware mechanisms. 



Model and ontology editors are used for the definition and maintenance of models, 
metamodels, and ontologies.   
All mechanisms used for evaluating and using models are stored in the mechanism 
base. A fundamental mechanism within MDE environments is model transformation. 
Further important mechanisms are model/metamodel integration, comparison and 
mapping mechanisms. The ability to manage different versions of models and 
metamodels or its parts is another key characteristic of model-aware systems, which 
should be enabled by means of model/metamodel versioning mechanisms. To support 
syntactically and semantically correct modelling, validation mechanisms on models 
and metamodels are used. Furthermore, querying mechanisms of ontology-enriched 
models and metamodels are needed features to allow various model analyses. 
Traceability of transformations, which should support guiding the software 
development tasks, is another needed mechanism within MDE platforms. Mechanism 
editors are used for definition, configuration and maintenance of mechanisms. 
Guidance describes the application of modelling and metamodelling languages and 
mechanisms. Particularly in context of MDE, this can include guidance on what to 
consider when defining certain models or guidance on the decision what the next step 
in a particular model-driven software development process would be. Guidance 
information can be stored in process models or ontologies, and/or extracted out of 
existing modelling artefacts and/or traceability links.  
Persistency services support the durable storage of models, metamodels, and 
ontologies. These services abstract from concrete storage techniques and permit 
storing of modelling information in heterogeneous data sources such as files, 
databases or web services. 
Access services serve two main tasks. On the one hand they enable the open, bi-
directional exchange of all metamodel, model and ontology information. On the other 
hand they cover all aspects concerning security such as access rights, authorization, 
and en-/decryption. 
An ontology-aware MDE workbench serves as a common environment for integrating 
different editors. 

3.   Some Ontology Application Scenarios in MDE Platforms 

The “ontology” concept, as the literature describes it, seems to enjoy as many 
definitions as there are attempts to define it.  In the course of this paper, we will 
favour the one we believe to best match the context under consideration. Hence, we 
understand an ontology as an explicit conceptual model extended by formal logic 
based semantics [5]. Formal semantics expressiveness of ontological models is a de 
facto advantage compared to conceptual models in software engineering i.e. MDE.      
Model checking, model enrichment and dynamic classification are some of the 
identified usage scenarios when thinking about marrying ontological and 
metamodelling technical spaces [6].    
In the following, we describe some scenarios, where ontologies may find its usage 
within MDE platforms. We concentrate particularly on the following core elements of 
the MDE platform (see section 2): the model, metamodel and meta-metamodel 



element (section 3.1), the mechanism element (section 3.2) and the guidance element 
(section 3.3). Each section starts by introducing a problem domain, followed by an 
ontology application scenario description and finalized with a list of possible benefits 
gained by using semantic technology.  

3.1   Ontologies and Models on M1, M2 and M3 Level 

Problem Domain: The 3-layer MDE architecture enables definition of modelling 
languages, and based upon it, creation of models. The M3 model, i.e. the meta-
metamodel, defines the syntax of the metamodelling language which is used for 
modelling metamodels on the M2 layer. Similarly, the M2 model, the metamodel, 
constructs the syntax of the modelling language for the application domain used on 
level M1. Even though the abstract syntax is structurally well defined, metamodelling 
language (M3) and modelling languages (M2) lack well-defined semantics. Currently, 
language semantics on M3 and M2 level may be expressed algorithmically in the core 
implementation of the M3 model or in the M2 models. Another approach is to use a 
declarative language, such as the Object Constraint Language (OCL [7]) to 
additionally define the semantics of M3 and M2 models.  
Furthermore, modelling task on M1 level requires adequate knowledge about the 
subject under consideration. Such knowledge may currently be captured and reused 
via reference models or patterns. However, more sophisticated mechanisms to 
facilitate modelling task semantically are missing, which would prevent heterogeneity 
problems, model ambiguity etc. 
Ontology Application Scenario: The syntax-rich languages (M2 and M3 languages) in 
MDE platforms may be extended by semantically more expressive ontology 
languages, in order to take advantage of automated reasoning. There are different 
approaches, which tackle the problem of converging languages from different 
technical spaces, such as UML+OWL integration [8]. Having integrated languages, 
their synergetic effect may be exploited. On the one side, automated reasoning may be 
used for model consistency checks which may outperform existing solutions in terms 
of semantic soundness. On the other side, ontology-based approaches may be used 
both for the definition of modelling languages (M2) and their models (M1). Relying 
on common domain ontologies in form of machine-readable and reusable domain 
knowledge, quality of modelled solutions may be raised. 
Gained Benefit: Semantically enriched modelling languages and models; machine-
readable formal semantics of models; enhanced quality of modelling solutions. 

3.2   Ontologies and Mechanisms 

Problem Domain: Mechanisms are applied on models residing on different 
abstraction levels (M1, M2 M3 models). According to the abstraction level, 
mechanisms may be generic, metamodel specific or hybrid. Generic mechanisms are 
defined on the M3 level, thus being independent of languages defined on the M2 
level; e.g. generic import/export interface for model exchange. Metamodel specific 
mechanisms require explicit knowledge about metamodels, in order to work on their 



underlying models on M1 level; e.g. business process model simulation mechanism. 
Hybrid mechanisms are a combination of the previous two. They are generic, but they 
are adaptable to specific metamodels; e.g., model transformation is a hybrid 
mechanism which uses M3 level constructs to define transformation rules between 
M2 models, which are, in turn, executed on models on M1 level. Other MDE 
mechanisms such as model integration, metamodel composition or model comparison 
fall into this category as well. The challenge of applying metamodel specific or hybrid 
mechanisms lies in their configuration. For example, to enable a simulation on a 
specific process language, mappings to generic process concepts need to be defined. 
Similarly, the specification of metamodel mappings for hybrid mechanisms such as 
transformation, metamodel composition or model integration is, in most cases, 
performed manually (see section 4 for a detailed example). 
Ontology Application Scenario: Ontologies may be applied to fill the formal semantic 
gap towards support of automated configuration of metamodel-specific and hybrid 
mechanisms. For instance, in the case of model transformations, this would mean e.g. 
an ontology based model transformation approach. On the other side, metamodel 
specific mechanisms such as simulation would benefit from ontologies, by relying on 
e.g. generic, machine-readable process ontology. The prerequisite is that different 
simulation-enabled languages, i.e. process modelling languages have to conform to 
particular generic process ontology. Consequently, the process of configuring a 
simulation mechanism for different process languages may be automated by inferring 
mappings out of ontology. 
Gained benefit: Reduced costs through automated configuration of mechanisms; 
increased potential for reuse; low efforts for substitution and extensions of 
mechanisms. 

3.3   Ontologies and Guidance 

Problem Domain: Guidance in the MDE context may include information on what to 
consider when defining certain models, or information of the next step in the model-
driven software development process. Often, execution of a step within the software 
process is influenced by many factors, such as pre and post-conditions, defined rules 
etc. 
Ontology Application Scenario: Ontologies and automated reasoning may leverage 
execution of process models, by formalizing its semantics in the form of process 
guidance ontologies that formalize rules, conditions and actions a software engineer 
has to conduct in specific situations. This way, reasoning technology would infer the 
next step within the process based on the process guidance ontology and by deriving 
implicit knowledge from corresponding modelling artefacts. 
Gained Benefit: Flexibility of process definitions; enhanced quality of guidance. 

4   An Example: “Verification of Mapping Models” 

Mappings define correspondences between elements of different models. Particularly, 
metamodel mappings have an important role in the MDE approach by building 



semantic bridges between different metamodels. They add knowledge about 
integrative usage of different modelling languages, still leaving the integrating 
languages independent. Bridging of metamodelling and ontology languages is done 
via mappings [10]. Rules for MDA based model transformations may be built based 
on existing mappings [11][12]. Furthermore, mappings are used as input for 
metamodel composition rules by stating about structural-semantic relationships of 
metamodel elements from different metamodels [13]. However, two problems arise 
when the mappings are applied: First, discovery of mappings by means of metamodel 
matching is a complex task, being a tedious work when executed manually and a 
challenging task for semi-automatic identification [14]. Second, mappings are 
managed as models and are built based on a mapping language. Thus, mappings need 
to be verified against their syntax and defined semantics. This may imply not only 
checking the mapping model, but also crossing the model boarder and diving into the 
semantics of metamodels being integrated, in order to verify certain mapping 
statements against e.g. cyclic generalization relationships, multiple inheritances, 
redundancy etc. 
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Figure 2 Ontology-aware Modelling and Verification of Mappings for Metamodel Composition  

Figure 2 illustrates the simplified case of a metamodel composition using mappings. 
Let us assume that the MDE platform supports two modelling languages, e.g. BPMN 
[15] and the ADONIS Language for Organizational Modelling [16], separately. The 
envisioned integrated metamodel (MM3) should exhibit characteristics of a business 
process modelling language extended by the concepts for modelling organizational 
structures (in Fig. 2 as MM1 and/or MM2). A proposed approach is to assemble 
existing metamodels by utilizing metamodel mappings. The manual process of 
metamodel matching results in three identified mappings (Fig. 2, 1, 2 and 3), which 
are candidates for integration points. At first glance, everything seems correct, as the 
defined mappings conform to the mapping language which uniquely state correlations 
between elements. However, after generating the integrated metamodel (MM3) (see 
[13] for detailed integration rule definitions) a verification check founds an 



unconformity against the meta-metamodel, which disallows multiple inheritance of 
elements. The drawback of the solution is, that the verification of a mapping model 
may only be done after having generated the integrated metamodel, since such cross-
model correlations may not be examined in the mapping design time. Here, ontologies 
may be used guiding both metamodelling and modelling of metamodel mappings. If 
metamodels are designed with the support of corresponding ontologies, as depicted in 
the Figure 2, not only the metamodel matching process may be enhanced, but also an 
early verification of a mapping model in design time against integrated semantics 
stemming from both problem domains may be possible. In addition, large scale 
metamodel integration scenarios may especially benefit from the ontology based 
composition approach reducing ambiguities and improving quality of modelling 
solutions.   

5   Summary and Outlook 

In this research-in-progress paper we presented a possible extension of the generic 
architecture for MDE platforms [3] towards an ontology-aware MDE platform. Based 
on this architecture and its core elements, possible ontology application scenarios 
have been discussed. Some of their expected benefits are: 

• Semantic-enriched models (on M1, M2, and M3 level). 
• Machine-readable formal semantics of models. 
• Semi-automated configuration of mechanisms. 
• Increased potential for reuse of mechanisms. 
• Flexibility of process definitions for guidance. 

We are currently working on the refinement of the presented ontology-aware MDE 
platform architecture to support first prototype implementations. This includes the 
application of ontologies for enhanced software process guidance. 
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