
Fernando Silva Parreiras, Jeff Z. Pan, Uwe
Assmann, Jakob Henriksson (Eds.)

TWOMDE 2008

First International Workshop on Transforming
and Weaving Ontologies in Model Driven
Engineering

Preface

The interest in integratingOntologies and Software Engineering has gained more at-
tention with commercial and scientific initiatives. The Semantic Web Best Practice
and Deployment Working Group (SWBPD) in W3C included a Software Engineer-
ing Task Force (SETF) to explore how Semantic Web and Software Engineering can
cooperate. The Object Management Group (OMG) has an Ontology Platform Spe-
cial Interest Group (PSIG) aiming at formalizing semantics in software by knowl-
edge representation and related technologies.
In counterpart, as Model Driven Engineering spreads, disciplines like model

transformation and domain specific modeling become essential in order to support
different kinds of models in an model driven environment. Understanding the role
of ontology technologies like knowledge representation, automated reasoning, dy-
namic classification and consistence checking in these fields is crucial to leverage
the development of such disciplines.
The TWOMDE 2008, affiliated with the 11th International Conference on Model

Driven Engineering Languages and Systems (MoDELS2008), brought together re-
searchers and practitioners from the modeling community with experience or inter-
est in MDE and in Knowledge Representation to discuss about: (1) how the scientific
and technical results around ontologies, ontology languages and their correspond-
ing reasoning technologies can be used fruitfully in MDE; (2) the role of ontologies
in supporting model transformation; (3) and how ontologies can improve designing
domain specific languages.
The objective of the workshop was: (1) to present success cases of integrated ap-

proaches; (2) to present state-of-the-art researches covering ontologies in MDE; (3)
and to encourage the modeling community to explore different aspects of ontolo-
gies.

Toulouse, Fernando Silva Parreiras, Jeff Z. Pan
September 2008 Uwe Assmann, Jakob Henriksson

v

Workshop Organization

Programme Chairs

Fernando Silva Parreiras

Uwe Assmann

Jeff Z. Pan

Jakob Henriksson

Programme Committee

Colin Atkinson

Kenneth Baclawski

Saartje Brockmans

Lúıs Ferreira Pires

Dragan Gašević

Giancarlo Guizzardi

Peter Haase

Gerti Kappel

Elisa Kendall

Holger Knublauch

Harald Kühn

Daniel Oberle

Alexander Paar

Bernhard Rumpe

Steffen Staab

Phil Tetlow

Gerd Wagner

Andreas Winter

Local Organization

External Reviewers

Dirk Reiss

Marvin Schulze-Quester

Srdjan Zivkovic

Table of Contents

1. Invited Talk

Potential applications of ontologies and reasoning for modeling and
software engineering . 1

Andreas Friesen

2. Technical Papers

Using an Ontology to Suggest Design Patterns Integration 5
Dania Harb, Cédric Bouhours, Hervé Leblanc

Using Ontologies in the Domain Analysis of Domain-Specific Languages . 20
Robert Tairas, Marjan Mernik, Jeff Gray

MDE for publishing Data on the Semantic Web . 32
Guillaume Hillairet, Frédéric Bertrand, Jean-Yves Lafaye

3. Short Papers

Bringing Ontology Awareness into Model Driven Engineering Platforms . . 47
Srdjan Zivkovic, Marion Murzek, Harald Kühn

Designing MAS Organisation through an integrated MDA/Ontology
Approach . 55

Daniel Okouya, Loris Penserini, Sébastien Saudrais, Athanasios Staikopou-
los, Virginia Dignum, Siobhán Clarke

Potential applications of ontologies and reasoning for modeling and
software engineering

Andreas Friesen, SAP Research, CEC Karlsruhe

Vincenz-Prießnitz-Str.1, D-76131 Karlsruhe
andreas.friesen@sap.com

Abstract. In the last few years SAP introduced Service-oriented Architecture as a blueprint for an
adaptable, flexible, and open IT architecture for developing services-based, enterprise-scale
business solutions. An Enterprise Service is typically a series of Web services combined with
business logic that can be accessed and used repeatedly to support a particular business process.
Aggregating Web services into business-level enterprise services provides a more meaningful
foundation for the task of automating enterprise-scale business scenarios. At the same time, SAP
Research was investigating in numerous research projects how ontologies, reasoning, semantic web
services technologies, and advanced business process modelling technologies can be applied in
order to improve technical foundation behind SAP SOA and business modelling. In this extended
abstract we describe some selected business process composition and integration scenarios
identified as potential candidates for application of business process composition techniques,
semantic technologies, ontologies, and reasoning. We further identify some challenges linked to
application of such advanced technologies in the context of modelling and software engineering.

Introduction

The advent of Service-oriented Architecture (SOA) and Web Services (WS) opened new
possibilities for smooth Enterprise Application Integration (EAI), i.e., enabling of cross-system
message flow automation, in A2A and B2B scenarios in a loosely-coupled manner. In principle, Web
Services enabled enterprise applications can be used by anyone, from anywhere, at any time, and on
any type of platform. Additionally, SOA opens also possibilities to innovate on top of already available
best practices business processes implemented in existing enterprise applications. This can be achieved
through adoption, extension, and composition of business processes across enterprise applications.
Such composites can again be made available for composition or integration scenarios through SOA-
enabling.
With respect to enterprise applications, there is obviously a relationship between Business Process
Management (BPM) and SOA. BPM as a management discipline helps business organizations to
standardize and continuously optimize the operational processes throughout the complete business
processes lifecycle. BPM as a technology provides organizations with a framework of tools to
compose, model, deploy, execute, and monitor processes that include human and system tasks or that
span across different business applications and require a broad set of integration capabilities. From a
technical point of view, a business process is a “collection of interrelated tasks, which accomplish a
particular goal”.1 Hence, SOA is an enabler of BPM and at the same time, BPM provides value on top
of a service-enabled enterprise application.

The lack of formally represented semantic meaning in the WS technology stack causes the tasks of
discovering, selecting, composing, and binding Web Services being considered as manual steps
performed by a human. The recent advent of the Semantic Web and Semantic Web Services (SWS)
promises new standardized means to formally capture the representation of the semantic meaning of
data and interfaces. This enables the machines to automatically reason and to draw conclusions about
the “intended meaning”. The so-called Semantic Web Services promise a higher degree on automation
concerning discovery, invocation, composition, and monitoring of Web Services.

Similarly, the lack of formally represented meaning in the BPM technology stack causes the tasks of
defining, classifying, discovering, selecting, composing, integrating and refining (adopting, extending)
business processes as well as binding them to a SOA-enabled IT platform a challenging task requiring a
broad set of human skills and expertise.

1 http://en.wikipedia.org/wiki/Business_process

1

Modeling at SAP

SAP introduced Service-oriented Architecture as a blueprint for an adaptable, flexible, and open IT
architecture for developing services-based, enterprise-scale business solutions. In order to achieve this,
service interfaces need to be clearly defined and stable, make use of interoperable (global) data types,
and must follow clearly defined communication and behavioral patterns. Furthermore, the underlying
business model (interaction between business objects) needs to be transparent to establish common
ground in terms of relationships between business objects which play a role when calling services.

Services that fulfill the above criteria are called Enterprise Services and are published in an
Enterprise Services Repository. Enterprise Service is typically a series of Web services combined with
business logic that can be accessed and used repeatedly to support a particular business process.
Enterprise services that SAP delivers are grouped in Enterprise Service Bundles (ES Bundles) based on
specific business scenarios. This provides a meaningful foundation for the task of automating
enterprise-scale business scenarios. The use of Enterprise Services or ES Bundles for
integration/automation purposes can be seen as “service consumption”. For instance, the usage of Web
Services residing on top of Private Business Process Layer in order to create a composite application or
usage of Web Services residing on top of Public Business Process Layer in order to create collaborative
business process means service consumption (Figure1). Furthermore, it is possible to implement
business applications (composites) on top of Enterprise Services and other third party services.
Composites benefit from the reuse of existing assets and process flexibility. This means that it is
possible to replace, remove, or rearrange steps in a process but also to implement new collaborative
scenarios. The creation and packaging and publication of a composite application as ES bundle can be
seen as “service provisioning” (Figure1).

Figure 1 SOA-enabled EAI

BPM provides value on top of SOA by providing business value and business semantics to the
Enterprise Services. BPM provides business process modeling capabilities identifies and classifies
business scenarios, business processes and their variants and links them to integration scenarios. Thus,
BPM helps to determine the granularity and required behavior of Enterprise Services and to give them
business semantics. SOA is an enabler for BPM as it provides support for creating different types ob
business processes, e.g., human-centric/system-centric composite business processes/applications as
well as integration processes, and defines their accessibility and extensibility points.

In overall, SOA at SAP can already be seen as a convergence point between business and IT. The
lack of formally represented semantic meaning in both BPM and SOA technology stacks causes all
tasks to be performed within this infrastructure to be manual steps performed by a human.

2

Potential applications for ontologies and reasoning

In the last few years, SAP Research was investigating in numerous research projects how ontologies,
reasoning, semantic web services technologies, and advanced business process modelling technologies
can be applied in order to improve technological foundations behind SOA and BPM.

In order to give an idea about the scope covered within these projects, we give a short overview of the
most relevant projects before we introduce two examples for potential application of ontologies,
reasoning and business process composition technologies:

ATHENA (Advanced Technologies for Interoperability of Heterogeneous Enterprise Networks and
Their Application) – main scope on Enterprise Interoperability, e.g., the concept
Private/Public/Collaborative Processes as shown in Figure1 built one of the core concepts

DIP (Data, Information and Process Integration with Semantic Web Services) – main scope on
Semantic Web Services Lifecycle (WSMO, WSML, WSMX)

SUPER (Semantics Utilized for Process Management within and between Enterprises) – main scope on
Semantic Business Process Management, i.e, bridge the gap between Business Experts Perspective and
IT Implementation Perspective (sBPMN, sBPEL, WSMO)

FUSION (Business Process Fusion using Semantically-enabled Service-oriented Business
Applications) – main scope on Semantically-enabled Process-oriented Enterprise Application
Integration (Private-Public Abstraction Layer for Data/Functionality/Behavior, EAI Ontology, Semi-
automated Process Integration, SA-WSDL, BPEL)

MOST – Marrying Ontologies with Software Technologies (Semantically-enabled MDA - Ontology-
driven Software Engineering, Guidance and Traceability in the Software Development Process and in
Solution Domain (MOF, UML, BPMN, OWL, DSLs)

Example 1: Shipper Carrier Integration for delivery of goods

Let’s assume shippers and carriers are SOA-enabled (in the sense of ES Bundles for the delivery
step of let’s say Order2Cash process), i.e. technically enterprise application integration is not a
problem. Additionally, a shipper would like to automate the discovery, integration and selection of
carrier services according to business rules that specify his preferences from the business perspective.
This is obviously not possible without shared and common understanding of the business scope within
the logistics domain of carriers and shippers and standardized means to describe the capabilities of the
carriers and requirements of the shippers. We solved this problem by introducing a logistics ontology
specified in OWL-DL and using SA-WSDL annotations to link WSDL to the concepts in the ontology.
The complete solution is described in [1].

Example 2: Semi-automated process integration of enterprise and composite applications

Let’s assume we have a SOA-enabled HR System providing an ES Bundle for a recruiting process. A
department in a company would like to extend this process in order to introduce department specific
recruiting procedures that a not supported by best practice process in the HR System. This can be done
by developing a composite application on top of the ES Bundle provided by the HR System. However,
all steps have to be done manually. We could semi-automate creation of a composite application with
respect to the data and control flow tasks in the composite application by semantically annotating the
input and output messages of the Enterprise Services and their behavior. The only steps that still need
to be done manually are: the modeling of the new behavioral interface for the applicant and the internal
workflow of the composite application. The integration of the data and control flow between the
applicant interface, the HR System and the internal business process of the composite application is a
guided semi-automatic process. The complete background used in this solution is described in [2], [3].

Challenges and future work

The above as well as many, many other examples show that application of ontologies, reasoning and
advanced business process composition techniques in the area of integration and composition of
enterprise applications is reasonable and feasible. However, there are only bits and pieces based on
different conceptual assumptions and technologies. The challenge is to bring all loosely-coupled
models and ontologies under an umbrella of a unified conceptual framework that combines the classical
modeling techniques with ontological modeling in one hybrid meta-model. The framework must

3

address the business level as well as IT level and provide a link from business to IT that ideally
supports round-trip engineering supported by guidance and traceability methodologies for both the
software engineering process and the solution domain. SAP Research started to investigate these issues
within the EU-funded project MOST (http://www.most-project.eu/).

Reference

[1] Andreas Friesen, Kioumars Namiri, Towards Semantic Service Selection for B2B Integration, Proceedings of
The 6th International Conference on Web Engineering (ICWE 2006), Menlo Park, CA, July 2006

[2] Jens Lemcke, Andreas Friesen, Composing Web-Service-like Abstract State Machines (ASMs), Proceedings of
the 2007 IEEE Congress on Services (ICWS/SCC 2007), July 2007, Salt Lake City, USA

[3] Jens Lemcke, Andreas Friesen, Considering Realistic Web Service Features for Semi-automatic Composition,
In the Proceedings of the 3rd South-East European Workshop on Formal Methods (SEEFM 2007), November
2007, Thessaloniki, Greece, ISBN 978-960-89629-4-1

4

Using an Ontology to Suggest Software Design Patterns

Integration

Dania Harb, Cédric Bouhours, Hervé Leblanc

IRIT – MACAO

Université Paul Sabatier

118 Route de Narbonne

F-31062 TOULOUSE CEDEX 9

{harb, bouhours, leblanc}@irit.fr

Abstract. To give a consistent and more valuable feature on models, we

propose that model-driven processes should be able to reuse the expert

knowledge generally expressed in terms of patterns. In order to formalize and

use them, some design pattern ontologies have been developed. To share them

on the Web they have been implemented using the OWL language. They can be

easily interrogated with dedicated query languages. Our work has consisted in

extending a design pattern intent ontology with “alternative model” and “strong

points” concepts, which partially refers “anti-patterns”. We validate this

approach in tooling a step of a design review activity, we have proposed. This

activity, directed by design patterns, is adapted to a model driven process, for

the need to improve object-oriented architecture quality.

Keywords: OWL, SPARQL, Software Design Pattern, Design Review

Activity, MDE, MDA

1 Introduction

The emergent MDE community, aiming at giving a productive feature on models, has

proposed model-driven process development. However, to obtain guarantees on

model relevance at the end of each activity, these processes should promote the reuse

of the knowledge of experts generally expressed in terms of analysis [1], design [2] or

architectural [3] patterns approved by the community. Given the existence of “code

review” activities [4] in some development processes, we have specified a “design

review” activity [5] directed by design patterns and oriented to model quality. In this

activity, we propose to parse models to find fragments substitutable with software

design patterns and to replace them if the intent of the designer matches with the

intent of the pattern and if the architectural qualities of the pattern are needed. Our

activity is situated after the design stage, and its purpose is to urge and to help the

designer to integrate design pattern in his design.

Thanks to their Design Pattern Intent Ontology (DPIO), Kampffmeyer et al. [6]

have developed a wizard enabling designers to efficiently retrieve software design

patterns applicable for their design problems, during the design stage. Our approach

5

2 Dania Harb, Cédric Bouhours, Hervé Leblanc

has not the same timing. It is situated after the design stage, and it verifies if there is

no known bad design practices in a model. So, the designer is not in need of

identifying design problems, it is the activity which finds the lacks in his models and

suggests design patterns integrations instead. However, the DPIO [6] is an interesting

start point for the formalization of our concepts because it links software design

pattern to some problem concepts. So, in reusing this ontology backwards (from the

pattern to the design problems), and in adding our concepts, we are able to establish a

dialog with the designer.

In this paper, after presenting the design review activity, we explain how we have

reused and extended the DPIO [6]. We illustrate the execution of our activity on a

“file system management” example.

2 The Design Review Activity

The design review activity, presented in [5], may be decomposed into four steps (see

Fig. 1).

Pattern integration

[propositions]

Rules of object

oriented quality

Model to review

Designer

Model to review

[checked]

Model to review

[improved]

Alternative models

catalog

Integration tool

Object oriented

quality checking

Alternative models

detection

Patterns integration

Validation of

propositions

Pattern integration

Integration trace

OWL ontology

step

sequence

IN or OUT

element

for a step

Fig. 1. Design Review Activity

6

Using an Ontology to Suggest Software Design Patterns Integration 3

In order to work with models in a “sufficient” quality, the first step checks good

basic object-oriented design practices.

When the model to review is checked in a “sufficient” quality state, the second step

consists in an automatic research of model fragments which are candidate to a

substitution with a pattern. This research is based on structural similarities detection

with “alternative models”. An “alternative model” is a model which solves

inadequately the same problem as a pattern [5]. That means there is a better solution

to solve this problem. Our work hypothesis is that a software design pattern is the

best solution for a given design problem. According to the taxonomy proposed by

Chikofsky and Cross [8], our detection technique can be connected to a

redocumentation technique as to permit model restructuring. Our “alternative

models” catalog is presented in [9], with the experiments used to constitute it.

Each “alternative model” detected in the model represents propositions of

fragments substitutable with a design pattern. Since we need the designer opinion in

the third step, our ontology will help him determine if his intent matches with the

suggested pattern intent and whether the propositions are needed in the model to

review.

With the designer authorization, the last step consists in integrating the validated

propositions into the model. This integration is done thanks to an automatic model

refactoring.

3 Reusing and extending an existing ontology

In order to improve the design of object oriented models, our work relies on detecting

all instances of alternative models in UML design models and substituting them, if

necessary, with appropriate design patterns. Each class of the instances detected is

connected in the same manner as the classes of the alternative model. So, since the

detection is only structural, the instances detected must be checked by the designer

before any substitution with a pattern. Therefore, after the detection step, propositions

of patterns integration consist of sets of model fragments representing a possible

substitution. These sets may be large where some fragments may not be relevant with

a substitution. So, to help the designer in filtering the fragments, we need an ontology

that formalizes intent of design patterns (is the substitution have a sense?) and our

characterizations of “alternative models” in terms of quality features (is the effort of

the substitution balanced by improved architectural qualities?).

For this purpose, we choose OWL, the Web Ontology Language [10], to import an

existing ontology on design patterns intent and extend it by adding our knowledge on

“alternative models”. We validated our new knowledge base using a specific query

language to interrogate it and filter out the pertinent information.

7

4 Dania Harb, Cédric Bouhours, Hervé Leblanc

3.1 Requirements

Our catalogue is composed with “alternative models”, introduced in Section 2, and

their characterization. We have constituted our catalog in asking students to solve

some design problems. These problems were simply solvable with designs patterns,

but, as the students chosen have no knowledge on design patterns, they solve the

problems without using design patterns. In following our work hypothesis, their

solutions were not the best solution for the problem, and so, the models produced had

some design defects. The characterization of these defects consists in a valuation of

the “strong points” of the pattern. “Strong points” are criteria of object-oriented

architecture or software engineering quality, partially deduced from the

“consequences” section of the GoF [2] catalogue and from our study on the design

defects of “alternative models”. As pattern injection may alter some object-oriented

metrics [11], “strong points” allow us to compute dedicated pattern metrics to classify

the “alternative models” and to help the estimation of the pertinence of pattern

injection in a design model. Each “alternative model” perturbs the “strong points” of

its associated pattern.

Since we need to formally describe design patterns, “alternative models” and

“strong points” in a machine readable format, we start with the DPIO ontology. These

concepts must be constructed in a way that allows querying based on the “alternative

model” detected.

Intent: Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects uniformly.

Applicability: Use the Composite pattern when:

 you want to represent part-whole hierarchies of objects.

 you want clients to be able to ignore the difference between compositions of

objects and individual objects. Clients will treat all objects in the composite

structure uniformly.

Structure:

Component

Leaf

+children*

Composite

Strong points:
1 Decoupling and extensibility

1.1 Maximal factorization of the composition

1.2 Addition or removal of a Leaf does not need code modification

1.3 Addition or removal of a Composite does not need code modification

2 Uniform processing

2.1 Uniform processing on operations of composed object

2.2 Uniform processing on composition managing

2.3 Unique access point for the client

8

Using an Ontology to Suggest Software Design Patterns Integration 5

Fig. 2. Composite Pattern and its “Strong Points”

In Fig. 2, we present one of the GoF patterns, named Composite. The intent, the

applicability and the structure are provided directly from the GoF book while the

“strong points” are deduced from our experiments by comparing solutions to specific

design problem implemented by the Composite pattern and its “alternative models”.

Fig. 3 shows the structure and the design defect valuation of an “alternative model” to

the Composite pattern. We have named it “Development of the composition on

Composite with process conformance” in reference of its design defects. Then an

“alternative model” can be considered as a “chipped pattern”.

So we have made two major hypotheses about “alternative models”. First, each

“alternative model” is attached by the valuation of their design defects to a unique

design pattern. Second, each “alternative model” has one or more strong points

perturbed. We assume that the same structure of an “alternative model” can be

duplicated in our catalog, but with a different name, a different valuation and some

different components.

Fig. 3. Characterization of an “Alternative Model”

3.2 Existing ontology: the Design Pattern Intent Ontology

Design patterns have been used successfully in recent years in the software

engineering community in order to share knowledge about the structural and

behavioural properties of software. Most of the existing approaches to formalizing

design patterns are based on structural aspects. For example, the work of Dietrich et

al. [12] uses the OWL to formally describe the structure of design patterns and then

transform it in first-order logic predicates which are reuse as an entry for a scanner

pattern. However, there is more lightly approaches concentrated in the usability of

design patterns according to the design problems they solve. Kampffmeyer and

Zschaler [6] define the intent of the 23 GoF design patterns [2] using OWL. Their

Name:

Development of the composition on Composite with process conformance

Alternative model:

Component

CompositeLeaf
*

*

Strong points perturbations

1.1 2.1

1.2 2.2

1.3 2.3

9

6 Dania Harb, Cédric Bouhours, Hervé Leblanc

work was based on the work of Tichy [13], who developed a catalogue of more than

hundred design patterns classified according to the problems patterns solve.

The core structure of the DPIO, provided from the paper [6], is presented in Fig. 4

by UML classes and associations. Kampffmeyer and Zschaler chose to represent their

ontology with UML diagram because they consider that is easily to understand. To

read the diagram, they indicate: “The relations between DesignPattern, DPProblem

and ProblemConcept classes are depicted using UML-notations. UML classes

symbolize OWL classes and UML associations symbolize OWL object properties.

Each DesignPattern is a solution to one or more design pattern problem DPProblem.

The association between them indicates an object property isSolutionTo which is an

inverse property of isSolvedBy. DPProblem is defined that is the root node for more

specific problems. The association class Constrains indicates an OWL object property

that can be specialized also by subproperties. DPProblem is a set of classes that

describe a problem by constraining a ProblemConcept”. The DPIO contains the

vocabulary for describing the intent of design patterns.

Fig. 4. Graphical overview of the core structure of the DPIO

All the 23 GoF patterns inherit from the DesignPattern class. DPProblem and

ProblemConcept are the root classes of the other hierarchies.

Based on the work of [6], and instead of finding the design pattern for a given

problem, we retrieve the intent of a design pattern. It is much like reversing the query

to get the pertinent data from the same ontology. So we can benefit from their existing

work and their published ontology.

3.3 Method and Results

Now to determine the scope of our new ontology, there are kinds of questions called

“competency questions” the ontology should be able to answer [14]. Our work could

be defined in 3 steps: first, when an “alternative model” is detected, we need to

interrogate our knowledge base to know which design pattern could replace it.

Second, we will verify with the designer if his “alternative model” detected has a

similar intent as the corresponding design pattern. Last, in this case, we will show him

10

Using an Ontology to Suggest Software Design Patterns Integration 7

the lack in his model by displaying the perturbed “strong points”. Then, if the

designer finds the need to improve his model, his fragment will be substituted with

the design pattern. Therefore, the three competency questions are as follow:

1. Which design pattern could replace a given “alternative model”?

2. What is the intent of the corresponding design pattern?

3. Which are the “strong points” perturbed using this “alternative model”?

In designing the structure of the new ontology, we took into consideration all the

possible relations between the classes in the DPIO model and the classes we want to

add:

1. Each”alternative model” could be replaced by one and only one Design

Pattern. But a Design Pattern will replace one to many “alternative

models”.

2. An “alternative model” perturbs at least one “strong point” of the Design

Pattern that can replace it.

From this analysis, we extend the DPIO by adding our new concepts.

Fig. 5. Graphical overview of the structure of the extended ontology

Fig. 5 represents the new structure of the extended ontology. Based on this

structure and the relations between classes, we extended the existing ontology with

OWL classes and properties as follow:

1. Two new OWL classes:

a. AlternativeModel: the root class of all “alternative models”. They

are grouped by the design pattern that could replace them. For

example, we find six “alternative models” for the Composite

pattern. They inherit all from the Composite_AM class (Fig. 6).

They have the name of their super class followed by their

numeration in the catalogue.

b. StrongPoint: the root class of all the “strong points”. They are

attached to a design pattern. For example, we find two main

“strong points” for the Composite pattern: Composite_Rule_1

and Composite_Rule_2 (Fig. 6); each one of them was précised

by three sub features. They have the name of their super class

followed by their numeration in the catalogue.

11

8 Dania Harb, Cédric Bouhours, Hervé Leblanc

2. Four new OWL properties:

a. isReplacedBy: links an AlternativeModel to his corresponding

DesignPattern.

b. Replace: the inverse of isReplacedBy.

c. Perturbes: links an AlternativeModel to the valuation of the

corresponding pattern “strong points” (StrongPoint).

d. hasRule: links a DesignPattern class to one of its StrongPoint.

Fig. 6 shows a detailed structure of the extended base concerning the Composite

pattern. The “alternative model” presented in Fig. 3 perturbs the three subfeatures of

the first “strong point” of the Composite pattern that concerned in the Decoupling and

extensibility. More precisely, for each OWL class concerning our concepts, we have:

OWL Classes rdfs:comment
Composite_AM_5 Development of the composition on “Composite” with

protocol conformance

Composite_Rule_1 Decoupling and Extensibility

Composite_Rule_2 Uniform processing

Composite_Rule_1.1 Maximal factorization of the composition

Composite_Rule_1.2 Adding or removing a Leaf does not need a code

modification

Composite_Rule_1.3 Adding or removing a Composite does not need a code

modification

Composite_Rule_2.1 Uniform processing on operations of composed objects

Composite_Rule_2.2 Uniform processing on compositions management

Composite_Rule_2.3 Unique access point for the client

Fig. 6. Detailed structure of the extended ontology

12

Using an Ontology to Suggest Software Design Patterns Integration 9

For presentation reasons, we have omitted the name of the design pattern in each

sub feature.

We used Protégé [15], an open source ontology editor and knowledge-base

framework, to load the existing ontology and add our new classes, properties,

property characteristics, and interrogate it using queries. We referred to a user guide

[14] on how to develop an ontology using Protégé and the OWL Plug-in. We created

our OWL classes, linked them by OWL properties, and interrogated the knowledge

base by generating SPARQL (SPARQL Protocol and RDF Query Language) [16]

queries to answer our competency questions.

SPARQL is a W3C Candidate Recommendation towards a standard query language

for the Semantic Web. Its focus is on querying RDF graphs at the triple level.

SPARQL can be used to query an RDF Schema or OWL model to filter out

individuals with specific characteristics.

4 Illustration on a “File System Management” Design

After adding our new concepts to the DPIO, the knowledge base could now be

interrogated according to the competency questions we mentioned earlier. Standard

ontology reasoning is used to retrieve the results responding to queries. In order to

illustrate the use of the ontology, we execute the whole activity on an example. It was

found in a subject of an object-oriented programming supervised practical work. It

aims to implement a file management system represented in the Fig. 7 below.

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

*

-root

-subdirectory

*

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

Fig. 7. Model to Review: File System Management

13

10 Dania Harb, Cédric Bouhours, Hervé Leblanc

This static UML model represents a basic architecture for a File System

Management. Authors of this model are interested in the presentation of some object

concepts:

 Inheritance between classes and abstract classes. A uniform protocol for

every FileSystemElement is encapsulated by a corresponding abstract

class. Directories and Files must respect this protocol via inheritance

relationship. We can note that all concrete classes are derived directly or

indirectly from an abstract class. This rule enforces the emergence of

reusable protocols.

 Management of references, here composition links, between container and

components. A Directory object manages some references to Files and

Directories objects.

Nevertheless, this model contains a misconception. Although there is a uniform

protocol owned by the class FileSystemElement, the management of composite links

along a hierarchical structure is duplicated. Indeed, Directory class manages

independently links on Files and Directories. Now, we consider two evolution

scenarios. The first is adding new Terminal types in the tree structure, for example,

symbolic links in UNIX systems. This evolution requires the management of this

new type of links by the Directory class and then requires code modification and code

duplication in this class. The second is adding new non Terminal types in the tree

structure, for example archive files in UNIX or in Java environment. We can

consider that an archive file has the same functionalities as a Directory. This

evolution requires a reflexive link on an archive file class and the duplication of all

links that represent composition links in the tree structure. Then it requires

duplication of management of composition and modification in the Directory class, it

must manage another type on FileSystemElement. These two scenarios show a

decoupling problem (each container manages a part of the composite structure) and an

extensibility limitation (it requires existing code modification for adding new type of

terminal or non terminal element of the composition hierarchy). Therefore, this

model can be improved. Furthermore, when the authors have implemented this

model, they realized that there were defects, and they adapted their code to improve it.

4.1 Object-Oriented Quality Checking

Visually, there is no design mistake: each class of the model presents a reusable

protocol. Composition links are used here as delegation between Directory and File.

And messages sent between them have the same selector.

4.2 “Alternative Models” Detection

This step consists in the execution of all queries corresponding at each “alternative

model” of the base. In this example, the query of the fifth Composite “alternative

model” returns theses matching classes:

1. The Directory class is able to play the role of the Composite class.

2. The File class is able to play the role of the Leaf Class.

3. The FileSystemElement is able to play the role of the Component class.

14

Using an Ontology to Suggest Software Design Patterns Integration 11

This means that we detected an “alternative model” for the Composite pattern

because they have the same structural features (cf. Fig. 8).

Fig. 8. The fifth Composite “Alternative Model” its Instantiation in the Model

4.3 Designer/Machine dialog

At this step, the designer must verify the substitutability of the detected fragment.

Firstly, he must verify if the intent of the fragment matches with the proposed design

pattern. To do so, we build a question thanks to a SPARQL query we have coded (cf.

Listing 1). This query retrieves the intent of the design pattern in using the

“alternative model” detected (here Composite_AM_5). Indeed, we consider that the

intent of the pattern is described with a list of couples (constraint – ProblemConcept)

in the ontology (see Fig. 5).

SELECT ?DesignPattern ?constrains ?ProblemConcept

WHERE{

 ?DesignPattern rdfs:subClassOf ?x.

 ?x rdf:type owl:Restriction.

 ?x owl:onProperty :replace.

 ?x owl:someValuesFrom: Composite_AM_5.

 ?DesignPattern rdfs:subClassOf ?y.

 ?y rdf:type owl:Restriction.

 ?y owl:onProperty :isSolutionTo.

 ?y owl:someValuesFrom ?pbconcept.

 ?pbconcept rdfs:subClassOf ?z.

 ?z rdf:type owl:Restriction.

 ?z owl:onProperty ?constrains.

 ?z owl:someValuesFrom ?ProblemConcept.

}

Listing 1 SPARQL query to retrieve the intent of the Composite pattern that could replace the

“alternative model” Composite_AM_5

15

12 Dania Harb, Cédric Bouhours, Hervé Leblanc

Based on the results (cf. Fig. 9) of this query, we will proceed in dialoguing the

designer with the first question: We have detected in your design an alternative model

of the CompositeDesignPattern. Is the fragment {FileSystemElement, File,

Directory} composes Object, builds TreeStructure and nests Objects?

Fig. 9. Screenshot of Protégé after executing the query (Listing 1)

We can note that the intent of {FileSystemElement, File, Directory} is a recursive

composition: “Directories are composed with Files or Directories which are

composed with…”. So the answer to the previous question is positive.

Now, we must check the interest to replace the fragment with the pattern. Thanks

to the perturbation of the “strong points”, we can present to the designer the

advantage to use the pattern. We retrieve the perturbed “strong points” with a

SPARQL query (Listing 2):

SELECT ?Strong_Points ?Sub_Features

WHERE{

 :Composite_AM_5 rdfs:subClassOf ?x.

 ?x rdf:type owl:Restriction.

 ?x owl:onProperty :perturbs.

 ?x owl:someValuesFrom ?SF.

 ?SF rdfs:subClassOf ?SP.

 ?SP rdfs:comment ?Strong_Points.

 ?SF rdfs:comment ?Sub_Features.

} ORDER BY ASC(?Strong_Points)

Listing 2 SPARQL query to retrieve the “strong points” perturbed by COMPOSITE_AM_5

The second question is built with the results (cf. Fig. 10) of the previous query:

Our analysis shows that you have problems of “Decoupling and Extensibility”; your

model is unable to satisfy those points:

1. Maximal factorization of the composition.

2. Addition or removal of a leaf does not need code modification.

3. Addition or removal of a composite does not need code modification.

In injecting the CompositeDesignPattern, you will improve all of these points. Do

you want to refactor the identified fragment {FileSystemElement, File, Directory} ?

16

Using an Ontology to Suggest Software Design Patterns Integration 13

Fig. 10. Screenshot of the result window presenting the “strong points” perturbed

As we consider that the model may evolve, it is useful to guarantee that there are

extensibility and decoupling possibilities. Therefore, the fragment must be

substituted with the pattern.

4.4 Patterns Integration

At this step, the identified fragment is replaced by the suggested design pattern like

the Fig. 11 below:

Directory
<<Composite>>

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File
<<Leaf>>

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement
<<Component>>

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

-root

-subdirectory *

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

Fig. 11. Model to Review Improved

To do so, a suite of simple model refactoring suffices to integrate the pattern.

Here, it consists in:

 Remove composition link between Directory and File.

 Move the end of the recursive composition link from Directory to

FileSystemElement.

These inter-classes refactorings can be automatically deduced with an operation of

“differentiation” between the “alternative model” and the pattern structure.

17

14 Dania Harb, Cédric Bouhours, Hervé Leblanc

At the end of the activity, we can say that this model is improved, because we have

substituted a fragment (with “weak points”) with a pattern (with “strong points”).

This transformation may appear as non fundamental in the model, but at the code

level, the implications are substantial. Every hierarchy traversal methods are simpler

to implement, and there is less code to write. Moreover, in case of extensions, there is

no code modification of existing classes.

5. Conclusion and Perspectives

The approach of reusing and extending an existing ontology corresponding to our

requirements was successfully applied. From the existing DPIO ontology, we have

plugged our concepts on “alternative models” and “strong points”. These concepts are

fundamental for tooling our Design Review Activity. Accurately, at the step named

validation of substitution propositions, we have simulated a dialog with a designer by

interrogating the extended base using queries. These queries will be generated

automatically by a template process. The integration of this work into a tool

dedicated to the design review activity is envisaged.

Finally, we conclude with some perspectives:

 Take into consideration the relationships between patterns. For example,

the Decorator pattern can be applied to the Composite pattern structure.

 Take into consideration the applicability of each pattern. For example,

referring to the GoF book, one of the applicability of the Composite

pattern is: you want clients to be able to ignore the difference between

compositions of objects and individual objects. We notice that this

sentence cannot be part of the pattern intention but can be considered as a

“strong point”.

 Optimize our knowledge base by sharing common “strong points”

between patterns. For example, the Composite, the Decorator and the

Bridge pattern have a same “strong point” concerning the maximal

factorization between specific classes.

 Use inference rules to find new concepts when adding new “alternative

models” or “strong points”. This could help us improving our knowledge

on patterns and particularly, our knowledge on the good practices on

object oriented architecture.

Acknowledgements

We are grateful to Mrs. Nathalie Aussenac-Gilles for her precious advices during

this work.

18

Using an Ontology to Suggest Software Design Patterns Integration 15

References

1. Fowler M., “Analysis patterns: reusable objects models”, Addison Wesley Longman
Publishing Co, Inc., 1997.

2. Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns: Elements of Reusable
Object-Oriented Software”, Addison Wesley Professional, 1995.

3. Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M., “Pattern-Oriented
Software Architecture”, John Wiley & Sons, August 1996.

4. Dunsmore A.P., “Comprehension and Visualisation of Object-Oriented code for
Inspections”, Technical Report, EFoCS-33-98, Computer Science Department, University
of Strathclyde, 1998.

5. Bouhours C., Leblanc H.., Percebois C., “Alternative Models for a Design Review
Activity”. In : Workshop on Quality in Modeling - ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, NASHVILLE, TN (USA),
30/09/2007-05/10/2007, Ludwig KUZNIARZ, Jean-Louis SOURROUILLE, Miroslaw
STARON (Eds.), Springer, p. 65-79, October 2007.

6. Kampffmeyer H., Zschaler S., Engels G., Opdyke B., Schmidt D. C., Weil F., “Finding the
Pattern You Need: The Design Pattern Intent Ontology”, in MoDELS, Springer, 2007,
volume 4735, pages 211-225.

7. Guéhéneuc Y. G., Albin-Amiot. H., “Using Design Patterns and Constraints to Automate
the Detection and Correction of Inter-Class Design Defects”, in Proceedings conference
TOOLS, July 2001, pages 296-305.

8. Chikofsky E. J., Cross J. H., “Reverse engineering and design recovery: A taxonomy”, in
IEEE Software, 7(1), page 13-17, January 1990.

9. Bouhours C., Leblanc H., Percebois C., “Alternative Models for Structural Design
Patterns”, research report, IRIT/RR--2007-1--FR, IRIT, December 2007,
http://www.irit.fr/recherches/DCL/MACAO/docs/AlternativeModelsForStructuralDesignPa
tterns.pdf.

10. D.L. McGuinness and F. van Harmelen: OWL Web Ontology Language Overview,
2004.http://www.w3c.org/TR/owl-features/

11. Huston B., “The effects of design pattern application on metric scores”, in Journal of
Systems and Software, 58(3), Elsevier Science, September 15, 2001, pages 261-269.

12. Dietrich, J., Elgar, C.: A formal description of design patterns using OWL, in: Australian
Software Engineering Conference (ASWEC'05), pp. 243-250. IEEE Computer Society, Los
Alamitos, 2005. http://doi.ieeecomputersociety.org/10.1109/ASWEC.2005.6

13. Tichy, W.F.: A catalogue of general-purpose software design patterns. In: TOOLS'97.
Proceedings of the Tools-23: Technology of Object-Oriented Languages and Systems,
IEEE Computer Society, Washington, DC, USA, 1997.

14. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first
ontology. Technical Report KSL-01-05, Knowledge Systems Laboratory, Stanford
University, Stanford, CA, 94305, USA, March 2001.

15. Protégé ontology editor and knowledge acquisition system (2006).
http://protege.stanford.edu/

16. Prud'hommeaux E., Seaborne: SPARQL Query Language for RDF, January 2008.
http://www.w3.org/TR/rdf-sparql-query/

19

Using Ontologies in the Domain Analysis of
Domain-Specific Languages

Robert Tairas1, Marjan Mernik2, Jeff Gray1

1 University of Alabama at Birmingham, Birmingham, Alabama, USA

{tairasr,gray}@cis.uab.edu

2 University of Maribor, Maribor, Slovenia
marjan.mernik@uni-mb.si

Abstract. The design stage of domain-specific language development, which
includes domain analysis, has not received as much attention compared to the
subsequent stage of language implementation. This paper investigates the use of
ontology in domain analysis for the development of a domain-specific
language. The standard process of ontology development is investigated as an
aid to determine the pertinent information regarding the domain (e.g., the
conceptualization of the domain and the common and variable elements of the
domain) that should be modeled in a language for the domain. Our observations
suggest that ontology assists in the initial phase of domain understanding and
can be combined with further formal domain analysis methods during the
development of a domain-specific language.

Keywords: Domain Analysis, Domain-Specific Languages, Ontology

1 Introduction

The development of a Domain-Specific Language (DSL) requires detailed knowledge
of the domain in which the language is being targeted. Paradigms such as Generative
Programming [3] and Domain Engineering [5] also require an understanding of the
target domain, which is done through a process called domain analysis that produces a
domain model. An important theme in the domain analysis used by both paradigms is
the need to determine elements that can be reused. The reusable components or
software artifacts form the building blocks for developing new software systems. In
DSL development, in addition to the overall knowledge of the domain, the domain
model can reveal important properties that will influence the way the language is
shaped. In particular, the search for reusability in domain analysis can be translated
into realizing the commonalities and variabilities of a domain. This information can
assist in pointing out elements in the domain that can be fixed in the language and
those that must provide for variabilities; hence, domain analysis has the potential to
be beneficial if used during DSL development. However, clear guidelines for the use
of established domain analysis techniques in the process of DSL development are still
lacking [11].

20

Ontology development is one approach that has contributed to the early stages of
domain analysis [5]. This paper investigates the use of ontology during domain
analysis in DSL development and how it contributes to the design of the language.
The rest of the paper is organized as follows: Section 2 describes the potential
connection between ontology and DSL development. Section 3 provides a case study
on the use of ontology in the development of a DSL for air traffic communication and
Section 4 provides some observations on ontology in DSL development based on the
case study. Related work, a conclusion, and future work are described in Sections 5
and 6.

2 Early Stage DSL Development

Chandrasekaran et al. [2] propose two properties related to ontologies: the first is a
representation vocabulary of some specialized domain. This vocabulary represents the
objects, concepts, and other entities concerning the domain. The second is the body of
knowledge of the domain using this representative vocabulary. This knowledge can
be obtained from the relationships of the entities that have been represented by the
vocabulary. Ontologies seek to represent the elements of a domain through a
vocabulary and relationships between these elements in order to provide some type of
knowledge of the domain.

An interesting connection can be observed between ontology and DSL design. As
it relates to DSL development [11], a domain model is defined as consisting of:

� a domain definition defining the scope of the domain,
� the domain terminology (vocabulary, ontology),
� descriptions of domain concepts, and
� feature models describing the commonalities and variabilities of domain concepts

and their interdependencies.

Not only is an ontology useful in the obvious property of domain terminology, but the
concepts of the domain and their interdependencies or relationships are also part of
the properties of an ontology [2]. The knowledge of the commonalities and
variabilities of the domain concepts can further provide crucial information needed to
determine the fixed and variable parts of the language. This part is a more open
question as to the potential of finding commonalities and variabilities through
information obtained from the ontology.

As it relates to the DSL development process as a whole, the insertion of ontology
development in the early stages of DSL development can potentially provide a
structured mechanism in the part of DSL development that is still lacking attention.
The early stages of DSL development (i.e., domain analysis) have not received as
much attention compared to the latter stages of development (i.e., language
implementation). Various DSL implementation techniques have been identified in
[11], including interpreter or compiler development and embedding in a General-
Purpose Language (GPL). In contrast, only four out of 39 DSLs evaluated in [11]
utilized a more formal domain analysis, such as FAST [14] and FODA [8]. These
formal approaches have shown to result in good language design, but their use is still

21

limited and it has yet to be seen how well they will be adopted by the community. The
question is whether other less formal approaches, such as Object-Oriented Analysis
(OOA) or ontology, can be reused in the early stages of DSL development. In order to
promote interest in the domain analysis stage of DSL development, this paper
advocates the use of ontology in DSL development, which is observed through a case
study of a DSL for air traffic communication.

3 Case Study

Ontology development to assist in the design of a DSL is described through a case
study in this section. Section 3.1 provides a summary of the air traffic communication
problem domain. The ontology and its related competency questions are given in
Sections 3.2 and 3.3. The development of a class diagram, object diagram, context-
free grammar, and sample program related to the DSL and obtained from the ontology
is given in Section 3.4.

3.1 Air Traffic Communication

A case study was selected to apply the ontology development process and observe its
usefulness in domain analysis related to DSL development. The case study selected
focuses on the communication that occurs between the air traffic control (ATC) at an
airport and the pilot of an aircraft. More specifically, the communication is between
the ground controller that is responsible for the traffic between the runways and the
ramps containing gates in an airport, and the pilots of an aircraft that has just arrived
or is in the process of departure. The purpose is to develop a DSL that can standardize
the language for the communication between the two individuals. English is the
standard language in this domain, but more often the controllers or pilots of non-
English speaking countries may experience problems communicating in English. A
DSL that standardizes the communication can be translated into the native tongue of
the controller or pilot for better comprehension. A separate functionality could check
and verify the path that is given to a pilot by a ground controller. An example
communication sequence that highlights the potential communication problem is
given in Listing 1. The controller is asking the captain to hold short of taxiway
“MikeAlpha,” but the pilot continually assumes it is taxiway “November.”

Listing 1. Example of air traffic communication
ATC: Make the right turn here at Juliette. Join Alpha. Hold short

MikeAlpha.

Pilot: Right on Juliette hold sh ... Taxi Alpha. Hold November [...] Can
we taxi now?

ATC: Make the right turn here at Juliette. Join Alpha. Hold short of
MikeAlpha.

Pilot: Roger, join right Juliette. Join Alpha. Hold short November.

ATC: OK, I'll say it again. Hold short of Mike Alpha "M" - "A"
MikeAlpha, not November.

Pilot: OK, hold short of MikeAlpha.

22

3.2 Ontology Development

Following the ontology development process outlined by Noy and McGuinness [13],
competency questions are selected that serve as the purpose of the ontology. In order
to obtain a domain model as defined in Section 2, two competency questions were
selected: “What are the concepts of the domain and the interdependencies of these
concepts?” and “What are the commonalities and variabilities of the domain?”

Both the Ontolingua1 and DAML2 ontology libraries were searched for existing
ontologies related to the domain in this case study, but no related instances contained
the vocabulary necessary for the domain. Although a new ontology is needed for this
case study, the availability of an existing ontology in other cases provides a head start
to the development of a domain model as the important terms and relationships have
been determined already for the domain and can be used toward the subsequent steps
of DSL development.

Table 1. Listing of classes and associated slots

Class Description Slots

Name Description Values

Aircraft Arriving or departing
aircraft

Airline ID Name of the airline Two letters
Flight Number Flight Identification Integer

GroundControl Controller in charge of
airport ground traffic

Tower Controller in charge of
take-offs and landings

Runway Available take-off and
landing locations

Runway Number Runway Identification 1 – 36 (i.e., runway
heading 10° – 360°)

Runway
Orientation

To distinguish parallel
runways

Class Left or Right

Taxiway Paths connecting
runways to ramps

Taxiway Name Taxiway Identification One or two letters
(digits)

Ramp Aircraft parking area Ramp Name Ramp Identification String
Gate Passenger embarkation

and disembarkation
Gate Letter Gate Identification One letter
Gate Number Gate Identification Integer

Turn Command to turn Direction Turning direction Class Left or Right
Taxiway Taxiway Identification Class Taxiway

HoldShort Command to hold short
of a runway or taxiway

Runway Runway Identification Class Runway
Taxiway Taxiway Identification Class Taxiway

Contact Command to contact a
separate controller

ATC Controller to contact Class Tower or
GroundControl

Follow Command to follow
behind another aircraft

Aircraft Aircraft Identification Class Aircraft

1 Ontolingua Ontology Library, http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html
2 DAML Ontology Library, http://www.daml.org/ontologies

23

Utilizing the tool introduced by Noy and McGuinness [13] called Protégé 20003, the
ontology for the case study was developed. The terms in Protégé 2000 are stored as
classes. This allows for terms to be considered subclasses of other terms. In addition
to classes, Protégé 2000 also contains slots and instances. Slots are the properties and
constraints of the classes. Slots define the properties of classes and also determine the
values that can be set for each property. Instances are actual instances of the classes in
the ontology. These can be used to determine how well the ontology is representing a
domain.

Table 1 contains a selection of classes and slots of the ontology that was
developed in Protégé 2000 for the case study. In addition to the classes and slots in
Table 1, instances of these classes were also determined. These instances are based on
the information from a simplified diagram of the Birmingham International Airport
(BHM) as shown in Figure 1. For example, instances of the Runway class are 6, 24, 18,
and 36. Instances of the Taxiway class are A, B, F, G, H, M, A1, A2, A3, A4, B1, G1,
H2, and H4. The Ramp class consists of Cargo and Terminal.

3.3 Competency Questions Revisited

The usefulness of the ontology in Table 1 can be measured by how well the ontology
assists in answering the previously specified competency questions from Section 3.2.
Regarding the first question, the ontology provides the concepts of the domain
through the classes. The interdependencies between the concepts can be derived from
the constraints of the slots of the classes. For example, the HoldShort class is
dependent on either the Runway or Taxiway classes, as this command is always
followed by the location in which the pilot is to hold short.

Fig. 1. Simplified Diagram of Birmingham International Airport (BHM)

Answering the second question related to commonalities and variabilities is less
evident if observing only the ontology’s structure of classes and slots. Information
regarding the variabilities can be extracted by including the instances of classes, such

3 Protégé 2000, http://protege.stanford.edu

36

18

6

24

Cargo

Terminal

A1

A2

A3
A4

A

A

A

A

A

H

H

H2

H4

F

F

B

B

B

B

F

B1 G1

G

G

G

M

M

 Gates
B1-B3 Gates

C1-C5

24

as the instances from BHM. Classes Runway and Taxiway consist of many instances,
which could mean these classes have the variabilities property. Moreover, instances
that represent airports other than BHM will also contain different values for these
classes, which could also be interpreted as containing variabilities. The classes not
containing instances, such as most of the commands (i.e., Turn, HoldShort, and
Contact), could be interpreted as common concepts in all instances. These commands
are common in the ATC domain and represent standard commands that are used in all
airports. However, the specific airport elements (i.e., collection of instances of
runways and taxiways) may change depending on the airport.

3.4 Conceptual Class Diagram

The ontology process is similar to the process of object-oriented analysis [1].
However, one distinction is that ontology design is mainly concerned with the
structural properties of a class, whereas object-oriented analysis is primarily
concerned with the operational properties of a class [13]. The focus here is a
methodology that can assist in determining the domain concepts for DSL
development by reusing an approach from general software engineering.

Figure 2 presents a conceptual class diagram that was manually generated from the
structural information of the classes in the ontology from Table 1. In this case, the
development of the class diagram has been assisted by the information obtained from
the ontology. In Figure 2, similar classes are grouped together. For example, classes
Gate, Ramp, Runway, and Taxiway represent physical structures in the airport. Such
groupings identified the need for a generalized class for each group. A generalized
class was included in the diagram for Runway and Taxiway, because from the slot
properties of class HoldShort, two possible values can be used (i.e., Runway and
Taxiway). In the diagram, this is represented by abstract class Way. The classes at the
bottom of the diagram represent communication commands. These are associated
with other classes through their respective slot properties. Generalizations such as
Command and Way were not part of the original ontology and were only introduced
during the development of the class diagram. These classes in turn can be used to
update the ontology to further improve the structure of the ontology. This can be seen
as part of the process of iteratively refining the ontology to better represent the
domain.

From the class diagram in Figure 2, an initial context-free grammar (CFG) for the
DSL can be generated, as shown in Listing 2. This CFG was manually obtained from
the conceptual class diagram to CFG transformation properties defined in [12].
Relationships such as generalization and aggregation in the class diagram are
transformed into specific types of production rules in the CFG. For example, a
generalization where classes Runway and Taxiway are based on class Way is
transformed into the production rule WAY ::= RUNWAY | TAXIWAY. An aggregation
where class Gate is part of class Ramp is transformed into the production rule RAMP
::= GATES. In this case the non-terminal GATES is used, because the cardinality of this
aggregation is zero or more gates on a ramp (i.e., 0..*). An additional production rule
is generated to represent this cardinality (i.e., GATES ::= GATES GATE | �).

25

-airlineID : string
-flightNumber : int

Aircraft

-aircraft : Aircraft
Follow

1

GroundControl-number : int
-orientation : Direction

Runway
-name : string

Taxiway

-name : string
Ramp

-letter : char
-number : int

Gate

-direction : Direction
-taxiway : Taxiway

Turn

-way : Way
HoldShortLeft

-atc : Air Traffic Control
Contact

Tower

Right

Direction

0..1

0..1

Way

1

1

1

-Code : string
Airport

0..*

Air Traffic Control

1..*1..*

Command

1..*

1

Fig. 2. Conceptual class diagram obtained from the ontology

Listing 2. Transformation of conceptual class diagram to context-free grammar
AIRPORT ::= WAYS RAMPS ATC
WAYS ::= WAYS WAY | WAY
WAY ::= RUNWAY | TAXIWAY
RUNWAY ::= number DIRECTION
TAXIWAY ::= name
RAMPS ::= RAMPS RAMP | RAMP
RAMP ::= name GATES

GATES ::= GATES GATE | �
GATE ::= letter number
ATC ::= GROUNDCONTROL | TOWER
GROUNDCONTROL ::= COMMANDS
COMMANDS ::= COMMANDS COMMAND | COMMAND
COMMAND ::= CONTACT | FOLLOW | HOLDSHORT | TURN
CONTACT ::= ATC
FOLLOW ::= AIRCRAFT
HOLDSHORT ::= WAY
TURN ::= DIRECTION TAXIWAY

DIRECTION ::= LEFT | RIGHT | �
AIRCRAFT ::= airlineID flightNumber

The transformation of the class diagram into the CFG above, albeit manual, followed
a predefined collection of transformation rules. The manual transformation of the
ontology into the class diagram is less formal, but was done by connecting the
properties of the classes in the ontology with the graphical representation of the class
diagram. In order to provide a more automated transformation between the ontology
and the class diagram, developing a transformation between an Web Ontology
Language (OWL) instance for the ontology and a textual representation of the class
diagram could be considered. Related to this, UML-based ontology development has
been proposed [6]. Specifically for this case, the transformation between an XML-
based OWL file into a class diagram represented in XMI could assist in the

26

automation of the ontology to class diagram step. After the transformation to a CFG,
some keywords have been added to the CFG for easier human parsing, as shown in
Listing 3.

Listing 3. Addition of keywords and production refactoring
AIRPORT ::= WAYS RAMPS ATC
WAYS ::= WAYS WAY | WAY
WAY ::= runway RUNWAY | taxiway TAXIWAY
RUNWAY ::= number DIRECTION
TAXIWAY ::= name
RAMPS ::= RAMPS RAMP | RAMP
RAMP ::= ramp name GATES

GATES ::= GATES GATE | �
GATE ::= gate letter number
ATC ::= GROUNDCONTROL | TOWER
GROUNDCONTROL ::= COMMANDS
COMMANDS ::= COMMANDS COMMAND | COMMAND
COMMAND ::= CONTACT | FOLLOW | HOLDSHORT | TURN
CONTACT ::= contact ATC
FOLLOW ::= follow AIRCRAFT
HOLDSHORT ::= hold short WAY
TURN ::= turn DIRECTION on TAXIWAY

DIRECTION ::= left | right | �
AIRCRAFT ::= airlineID flightNumber
TOWER ::= tower

An example of a program written in this DSL is shown in Listing 4 and is based on
the CFG of Listing 3. Even from this simple DSL for ground control, it can be seen
that some simple verification of aircraft path control can be checked. The
development of the DSL has been aided by the ontology that was initially produced,
which in turn assisted in the generation of a class diagram. This provided a means to
understand the domain in the early stages of DSL development, which provided input
to the subsequent structure of the DSL, as seen in the grammar in Listing 2.

Listing 4. An example program
// description of BHM airport
runway 6 runway 24 runway 18 runway 36
taxiway A taxiway A1 taxiway A2 taxiway A3 taxiway A4 taxiway B taxiway B1
taxiway F taxiway G taxiway G1 taxiway H taxiway H2 taxiway H4
ramp Cargo
ramp Terminal gate B1 gate B2 gate B3 gate C1 gate C2 gate C3 gate C4 gate C5

// commands from Ground Control
turn right on A
turn left on M
hold short runway 18
contact tower

An object diagram of the example program in Listing 4 is illustrated in Figure 3.
Airport-related structures such as gates, ramps, runways, and taxiways are represented
by multiple objects that will differ among various airports. However, the types of
commands issued by the ground control remain the same. The specific attributes of
the command objects are based on the objects of the structures of a particular airport,
e.g., taxiway A and M, and runway 18. As described in Section 3.3, evaluating the
instances of the classes provides information regarding the elements of the domain
that are common (or fixed) and those that are variable.

27

number : int = 6
orientation : Direction

runway1 : Runway

Code : string = BHM
airport : Airport

number : int = 24
orientation : Direction

runway2 : Runway

number : int = 18
orientation : Direction

runway3 : Runway

number : int = 36
orientation : Direction

runway4 : Runway

name : string = Cargo
ramp1 : Ramp

name : string = Terminal
ramp2 : Ramp

letter : char = B
number : int = 1

gate1 : Gate

letter : char = B
number : int = 2

gate2 : Gate

letter : char = B
number : int = 3

gate3 : Gate

letter : char = C
number : int = 1

gate4 : Gate

letter : char = C
number : int = 5

gate8 : Gate

name : string = A
taxiway1 : Taxiway

name : string = A1
taxiway2 : Taxiway

name : string = M
taxiway13 : Taxiway

name : string = A2
taxiway3 : Taxiway

direction : Direction = right
taxiway : Taxiway = A

command1 : Turn
direction : Direction = left
taxiway : Taxiway = M

command2 : Turn
way : Way = 18
command3 : HoldShort

atc : Air Traffic Control = tower
command4 : Contact

groundControl : GroundControl tower : Tower

Fig. 3. Object diagram from example program

4 Ontologies in DSL Development

Section 3 summarized the development of a preliminary ontology using the standard
development process as seen in literature using a well-known tool called Protégé
2000. The usefulness of the ontology was measured by answering several competency
questions that were selected to match the goals of domain analysis. Domain concepts
and their interdependencies were determined. In addition, commonalities and
variabilities as they relate to the DSL can be determined by observing the instances of
the classes in the ontology. It should be noted that the ontology and class diagram
went through several iterations before reaching the state described in Section 3.
However, further refinements may help to provide more satisfactory answers to the
competency questions. The ontology was then used to manually generate a conceptual
class diagram, which in turn produced an initial context-free grammar for the
proposed DSL.

The case study has shown the potential usefulness of ontology in the development
of a DSL specifically during the early stages of development. An ontology can
provide a well-defined and structured process to determine the concepts of a domain
and the commonalities and variabilities for a DSL, which can result in the generation
of a class diagram and subsequently a CFG from the information. Two further
observations highlight the benefits of an ontology-based approach. First, if an
ontology is already available for a domain, then this existing ontology can be used to

28

initiate the development of a DSL without the need to start from scratch. This was not
the case for the air traffic communication domain described in Section 3, but
ontologies for other domains could already exist and be utilized in the DSL
development for those domains. Second, the entire process outlined in Section 3 could
be used as an alternative to a more formal domain analysis technique such as FODA.
In a separate direction, the ontology alone can be combined with formal domain
analysis techniques (e.g., proposed by Mauw et al. in [10]) and be used as a supplier
of a well-defined input of domain concepts and relationships for further analysis.

5 Related Work

De Almeida Falbo et al. describe the use of ontology in domain engineering that has
the purpose of developing software artifacts for reuse [5]. A more recent publication
demonstrates the use of ontology in engineering design requirements capture [4].
Both cases propose methodologies of utilizing ontology in terms of providing the
knowledge about a specific domain, albeit more in a general case of engineering.
However, the utilization of ontology in domain analysis in these works translates well
to the similar effort in DSL development. Guizzardi et al. associate ontology with the
development of Domain-Specific Visual Languages (DSVL) [7]. The ontology is used
to assist in developing a representative language for a specific domain that is correct
and appropriate. Similarly, our initial investigation described in this paper utilizes
ontology as part of the main goal of developing a representative language for a
domain such as air traffic communication. However, in addition to this, the common
and variable elements of the domain are also considered through the ontology in order
to determine the structure of the domain-specific textual language (i.e., fixed and
variable language constructs).

Gaševi� et al. describe efforts to associate the two technical spaces of Model-
Driven Architecture (MDA) and ontology, which include the utilization of MDA-
based UML in ontology development [6]. We follow a similar approach where a
connection is made between the ontology in Table 1 and the UML class diagram in
Figure 1. However, in addition to this association, we perform manual
transformations on the class diagram to obtain a context-free grammar for the DSL.

6 Conclusion and Future Work

An initial investigation of the usefulness of ontology in domain analysis in DSL
development was described in this paper. A case study demonstrated the insertion of
ontology development in the DSL development process, where a class diagram was
obtained from the ontology and subsequently a CFG was produced. The ontology
assisted in answering questions related to the domain, such as the main concepts and
their interdepencies, and the common and variable parts related to the DSL. The
ontology also provided a structured input to the subsequent stages of DSL
development. Continued exploration of ontology-driven domain analysis may provide
further proof of effectiveness in the analysis of domains for DSL development.

29

The class diagram in Figure 2 that was generated from the ontology can also serve
as the basis for creating a metamodel. Slight adaptations of this diagram could
represent the metamodel for a tool like the Generic Modeling Environment (GME)
[9], which provides a domain-specific modeling language that has a concrete syntax
that resembles concepts from the domain. Thus, the results of the domain analysis and
the observed ontology can inform technologies of both grammarware and modelware.
This direction will be explored as future work. In addition, the transformations that
were performed were done manually based on predefined transformation properties.
A possibility for a more automated step is the transformation of the Web Ontology
Language (OWL) representation into a Backus-Naur Form (BNF) representation for
the DSL. Such a transformation may map similar elements and perform some
alterations between the representations. This direction will also be considered in
future work.

Acknowledgments. This project is supported in part by NSF grant CPA-0702764.

References

[1] Booch, G.: Object-Oriented Development. IEEE Transactions on Software Engineering
12, 211--221 (1986)

[2] Chandrasekaran, B., Josephson, J., Benjamins, V.: What Are Ontologies, and Why Do We
Need Them? IEEE Intelligent Systems 14, 20--26 (1999)

[3] Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston (2000)

[4] Darlington, M., Culley, S.: Investigating Ontology Development for Engineering Design
Support. Advanced Engineering Informatics 22, 112--134 (2008)

[5] De Almeida Falbo, R., Guizzardi, G., Duarte, K.: An Ontological Approach to Domain
Engineering. In: International Conference on Software Engineering and Knowledge
Engineering (SEKE), pp. 351--358, Ischia, Italy (2002)

[6] Gaševi�, D., Djuri�, D., Devedži�, V.: Model Driven Architecture and Ontology
Development. Springer, Berlin (2006)

[7] Guizzardi, G., Ferreira Pires, L., van Sinderen, M.: Ontology-Based Evaluation and
Design of Domain-Specific Visual Modeling Languages. In: International Conference on
Information Systems Development, Karlstad, Sweden (2005)

[8] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University (1990)

[9] Lédeczi, Á., Bakay, Á., Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing Domain-Specific Design Environments. IEEE Computer 34, 44--51 (2001)

[10] Mauw, S., Wiersma, W., Willemse, T.: Language-Driven System Design. International
Journal of Software Engineering and Knowledge Engineering 14, 625--664 (2004)

[11] Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-Specific
Languages. ACM Computing Surveys 37, 316--344 (2005)

30

[12] Mernik, M., �repinšek, M., Kosar, T., Rebernak, D., Žumer, V.: Grammar-Based
Systems: Definition and Examples. Informatica 28, 245--255 (2004)

[13] Noy, N., McGuinness, D.: Ontology Development 101: A Guide to Creating Your First
Ontology. http://www-ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-
mcguinness.pdf.

[14] Weiss, D., Lay, C.: Software Product Line Engineering. Addison-Wesley, Boston (1999)

31

MDE for publishing Data on the Semantic Web

Guillaume Hillairet, Frédéric Bertrand, Jean Yves Lafaye

{guillaume.hillairet01, fbertran, jylafaye}@univ-lr.fr
Laboratoire Informatique Image Interaction,

University of La Rochelle, FRANCE

Abstract. Publishing local data on the Semantic Web entails providing a
shareable semantic data representation. We present a complete MDE approach
that allows importing data sources into an RDF repository. At a preliminary
stage, the object domain model is mapped to an ontology and to a persistence
model. Specifying mappings requires a model annotation performed by a
domain expert. All other processes are automated and data transformations are
generated from the mappings via model weaving techniques.

Keywords: MDE, Semantic Web, Ontology, RDF

1 Introduction

Due to the expansion of the Semantic Web [2], three technical spaces presently rise
up in the information system design landscape. The object space, which evolves into
the Model Driven Engineering (MDE) space, allows implementing software
applications and uses several languages and libraries. The second space concerns data
persistence, mainly through relational databases management systems. The third
space deals with resource description and is the core of the Semantic Web. It allows
publishing RDF data on the Web as well as OWL ontologies, and ensures that
machines can interpret and combine data.
Publishing existing data on the Semantic Web supposes defining bridges between
technical spaces. Data persistency is mainly achieved through relational databases
systems. In order to ease the use of relational data in enterprise application, several
approaches, mainly based on the Active Record pattern [9], propose an object
relational mapping (ORM) solution [1] [4]. This is an example of such a bridge,
tending to cope with the so-called ‘impedance mismatch’ between distinct
formalisms. More recently, some academic and industrial tools started offering quite
homologous solutions for bridging relational and RDF data representations [3] [5]
[10] [14].
Our opinion is that the gap between relational and RDF data models, is too wide for
being crossed over in a single step, i.e. with a direct mapping. In fact, we advocate for
introducing an object-oriented domain model as an intermediate between the
relational and RDF layers. Despite the differences existing between the object and
RDF model [16], their similarities (notion of classes and class hierarchy) remain
higher than those existing between the relational and the RDF model. We assume that

32

the first step which maps the relational and object models is already conveniently
addressed by the literature (as evoked above). So, we can focus on the second step
that aims at filling the gap between object and RDF data models. The core of our
proposal consists of specifying the mapping between the object-oriented domain
model and one or more ontologies. The general use case for our work is the
following: within the context of Software and Information System design, we assume
that an object-oriented domain model does exist, which stands as a reference model
for both software applications and database management systems. In order to raise
interoperability and data sharing, we propose an object-ontology mapping tool that
allows two kinds of data access. The first one follows the ETL [13] (extract,
transform and load) pattern for publishing objects (possibly loaded from relational
database) as RDF triples. The second data access offer by our tool is an on-demand
mapping that translates SPARQL [19] queries into HQL [1] (Hibernate Query
Language) that can be executed over the object-oriented domain model.
The remainder of the paper is organized as follows. Section 2 presents our motivation
for developing this work and provides a small example that will be kept as an
illustration until the end of the paper. Section 3 describes the overall architecture of
our proposal. Section 4 outlines the mapping language between the object and
ontology modelling spaces and gives some examples. Section 5 presents the ETL
approach for publishing objects and relational data as RDF resources. Section 6
presents the on-demand mapping implementation. Related works are quoted in
Section 7 before concluding in Section 8.

2 Motivation

Developing the Semantic Web entails publishing existing relational database content
in an OWL/RDF format. In this paper, we present a model driven approach for
publishing data that have been created, or loaded, by object-oriented applications and
that are finally stored in RDF repositories. We show how MDE allows a better coping
with such an architectural complexity. Most of the computer applications presently
rely on object-oriented modeling, while most of the data are stored in relational
databases. We take account of this situation and propose to use the object-oriented
domain model as the basis for defining a mapping between object-oriented data and
RDF data sources.
Before going further, let’s clarify our insight on the usage of domain ontologies and
object-oriented domain models. Despite one common objective which is to capture
the main concepts of a domain, and in addition to technical and syntactic
discrepancies, the viewpoints and final use are differing. The object-oriented domain
model is a basis for designing both robust software application and persistent data
layers. The matter is not so to give unambiguous definitions of terms (which are
usually shared by domain users) as to list the prominent elements and specifies the
constraints and mutual relationships [15]. Domain ontology, also capture main
concepts and terminology but are fitted to reasoning, browsing and querying which
are the facilities required in the semantic web context. Conversely, they generally are
not adapted to software and database design. The solutions brought to ontology data

33

persistency are efficient for semantic queries but lack integrity constraint definition
and checking; they are not convenient for update insert and overall delete operations.
Practically, the question of creating RDF data (individuals) conforming to a special
ontology arises in two contexts
− In case an existing ontology is available that fits the data, direct data sharing is

facilitated. Since existing ontologies essentially are consensual, then local data then
prove to be presented through a shared knowledge view and vocabulary.

− In case no existing ontology is satisfactory, a special new ontology has to be
created so as to account for the local data semantics. However, in order to ensure
that this new ontology semantics is not ambiguous and can practically be shared,
all genuine concepts should extend actual concepts of an existing ontology. This is
easily achieved by using such ontology matching facilities as, for instance, those
provided in OWL.

Since an ontology may capture some aspects of the data but fails to capture others,
one domain model may need to be mapped to several ontologies. Whatever the
choice, defining a correspondence between the ontologies and the data to be published
is mandatory. We claim that the domain model is a key representation, standing as a
pivot model halfway between the persistence and ontology models. Let’s notice that
the persistence layer may indifferently be implemented in any manner, say relational
or XML, with no special impact upon the overall approach.

Fig. 1: An object-oriented domain model for a cultural application (excerpt).

A short example depicted in Fig. 1 shows the domain model of a museum while Fig. 2
gives an excerpt of the object-ontology mapping between the domain model and
several ontologies. Let’s now consider the museum example, and illustrate our overall
approach. Using appropriate functions provided by modeling tools, the object-
oriented domain model may lead to provide a relational schema which is made of
tables that are associated to domain model classes. The resulting database is
populated by domain data. In order to publish the data on the Semantic Web, an

34

ontology is needed that will account for the concepts underlying the domain model.
Fig. 2 shows what links can be specified when weaving the domain model and the
ontology to be generated. In this example, the resulting ontology merges three
existing ontologies (e.g. foaf, dbpedia, geonames) and a novel one (museum).

Fig. 2: Mapping the object-oriented domain model with ontologies.

3 Overall Approach

We already evoked the object-relational mapping that links the domain model to the
corresponding database. We pointed out the so-called impedance mismatch. We take
advantage of the important academic work on this subject and do not account for how
the object-relational mapping is achieved. Conversely, we focus on the object-
ontology mapping which is quite similar and has less been studied. Our approach can
be split into three steps:
1. Specifying the correspondence between domain model elements and ontology

concepts by means of the mapping language we developed. This step requires a
human domain expert who operates in a specially designed software environment
that aids and controls his actions. The role of the expert is mainly to select,
constrain and combine elements in the domain model, using operators such as
restriction, intersection, union, subsumption, equivalence… and map or create
corresponding concepts in the ontology. The result is a mapping specification.

2. Actual generation – on the basis of the mapping specification - of the ontology
that describes the data semantics.

35

3. Populating the knowledge base which is associated to the ontology (individuals)
from the relational data. This step involves both the object-relational and object-
ontology mappings.

According to our approach, the object-relational mapping also is represented by a
weaving model. It links the domain model to the database. We choose to consider the
domain model as a metamodel (EMF model) at the M2 level (MDE). Doing so, the
domain data may be represented at the M1 level. Then, domain model instances
appear as M1 model elements that comply to their M2 metamodel. In contrast, using
plain UML class diagrams with instances and classes appearing at a same level would
have led to an unnecessary complication of the weaving and transformation processes.
Our mapping language between an object model and several ontologies is defined by
a textual grammar. It is then processed and translated into weaving models,
themselves being specified with the AMW model weaver [6] (Atlas Model Weaver).
Importing and transforming the data from the database so as to populate the
knowledge base is achieved via a series of model transformations, implemented in
ATL [11] (Atlas Transformation Language), as shown in Fig. 3.

Fig. 3: Linking the modelling spaces to one another

4 Defining ontological views over domain models

This section presents the implementation and use of the mapping language we defined
so as to specify the correspondence between the domain model and one (or more)
ontology. For sake of conciseness, the complete language grammar cannot be
presented here.

4.1 The Domain model / Ontology mapping Language by example

We use the object-oriented domain model in Fig. 1 as an example that outlines our
mapping language. The ontology in Fig. 2 appears as a view being defined upon the

36

domain model thanks to the mapping language. The mapping language
implementation we outline hereunder links an EMF metamodel to several OWL
ontologies.
A mapping specifies correspondences between compatible elements, such as: a
package and an ontology; an EMF class and an OWL class; an EMF attribute and an
OWL datatypeProperty, etc. More complex mappings are allowed, in order to express
1-N or N-1 correspondences between compatible elements. In the following, we give
examples of such simple and complex mappings.

4.1.1 Simple Mapping
A simple mapping accounts for a 1-1 correspondence between a domain model
element and an ontology concept, as shown in the listing below. A mapping instance
contains the keyword map followed by the element to be mapped (package, class,
attribute or reference). The mapping body is similar to the object language structure,
i.e. a class mapping should be nested in a package mapping, a property mapping
within a class mapping etc…

1 prefix foaf: "http://xmlns.com/foaf/0.1/";
2 prefix geonames: "http://www.geonames.org/ontology#";

3 map package Museum with museum: "http://museum#" {
4 map class Museum with museum:Museum {
5 uriPattern = "http://museum/" + self.name;
6 subClassOf = {geonames:Feature}
7 properties = {
8 map attr name with museum:name;
9 map ref artworks with museum:artworks;
10 map ref city with geonames:locatedIn;
11 }
12 }
13 map class Director with foaf:Person {
14 properties = { map attr lastName with foaf:family_name; }
15 }
16 }

Listing 1: An example of simple mappings

The package mapping specifies which the corresponding target ontology is. In the
museum example, the target ontology is given the same name as the source object
model (museum), and a special URI. Let’s notice that the museum ontology does not
yet exist. It is still an abstract ontology in wait of being generated at a further step, in
accordance to the specified mapping. When the package is to be mapped to an
existing ontology, the latter should be declared via its namespace in the prefix header
of the mapping. In the example above, the FOAF ontology1 is referenced that way,
and all FOAF concepts hence are made available for further mappings. EMF class
mapping examples are given, such as for Museum and Director, which are
respectively mapped to the museum class in the novel ontology and to Person in
FOAF. A class mapping comprises the following clauses:

1 http://foaf-project.org

37

− uriPattern: specifies the URI of the RDF resource corresponding to the ontology
class target. The URI definition is specified via an OCL expression that returns a
String. OCL allows browsing the domain model for pruning relevant attributes on
which OCL functions can be applied for eventually build the required URI pattern.

− subClassOf is an OWL keyword (from the ontology matching language) and here
indicates that the mapped element in the new ontology refers to a yet existing
ontology concept. Other OWL keywords can be used to express other appropriate
kinds of relationship. (e.g. : museum in our museum ontology is a kind of Feature
in the geonames ontology)

− properties: specifies the correspondences between properties of the model class
(attribute, reference) and the ontology properties. The property mapping clause
distinguishes between map attr that links an attribute to a datatypeProperty and
map ref that links a reference (association) to an objectProperty.

4.1.2 Complex Mapping
A complex mapping represents a 1-N or N-1 correspondence between model and
ontology elements. Our language, accepts these mappings in a simple way. Complex
mappings appear as a series of simple mappings being defined within a same context
(see Listing 2 where museum is mapped twice).

1 map class Artwork (self.kind = #Painting) with museum:Painting {
2 uriPattern = "http://museum/painting/" + self.name;
3 properties = {
4 map attr name with dbpedia:title;
5 map attr creationYear with museum:creationYear;
6 map ref museum with dbpedia:museum;
7 map ref museum with geonames:locatedIn;
8 map ref hasArtist with dbpedia:artist;
9 }
10 }

11 map class Artwork (self.kind = #Sculpture) with museum:Sculpture {…}

12 map class Artist(self.creates->forAll(e | e.kind = #Painting))
 with museum:Painter {
13 uriPattern = "http://museum/person/"
 + self.firstName + self.lastName;
14 subClassOf = {foaf:Person}
15 properties = {
16 map attr firstName with foaf:firstName;
17 map attr lastName with foaf:family_name;
18 }
19 }

20 map Artist(self.creates->forAll(e | e.kind = #Sculpture))
 with museum:Sculptor {…}

Listing 2: A complex mapping example

All Class mapping clauses with source Artwork belong to the same context and then
define a complex 1-N mapping. More precisely, the Artwork domain class is split into
two ontology target classes that distinguish between painting and sculpture. The
opposite mapping is consequently typed N-1. In such complex mappings of classes,

38

the selection of the subsets that define the concrete classes in the ontology is achieved
by means of OCL constraints whose context is the source class in the domain model.
Complex mappings may also concern properties. For instance, in Listing 2, the
museum reference in the Artwork class is mapped to both dbpedia:museum and
geonames:locateIn properties. This 1-N mapping allows setting two distinct views
(cultural vs geographical) upon the same domain model property.

4.2 Weaving between Domain Models and Ontologies

The language presented here, conforms to a textual syntax that aids an expert in
specifying correspondences between the domain model and an ontology. We ground
our proposal upon MDE principles. The mapping is viewed as a special model,
namely a weaving model that records the set of correspondences. Building the
weaving model involves several model transformations.

Fig. 4: Several processes are combined for building the mapping file.

1. The mapping possibly is fully defined by the expert. Nevertheless, a basic default
mapping may be provided on request. It results from applying standard
transformation rules from UML to OWL (UML2OWL2), as given in the ODM
specification [17]. We implemented these rules via a model transformation

2 http://www.eclipse.org/m2m/atl/usecases/ODMImplementation

39

process. Starting from this basic original mapping model, the expert is then only
in charge of validation and extension tasks, so as to build the final mapping he
wants.

2. In case existing ontologies are not sufficient to provide all needed concepts
underlying the domain model referenced in the mapping and of interest for data
publication, a novel local ontology should be generated. This is achieved by a
model transformation that takes both the domain model and the mapping model
as inputs and provides the desired OWL ontology as an output.

3. The last step consists in translating the mapping model to a weaving model
representation. We use the AMW model weaver environment to implement the
weaving process. So, we had to build a weaving metamodel specific to AMW.
This process merges a series of transformations (text to model, model to model).

5 Populating the knowledge base

Up to now, we worked at an abstract level, dealing with classes and concepts. From
now on, in order to effectively publish data on the Semantic Web, concrete data
should be made reachable through a web interface. The natural solution is to make an
import from the data source into an RDF repository so that the information to publish
could be accessed via a web browser. We argued for putting the domain model as a
pivot in our method, in consequence, the importation splits up in several consecutive
operations we sketch hereafter. First we provide an object view upon the data in the
data source according to the domain model, and then we give an ontology view upon
the object data. Views are defined as mappings at the data level that lead to weaving
models. The weaving models permit to generate transformation rules that can perform
the importation process. Using such a high-order transformation is mandatory since
the object model at hand cannot be known a priori.
The two following subsections respectively address one of the two steps described
above. The main benefit of MDE is that it allows linking transformations and dealing
in a modular way with the numerous models we need here, with no significant
increase of the complexity. Besides, it supplies traceability of the transformations.
The example deals with relational persistent data, but dealing with – say – XML data
would only require fitting the mapping of the domain model to the new persistent
format, all other concerns remaining unchanged.

5.1 From Object data to RDF data

The first step concerns the translation of objects (represented at the M1 layer) into
RDF resources. Here we see the benefits of putting the domain model at the M2 layer.
Doing so, we have a clear separation between objects (M1 layer) and domain classes
(M2 layer). This leads to a simplification of the transformation rules specification.
Otherwise, we would have been faced to dealing with UML domain classes and
objects at the same level (M1 layer).
The implementation is done using a high-order transformation technique, in order to
generate the required transformation. Let MM2RDF.atl be the transformation that

40

converts a M1 model into an RDF model. As depicted in Fig 5, MM2RDF.atl is
generated by the high-order transformation OAM2ATL.atl. The latter takes the
mapping model and its related models (domain model and ontology model) as input.
It is here made clear that the use of a high-order transformation is inescapable since
MM2RDF.atl rules depend of the domain model which is a variable model.
The role of OAM2ATL.atl is to screen the weaving model, and for each class mapping
clause (map class), it generates a specific ATL rule in the MM2RDF.atl file. This
resulting ATL transformation extracts an RDF data representation from a model
conforms to the domain model.

Fig. 5: Model Transformation process for obtaining an RDF repository from a model.

The following listings show some significant excerpts of the MM2RDF.atl
transformation. Listing 3 shows how an instance of the Museum class is translated
into an RDF Resource. For each domain model class that appears in the mapping, an
equivalent rule is generated. The RDF metamodel used in this transformation is
derived from the ODM specification, and has been extended in order to ease
transformation specifications. Each RDF resource is the subject of some statements
(see Line 7). For instance, the lazy rules, makeDataStatement and
makeObjectStatement, respectively create the desired statement from a class attribute,
and from an association (see Listing 4).

1 rule Museum2Resource {
2 from m : Museum!Museum
3 to r :
4 RDF!Resource (
5 uri <- m.getURI(),
6 subjectOf <- Sequence { type,
7 thisModule.makeDataStatement(m, m.name, 'name'),
8 m.artworks->collect(e |
 thisModule.makeObjectStatement(m, e, 'artworks')),
9 thisModule.makeObjectStatement(m, m.city, 'city'))}
10),

41

11 type : RDF!Statement (...)

Listing 3 Generated ATL code excerpt for translating a Museum instance into an RDF
Resource.

1 lazy rule makeObjectStatement {
2 from s : OclAny, o : OclAny, pname : String
3 to r : RDF!Statement (
4 subject <- s,
5 predicate <- p,
6 object <- o
7),
8 p : RDF!Property (...),
9 }

Listing 4: Statements and properties are created by lazy rules.

5.2 From Relational data to Object data

In this paper, we assume that a relational database is in situ available, whose schema
has been obtained by applying an object-relational mapping upon the domain model
and the database schema. In our current implementation, we rely on the Hibernate3
framework, for the object-relational mapping definition (more precisely the TENEO4
project which is dedicated to EMF persistency). The weaving model that represents
the object-relational mapping is thus obtained from the Hibernate mapping definition.
The database schema is captured by applying a schema discovery process with the
help of the Hibernate framework. It allows defining a projector from the database
onto the MDE technical spaces. The concrete data are modelled accordingly, by
sending queries to the database. We then apply a model transformation similar to the
one presented in section 5.1. The last step that imports relational data into an OWL
knowledge base can now be achieved through exploiting the sole object-ontology
mapping.

6 Querying the RDF Store

The process we presented above publishes data as an OWL knowledge base. It can be
viewed as implementing a data warehouse via the Extract-Transform-Load principle
(ETL) [13], in which resident data are translated in order to fit the target system
format. In our approach, the target system is an OWL ontology whose content is made
of RDF triples. Data access is achieved by use of a RDF query language, e.g.:
SPARQL [19]. An example of such a SPARQL query is given hereafter. Let’s
suppose the user wants to list artworks present in “Le Louvre”.

1 prefix dbpedia: <http://dbpedia.org/property/>

3 http://www.hibernate.org
4 http://www.elver.org/

42

2 prefix museum: <http://museum#>
3 select ?art
4 where {
5 ?art dbpedia:museum ?museum .
6 ?museum museum:name "Le Louvre"
7 }

Listing 5: A SPARQL query on the museum ontology.

Here, we assume that the knowledge base has been generated and completely
populated from an existing database. Performing a query then only involves the
knowledge base that finally can be a RDF file or a Sesame5 RDF database.

Fig. 6: Model Transformation process for Query rewriting

However, translating and importing the whole data base into an RDF repository, does
not seem - in most cases - the best solution, since it implies to replicate data and carry
out a synchronization process with heavy redundancy. We advocate for a better
practice, which directly answers the ontology query by querying the original data
source. Implementing this approach led us to specify an automated rewriting process
that relies on the specification of the chain of mappings and finally translates a
SPARQL query into a set of SQL statements.
The rewriting process naturally is developed within the MDE paradigm and
potentially applies to any persistent data source format. Fig. 6 gives an overview of
the series of model transformations that lead to the result. More precisely, on the
museum example, the initial SPARQL query is first translated into an equivalent HQL
query upon the domain model, which in turn is rewritten as a SQL query on the
relational database. The model transformations that are responsible for that rewriting
process take both the object-ontology and object-relational mappings and weaving
models into account, in order to exploit the element correspondences for translating

5 http://www.openrdf.org

43

the terms of one query into its counterpart in the target language. For example, the
SPARQL query in Listing 3 gives the corresponding HQL query in Listing 4.

1 select art
2 from Museum museum, Artwork art
3 where art.museum = museum and museum.name = 'Le Louvre';

Listing 6: HQL query resulting from a rewriting process from SPARQL.

The resulting HQL query can be rewritten by Hibernate according to the data source
format (e.g.: SQL).

7 Related Works

The works connected to our approach belong to various but complementary domains.
Those that treat of the UML and RDF(S) correspondence [7] [8] [18], and especially
the ODM specification from the OMG [17] that sets up basic useful although limited
transformation rules, helped us in defining the abstract syntax of our mapping
language between an object model and an ontology. Linking metamodels and
ontology through weaving models has also been proposed by Klapper [12] who
suggests the use of ontology alignment techniques in order to automatically build the
weaving model. This seems of interest for us in case we try to map a model to an
existing ontology, but is out of concern when creating a new ontology is the goal.
Another kind of related works treats of data integration by means of an ontological
view, and more generally of the semantic web. The question still is to implement RDF
knowledge bases providing access to existing data source. Bizer with D2RQ [3], Chen
[5] and de Laborda [14] come with works having goals very close to ours. They
propose a direct mapping of the knowledge base to the data source. Conversely, a part
of our contribution is to rely on the domain model (and not on the persistence model)
as a pivot element in the process of correspondence design.

8 Conclusion

This paper grounds on the MDE technique and presents a contribution that aids
publishing data on the semantic web. A complete process for building a RDF/OWL
knowledge base from existing possibly heterogeneous and distributed databases is
specified. Our proposal is semi-automated, but the expert is only involved in the
mapping definition step (between the domain model and the ontology). One novel
aspect of our work is that we give a prominent role to the domain model in the overall
process. It comes as a pivot model standing as a midterm between the data source and
the ontology. It embodies a sizeable part of the business knowledge and bears more
information about the domain terminology and concepts than – for instance - the flat
relational model that generally results from complex normalization and de-
normalization processes, far from any semantic concern. It also keeps simpler and

44

focuses on permanent and essential features, while an ontology is intended to also
account for subsidiary concerns.
Finally, when splitting the mapping process by introducing the intermediate domain
model, we gain in modularity, and robustness. Transformations are more explicit and
simpler since the gap is less at each step. We also gain in being less dependent on the
persistency technology. In case the database schema is modified, only one
transformation step is involved and subject to update.
Our proposal not only permits to create an ontology that describes exported data, but
also to create data that conform to an existing ontology. In order to get free from
controlling the consistency between the database and the RDF triples, we presently
implement an automated ‘on the fly’ rewriting process that translates SPARQL
queries into SQL or XML queries. Consequently, the data can be kept in their original
persistence system, with no replication in an RDF repository, while being subject to
the queries a user can directly express in terms of the ontology.

References

1. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications, 2007.
2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American 284

(2001) 28-37
3. Bizer, C., Seaborne, A: D2RQ-Treating Non-RDF Databases as Virtual RDF Graphs. 3rd

International Semantic Web Conference (ISWC2004), Hiroshima, Japan (2004)
4. Castro, P., Melnik, S., Adya, A.: ADO.NET entity framework: raising the level of

abstraction in data programming, in: Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2007, pp. 1070–1072.

5. Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., Yin, A., Wu, Z.: Towards a
Semantic Web of Relational Databases: a Practical Semantic Toolkit and an In-Use Case
from Traditional Chinese Medicine.

6. Del Fabro, M.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A Generic Model
Weaver. Proc. of the 1ères Journées sur l'Ingénierie Dirigée par les Modèles (2005)

7. Djuric, D., Gasevic, D., Devedzic, V.: Ontology Modeling and MDA. Journal of Object
Technology 4 (2005) 109-128

8. Falkovych, K., Sabou, M., Stuckenschmidt, H.: UML for the Semantic Web:
Transformation-Based Approaches. Knowledge Transformation for the Semantic Web 95
(2003) 92-107

9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
10. Hu, W., Qu, Y.: Discovering Simple Mappings Between Relational Database Schemas and

Ontologies. ISWC/ASWC 4825 (2007) 225-238
11. Jouault, F., Kurtev, I.: Transforming Models with ATL. Model Transformations in Practice

Workshop at MoDELS Vol. 3844, Montego Bay, Jamaica (2005) 128–138
12. Kappel, G., Kapsammer, E., Kargl, and al., M.: Lifting metamodels to ontologies: A step to

the semantic integration of modeling languages. ACM/IEEE 9th International Conference
on Model Driven Engineering Languages and Systems, Genova, Italy (2006)

13. Kimball, R., Margy, R.,. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd edition, Wiley, 358-362. (2002)

14. de Laborda, C.P., Conrad, S.: Bringing Relational Data into the SemanticWeb using
SPARQL and Relational. OWL. IEEE Computer Society Washington, DC, USA (2006)

15. Larman C., Applying UML and Patterns, An introduction to Object-Oriented Analysis and
design and The Unified Process 2nd edition, Prentice Hall, 2001

45

16. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: object-oriented semantic
web programming. Proceedings of the 16th international conference on World Wide Web
(2007) 817-824

17.OMG. Ontology Definition Metamodel OMG Adopted Specification, November 2007.
http://www.omg.org/docs/ptc/07-09-09.pdf

18. Parreiras, F.S., Staab, S., Winter, A.: On marrying ontological and metamodeling technical
spaces. Proceedings of the 6th joint meeting of the european software engineering
conference and the 14th ACM SIGSOFT symposium on Foundations of software
engineering (2007) 439-448

19. Prud’hommeaux, E., Seaborne, A., others: SPARQL Query Language for RDF. W3C
Recommendation (2008)

46

Bringing Ontology Awareness into Model Driven
Engineering Platforms1

Srdjan Živković, Marion Murzek, Harald Kühn

BOC Information Systems GmbH, Wipplingerstrasse 1,
1010 Vienna, Austria

{srdjan.zivkovic, marion.murzek, harald.kuehn}@boc-eu.com

Abstract. In state-of-the-art of MDE platforms semantic technologies such as
ontologies are rarely used. Our aim is to understand the role of ontologies in
supporting model-driven engineering, in particular MDE platforms. MDE
platforms may benefit from semantic technologies in formal model semantics
and automated reasoning on different levels of the metamodelling architecture.
We present an ontology-aware MDE platform architecture and outline some
application scenarios where ontologies and automatic reasoning may bring
benefit to such platforms. Additionally, an example of using ontologies for
verification checks of mapping models in the course of metamodel composition
is illustrated.

Keywords: metamodelling, model-driven engineering (MDE), ontology-aware
architecture, ontology application scenarios.

1 Introduction

In state-of-the-art MDE platforms semantic technologies such as ontologies are rarely
used. Currently, such platforms focus on aspects such as metamodelling, metamodel
composition, model integration, and model transformation [1]. We are convinced that
MDE platforms may benefit from semantic technologies particularly in formalizing
semantics of models on different metamodelling levels, which in turn allows for
application of automated reasoning.
Based on this hypothesis, in this research-in-progress paper, we discuss first how a
MDE platform architecture may be extended to be considered as ontology-aware
(section 2). Referring to the introduced architecture, we describe some possible
application scenarios where ontologies and automatic reasoning may bring benefit to
such platforms (section 3). Out of these scenarios, we highlight in more detail an
example from the metamodel composition domain, to illustrate how an ontology-
based approach may enhance quality of process by supporting verification checks of

1 Acknowledgement: This research has been co-funded by the European Commission
and by the Swiss Federal Office for Education and Science within the 7th Framework
Programme project MOST N° 216691, http://most-project.eu.

47

metamodel mappings (section 4). Finally, we summarize the discussion and give
outlook for future work.

2 Architecture of Ontology-aware MDE Platforms

Metamodelling platforms are software environments providing means for the
management of models and metamodels. Usually, such model-aware platforms allow
for: (1) definition, storage and maintenance of models and modelling languages, (2)
execution of mechanisms working on models, metamodels and the meta-metamodel
and (3) guidance on how to apply a metamodelling language and/or modelling
languages together with corresponding mechanisms to produce metamodels and/or
models [2]. Besides these capabilities, metamodelling platforms need to meet other
functional and non-functional requirements such as multi-productability, web-
enablement, multi-client ability, adaptability, extensibility, scalability and
interoperability [3].
The architecture for MDE platforms may be seen as an incarnation of the generic
metamodelling platform architecture [2]. Furthermore, adding the ontology aspect, we
envision an enriched MDE platform architecture including semantic technologies as
depicted in fig. 1.

Persistency Service

Model Repository

Model, Ontology and Mechanism Editors
(Textual, Graphical etc.)

Metamodel Library

Model-aware and
Ontology-aware

Mechanisms

Access Service

Meta-metamodel

Ontology-aware MDE Workbench

O
ntology

R
epository

 Fig. 1. Logical Architecture for Ontology-aware Model Driven Engineering Platforms

The root core architectural element is the meta-metamodel which defines the concepts
available for the definition of modelling languages. Based on it, the metamodel
library contains metamodels of defined modelling languages. The metamodel library
conforms to the meta-metamodel and, in turn, forms the foundation of the model
repository, in which all models are stored.
As an extension to models on different levels, the ontology repository serves as
storage of the semantics of models, metamodels and the meta-metamodel. Semantics
can be formally described by using the notion of ontology [4]. Reasoning on
ontologies is part of the ontology-aware mechanisms.

48

Model and ontology editors are used for the definition and maintenance of models,
metamodels, and ontologies.
All mechanisms used for evaluating and using models are stored in the mechanism
base. A fundamental mechanism within MDE environments is model transformation.
Further important mechanisms are model/metamodel integration, comparison and
mapping mechanisms. The ability to manage different versions of models and
metamodels or its parts is another key characteristic of model-aware systems, which
should be enabled by means of model/metamodel versioning mechanisms. To support
syntactically and semantically correct modelling, validation mechanisms on models
and metamodels are used. Furthermore, querying mechanisms of ontology-enriched
models and metamodels are needed features to allow various model analyses.
Traceability of transformations, which should support guiding the software
development tasks, is another needed mechanism within MDE platforms. Mechanism
editors are used for definition, configuration and maintenance of mechanisms.
Guidance describes the application of modelling and metamodelling languages and
mechanisms. Particularly in context of MDE, this can include guidance on what to
consider when defining certain models or guidance on the decision what the next step
in a particular model-driven software development process would be. Guidance
information can be stored in process models or ontologies, and/or extracted out of
existing modelling artefacts and/or traceability links.
Persistency services support the durable storage of models, metamodels, and
ontologies. These services abstract from concrete storage techniques and permit
storing of modelling information in heterogeneous data sources such as files,
databases or web services.
Access services serve two main tasks. On the one hand they enable the open, bi-
directional exchange of all metamodel, model and ontology information. On the other
hand they cover all aspects concerning security such as access rights, authorization,
and en-/decryption.
An ontology-aware MDE workbench serves as a common environment for integrating
different editors.

3. Some Ontology Application Scenarios in MDE Platforms

The “ontology” concept, as the literature describes it, seems to enjoy as many
definitions as there are attempts to define it. In the course of this paper, we will
favour the one we believe to best match the context under consideration. Hence, we
understand an ontology as an explicit conceptual model extended by formal logic
based semantics [5]. Formal semantics expressiveness of ontological models is a de
facto advantage compared to conceptual models in software engineering i.e. MDE.
Model checking, model enrichment and dynamic classification are some of the
identified usage scenarios when thinking about marrying ontological and
metamodelling technical spaces [6].
In the following, we describe some scenarios, where ontologies may find its usage
within MDE platforms. We concentrate particularly on the following core elements of
the MDE platform (see section 2): the model, metamodel and meta-metamodel

49

element (section 3.1), the mechanism element (section 3.2) and the guidance element
(section 3.3). Each section starts by introducing a problem domain, followed by an
ontology application scenario description and finalized with a list of possible benefits
gained by using semantic technology.

3.1 Ontologies and Models on M1, M2 and M3 Level

Problem Domain: The 3-layer MDE architecture enables definition of modelling
languages, and based upon it, creation of models. The M3 model, i.e. the meta-
metamodel, defines the syntax of the metamodelling language which is used for
modelling metamodels on the M2 layer. Similarly, the M2 model, the metamodel,
constructs the syntax of the modelling language for the application domain used on
level M1. Even though the abstract syntax is structurally well defined, metamodelling
language (M3) and modelling languages (M2) lack well-defined semantics. Currently,
language semantics on M3 and M2 level may be expressed algorithmically in the core
implementation of the M3 model or in the M2 models. Another approach is to use a
declarative language, such as the Object Constraint Language (OCL [7]) to
additionally define the semantics of M3 and M2 models.
Furthermore, modelling task on M1 level requires adequate knowledge about the
subject under consideration. Such knowledge may currently be captured and reused
via reference models or patterns. However, more sophisticated mechanisms to
facilitate modelling task semantically are missing, which would prevent heterogeneity
problems, model ambiguity etc.
Ontology Application Scenario: The syntax-rich languages (M2 and M3 languages) in
MDE platforms may be extended by semantically more expressive ontology
languages, in order to take advantage of automated reasoning. There are different
approaches, which tackle the problem of converging languages from different
technical spaces, such as UML+OWL integration [8]. Having integrated languages,
their synergetic effect may be exploited. On the one side, automated reasoning may be
used for model consistency checks which may outperform existing solutions in terms
of semantic soundness. On the other side, ontology-based approaches may be used
both for the definition of modelling languages (M2) and their models (M1). Relying
on common domain ontologies in form of machine-readable and reusable domain
knowledge, quality of modelled solutions may be raised.
Gained Benefit: Semantically enriched modelling languages and models; machine-
readable formal semantics of models; enhanced quality of modelling solutions.

3.2 Ontologies and Mechanisms

Problem Domain: Mechanisms are applied on models residing on different
abstraction levels (M1, M2 M3 models). According to the abstraction level,
mechanisms may be generic, metamodel specific or hybrid. Generic mechanisms are
defined on the M3 level, thus being independent of languages defined on the M2
level; e.g. generic import/export interface for model exchange. Metamodel specific
mechanisms require explicit knowledge about metamodels, in order to work on their

50

underlying models on M1 level; e.g. business process model simulation mechanism.
Hybrid mechanisms are a combination of the previous two. They are generic, but they
are adaptable to specific metamodels; e.g., model transformation is a hybrid
mechanism which uses M3 level constructs to define transformation rules between
M2 models, which are, in turn, executed on models on M1 level. Other MDE
mechanisms such as model integration, metamodel composition or model comparison
fall into this category as well. The challenge of applying metamodel specific or hybrid
mechanisms lies in their configuration. For example, to enable a simulation on a
specific process language, mappings to generic process concepts need to be defined.
Similarly, the specification of metamodel mappings for hybrid mechanisms such as
transformation, metamodel composition or model integration is, in most cases,
performed manually (see section 4 for a detailed example).
Ontology Application Scenario: Ontologies may be applied to fill the formal semantic
gap towards support of automated configuration of metamodel-specific and hybrid
mechanisms. For instance, in the case of model transformations, this would mean e.g.
an ontology based model transformation approach. On the other side, metamodel
specific mechanisms such as simulation would benefit from ontologies, by relying on
e.g. generic, machine-readable process ontology. The prerequisite is that different
simulation-enabled languages, i.e. process modelling languages have to conform to
particular generic process ontology. Consequently, the process of configuring a
simulation mechanism for different process languages may be automated by inferring
mappings out of ontology.
Gained benefit: Reduced costs through automated configuration of mechanisms;
increased potential for reuse; low efforts for substitution and extensions of
mechanisms.

3.3 Ontologies and Guidance

Problem Domain: Guidance in the MDE context may include information on what to
consider when defining certain models, or information of the next step in the model-
driven software development process. Often, execution of a step within the software
process is influenced by many factors, such as pre and post-conditions, defined rules
etc.
Ontology Application Scenario: Ontologies and automated reasoning may leverage
execution of process models, by formalizing its semantics in the form of process
guidance ontologies that formalize rules, conditions and actions a software engineer
has to conduct in specific situations. This way, reasoning technology would infer the
next step within the process based on the process guidance ontology and by deriving
implicit knowledge from corresponding modelling artefacts.
Gained Benefit: Flexibility of process definitions; enhanced quality of guidance.

4 An Example: “Verification of Mapping Models”

Mappings define correspondences between elements of different models. Particularly,
metamodel mappings have an important role in the MDE approach by building

51

semantic bridges between different metamodels. They add knowledge about
integrative usage of different modelling languages, still leaving the integrating
languages independent. Bridging of metamodelling and ontology languages is done
via mappings [10]. Rules for MDA based model transformations may be built based
on existing mappings [11][12]. Furthermore, mappings are used as input for
metamodel composition rules by stating about structural-semantic relationships of
metamodel elements from different metamodels [13]. However, two problems arise
when the mappings are applied: First, discovery of mappings by means of metamodel
matching is a complex task, being a tedious work when executed manually and a
challenging task for semi-automatic identification [14]. Second, mappings are
managed as models and are built based on a mapping language. Thus, mappings need
to be verified against their syntax and defined semantics. This may imply not only
checking the mapping model, but also crossing the model boarder and diving into the
semantics of metamodels being integrated, in order to verify certain mapping
statements against e.g. cyclic generalization relationships, multiple inheritances,
redundancy etc.

«class»
Participant

«class»
Participant

«class»
Task

«class»
Task

«abstract class»
Graphical Object
«abstract class»

Graphical Object

«class»
Role

«class»
Role

«class»
Entity

«class»
Entity

«class»
Org Unit
«class»

Org Unit

«class»
Actor

«class»
Actor

«class»
Role

«class»
Role

belongs to

has role

parent unit

head of

==

==
11

22

33«attribute»
Performers
«attribute»

Performers

MM1: BPMN MM2: OrgModMapMod

MM3: MM1 + MM2 + MapMod

«class»
Participant

«class»
Participant

«class»
Org Unit/Entity

«class»
Org Unit/Entity

«class»
Role

«class»
Role

«attribute»
Performers
«attribute»

Performers

Verification check of MM3

«class»
Participant

«class»
Participant

«class»
Org Unit/Entity

«class»
Org Unit/Entity

«class»
Role

«class»
Role

«attribute»
Performers
«attribute»

Performers

Verification check of MM3

DO1: Process Ontology DO2: Organizational Ontology

Result: Inconsistent state
due to multiple inheritance

DO: Domain ontology
MM: Metamodel

== - Equivalence mapping

- Generalization mapping

Figure 2 Ontology-aware Modelling and Verification of Mappings for Metamodel Composition

Figure 2 illustrates the simplified case of a metamodel composition using mappings.
Let us assume that the MDE platform supports two modelling languages, e.g. BPMN
[15] and the ADONIS Language for Organizational Modelling [16], separately. The
envisioned integrated metamodel (MM3) should exhibit characteristics of a business
process modelling language extended by the concepts for modelling organizational
structures (in Fig. 2 as MM1 and/or MM2). A proposed approach is to assemble
existing metamodels by utilizing metamodel mappings. The manual process of
metamodel matching results in three identified mappings (Fig. 2, 1, 2 and 3), which
are candidates for integration points. At first glance, everything seems correct, as the
defined mappings conform to the mapping language which uniquely state correlations
between elements. However, after generating the integrated metamodel (MM3) (see
[13] for detailed integration rule definitions) a verification check founds an

52

unconformity against the meta-metamodel, which disallows multiple inheritance of
elements. The drawback of the solution is, that the verification of a mapping model
may only be done after having generated the integrated metamodel, since such cross-
model correlations may not be examined in the mapping design time. Here, ontologies
may be used guiding both metamodelling and modelling of metamodel mappings. If
metamodels are designed with the support of corresponding ontologies, as depicted in
the Figure 2, not only the metamodel matching process may be enhanced, but also an
early verification of a mapping model in design time against integrated semantics
stemming from both problem domains may be possible. In addition, large scale
metamodel integration scenarios may especially benefit from the ontology based
composition approach reducing ambiguities and improving quality of modelling
solutions.

5 Summary and Outlook

In this research-in-progress paper we presented a possible extension of the generic
architecture for MDE platforms [3] towards an ontology-aware MDE platform. Based
on this architecture and its core elements, possible ontology application scenarios
have been discussed. Some of their expected benefits are:

• Semantic-enriched models (on M1, M2, and M3 level).
• Machine-readable formal semantics of models.
• Semi-automated configuration of mechanisms.
• Increased potential for reuse of mechanisms.
• Flexibility of process definitions for guidance.

We are currently working on the refinement of the presented ontology-aware MDE
platform architecture to support first prototype implementations. This includes the
application of ontologies for enhanced software process guidance.

6 References

1. Bezivin, J., Jouault, F., and Touzet, D. 2005. Principles, Standards and Tools for Model
Engineering. In Proceedings of the 10th IEEE international Conference on Engineering of
Complex Computer Systems (June 16 - 20, 2005).

2. D. Karagiannis; H. Kühn: Metamodelling Platforms. Invited paper in: Bauknecht, K.; Tjoa,
A Min.; Quirchmayer, G. (eds.): Proceedings of the Third International Conference EC-Web
2002 - Dexa 2002, Aix-en-Provence, France, September 2-6, 2002, LNCS 2455, Springer-
Verlag, Berlin, Heidelberg.

3. H. Kühn, M. Murzek: Interoperability Issues in Metamodelling Platforms. In: Konstantas, D;
Bourrières, J.-P.; Léonard, M.; Boudjlida, N. (Eds.): Proceedings of the 1st International
Conference on Interoperability of Enterprise Software and Applications (I-ESA'05), Geneva,
Switzerland, February 2005, Springer Verlag, pp. 215-226.

4. Gruber, T. R.: Toward principles for the design of ontologies used for knowledge sharing.
In: Guarino, N.; Poli, R. (Eds.): Proceedings of the International Workshop of Formal
Ontology, Padova, Italien, August 1993.

53

5. Oberle, D.: Semantic Management of Middleware, Volume I of The Semantic Web and
Beyond Springer, New York (2006).

6. Fernando Silva Parreiras, Steffen Staab, Andreas Winter: On Marrying Ontological and
Metamodeling Technical Spaces. 2007. ACM Press. Proceedings of the 6th joint meeting of
ESEC/FSE, 2007, Dubrovnik, Croatia, September 3-7.

7. OCL – Object Constraint Language, http://www.omg.org/. December 2007.
8. Kiko, K. and Atkinson, C.: Integrating Enterprise Information Representation Languages. In:

Proc. of Int. VORTE Workshop, VORTE 2005, Enschede, The Netherlands, 2005.
9. S. Roser and B. Bauer. An approach to automatically generated model transformations using

ontology engineering space. In Proceedings of Workshop on Semantic Web Enabled
Software Engineering (SWESE), Athens, GA, U.S.A., 2006.

10. Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML
Models and OWL Ontologies. Universität Koblenz-Landau, Fachbereich Informatik. 2007.
Arbeitsberichte aus dem Fachbereich Informatik.

11. Lopes, D, Hammoudi, S, Bézivin, J, and Jouault, F : Mapping Specification in MDA: from
Theory to Practice. In: Proceedings of the First International Conference on Interoperability
of Enterprise Software and Applications (INTEROP-ESA'2005). Springer-Verlag, pages
253—264. 2005.

12. G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger, W.
Schwinger, and M. Wimmer. Lifting metamodels to ontologies: A step to the semantic
integration of modeling languages. In Proc. of MoDELS? 2006, volume 4199 of LNCS,
pages 528-�542. Springer, 2006.

13. Zivkovic, S.; Kühn, H.; Karagiannis, D.: Facilitate Modelling Using Method Integration:
An Approach Using Mappings and Integration Rules. In: Österle, H.; Schelp, J.; Winter, R.;
(Eds.): Proceedings of the 15th European Conference on Information Systems (ECIS2007) -
"Relevant rigour - Rigorous relevance", St.Gallen, Switzerland. June 2007, pp. 2038-2050.

14. Kappel, G., Kargl H., Kramler G., Schauerhuber A., Seidl M., Strommer M., Wimmer M.,
Matching Metamodels with Semantic Systems - An Experience Report, BTW 2007
Workshop Model Management und Metadaten-Verwaltung, Aachen; March 2007.

15. BPMN – Business Process Modelling Notation, http://www.omg.org/spec/BPMN/1.1/.
January 2008.

16. BPMS Method Handbook, ADONIS 3.9 Manuals, BOC Group, 2007.

54

Designing MAS Organisation through an
integrated MDA/Ontology Approach?

Daniel Okouya1 and Loris Penserini1 and Sébastien Saudrais2 and Athanasios
Staikopoulos2 and Virginia Dignum1 and Siobhán Clarke2

1 Universiteit Utrecht, The Netherlands,{maatari,loris,virginia}@cs.uu.nl
2 Trinity College Dublin, Computer Science, Ireland

{Athanasios.Staikopoulos, Sebastien.Saudrais, Siobhan.Clarke}@cs.tcd.ie

Abstract. The increasing complexity of distributed applications, soft-
ware services that can be dynamically deployed, adjusted and composed,
paves the way for new challenges in software and service engineering. This
paper describes a novel approach that combines the flexibility of MDE
techniques to deal with the conceptual modelling of MAS and the expres-
sive power of OWL based ontologies to deal with semantics constraints
verification as well as domain knowledge provision of MAS models. We
will illustrate these ideas through the modeling of a crisis management
scenario, using a first prototype of our future Design tool: OperettA.

1 Introduction

Nowadays’ distributed applications based on the notion of service-oriented sys-
tems –which can dynamically adapt, organise, and compose to satisfy with their
networked stakeholders’ needs– are fostering the software engineering research
area with new challenges. As these distributed systems have to be deployed
within real organisational contexts, adhering with organisational rules, and meet-
ing stakeholders’ expectations, it is crucial to characterise the software architec-
tural and functional requirements in terms of their correlations with the actual
environment. To deliver on this aim, a promising approach in software engineer-
ing has been to build methodologies along with conceptual modelling languages
that better reflect and describe the complex social and human organisational
context where the system-to-be has to be deployed [1][2][3]. For example, in [3]
and [4], an ontology based on the Telos language has been presented to describe
the conceptual model of the Tropos methodology.

In this paper, we describe some achievements and future improvements of
a MAS development framework, OperettA [5], which is based on the OperA
methodology [1]. Using a simplified crisis management scenario, we will illus-
trate how the Operetta’s conceptual modelling language –which adheres to a

? This work has been performed in the framework of the FP7 project ALIVE IST-
215890, which is funded by the European Community. The authors would like
to acknowledge the contributions of their colleagues from ALIVE Consortium
(http://www.ist-alive.eu)

55

Model Driven Engineering approach– can be integrated with ontology represen-
tation languages as OWL. Moreover, this approach allows designers for both the
verification of the semantics and the provision of domain specific knowledge of
the MAS design models.

Model Driven Engineering (MDE) refers to the systematic use of models as
primary artefacts throughout the Software Engineering lifecycle. The defining
characteristic of MDE [6] is the use of models to represent the important artefacts
in a system, be they requirements, high-level designs, user data structures, views,
interoperability interfaces, test cases, or implementation-level artefacts such as
pieces of source code. The Model Driven Development promotes the automatic
transformation of abstracted models into specific implementation technologies,
by a series of pre-defined model transformations.

The paper is organised as follows: Section 2 presents the methodological con-
text of our approach with a motivation example. Section 3 provides an overview
of our approach. Section 4 summarises the main characteristics and benefits of
the approach adopted, which is partially implemented within the OperettA tool.

2 A Methodological Context

2.1 OperA overview

OperA [1] is an engineering methodology based on organisational abstractions,
suitable both to model and study existing societies, as well as to develop new
systems that participate in an organisational context. The main focus of OperA
enable a suitable balance between global aims and requirements agent autonomy,
their coordination needs, and environmental stakeholders’ needs.

The development framework for agent societies, proposed in OperA, is com-
posed of three conceptual design models: Organisational Model, Social Model,
and Interaction Model, as detailed in [1]. In this paper, we illustrate our ideas by
only using some concepts and diagrams belonging to theOrganisational Model. It
contains the description of the roles, relations and interactions in the organisa-
tion. It is constructed based on the functional requirements of the organisation.
The social model and the interaction model are the link between the organisa-
tional description and the executing agents.

2.2 Running scenario

Using an example taken from the Dutch procedures for crisis management, we
provide a conceptual model based on organisational and social concepts. The
modelling phase is conducted according to the OperA methodology [1] using
the OperettA tool [5] for graphical representation and verification of the model.
This scenario will be used along the paper to explain the development framework
properties.

The structure diagram depicted in Figure 1 represents the crisis situation. It
specifies the responsibilities and goals of each role, e.g., each time an emergency
call occurs to the Emergency Call Center, this role alerts the Fire Station entity,
informing about the location in which the (possible) disaster is taking place. The

56

Fire Station is responsible to build the appropriate fire brigade and depends on
the established Firefighter Team in order to achieve the objective extinguish the
fire. When the team arrives at the accident location, it has to decide (based on
its personal experience) the severity of the disaster. Only after this evaluation
is reported, an intervention decision is taken. For example, according to local
rules, the evaluation should comply with some standardised emergency levels,
as established by the Dutch Ministry of Internal Affairs. For the sake of sim-
plicity, we consider that Firefighter Team sets up a strategic intervention based
on the results of two evaluation criteria: damage evaluation and fire evaluation.
Based on the number of wounded, Firefighter Team decides on the necessity or
not to ask for ambulance service. Moreover, the Firefighter Team checks if the
damage involves building structures in which case police intervention is neces-
sary to deviate traffic. From the fire evaluation criterion, Firefighter Team can
decide whether it is the case or not to ask Fire Station for a Firefighting Truck
intervention. As described in [1], the Social Structure is further detailed by in-
teraction structure diagrams to model activities among and within roles in order
to achieve their objectives. Such activities are called scenes.

Firefighter_
Team

Fire_Station

Firefighting
_Truck

Emergency
_Call_Center

Police_Station

First_Aid_
Station

(ef) (el)

(fs)

(ecc)(ft)

(fft)

(dbf)(dt)

(ps)

(as)(fas)

Fig. 1. Social Structure diagram: Fire Station organisation (O) example.

Notice that, the specification provided at this time is not sufficient to give a
complete picture about the know how required to software systems to achieve
the modelled organisational objectives. Nevertheless, the level of abstraction
achieved provides enough anchor points for agents to coordinate their activity
without fully pre-specifying the capabilities of the agents and therefore limiting
flexibility.

3 Approach overview

3.1 A meta-level view of conceptual models

In order to effectively deal with the MAS development, the proposed approach
takes into account both the syntax and the semantics of a MAS, through an

57

integration of MDA with Reasoning and Domain Knowledge specification Based
on Ontology. Fig. 2 illustrates the architecture of our approach. The central
part corresponds to the OperA metamodel, which provides the syntax of MAS.
The right part provides the actual semantics of MAS, which is described by
the OperA ontology. The MAS ontology instantiation will be automatically pro-
duced from the MAS model, which is created with the OperettA tool. Next,
the MAS ontology instantiation will be semantically checked against the OperA
ontology, see section 3.2. The left part provides an interaction between existing
domain ontologies and MAS models. The interaction is maintained by defining
transformations relation between the OperA metamodel and EODM3. EODM is
an implementation of the ODM standard from OMG, defining metamodels for
RDF(S) and OWL, see section 3.3.

Opera Metamodel

MAS Model
(e.g.: FireStation)

EODM
Metamodel

Domain ontology
Model

Relations

Produces
Ontology

Import/export MAS ontology
instantiation

(e.g.: FireStation)

C
on

fo
rm

s
to

C
on

fo
rm

s
to

Opera Ontology
Associated with

C
on

fo
rm

s
to

External domain modelling MAS modelling Semantic constraints verification

M2

M1

Fig. 2. Overview of our approach.

3.2 Reasoning with models compliant with OperA ontology

The first aspect of our integrated approach is directed toward reasoning on our
models using logics, with description logic as our language mainly dedicated
at reasoning on the structural aspect of our models. This will provide us with
the ability to use the power of descriptive logic along with associated reasoners,
combined with techniques to formally analyse our models and enhance their
quality.

At the meta-level, the abstract syntax is defined through metamodelling and
the semantics is based on description logic. This results in the OperA ontology,
which formalises OperA conceptual framework concepts and their relationships,
as well as domain independent OperA semantics constraints. Meanwhile, the
integration of the metamodelling and ontologies supports domain specific lan-
guages and also offers the opportunity to query the models. Indeed, as the OperA
metamodel is associated to the OperA ontology, a MAS model is associated to
a MAS ontology instantiation. Consequently, the semantics of our models are
stored in the MAS ontology instantiation, which is automatically produced using
3 http://www.eclipse.org/modeling/mdt/?project=eodm

58

the MAS model (following a straightforward transformation). Hence, it allows for
the designer, the verification and validation of models using ontologies; namely,
the application of description logics for reasoning about the OperA language. In
the following, some examples of semantics constraints, that we are interested in
verifying, have been proposed.

– Checking if the objective of a dependency is an objective or a sub-objective
of the dependency’s initiator. For instance, in the running scenario, this
would mean verifying that the role fire-station possesses an objective or sub-
objective extinguish fire as it appears to be dependent on Firefighter Team
for it.

– Checking if each dependency is realised by at least one scene.
– Checking if roles are involved in a dependency, do indeed cooperate in at least

one realisation scene of that dependency. Again, referring to the scenario,
there must be at least one realisation scene of objective deal with big fires
dependency in which Firefighter Team and Firefighter Truck must cooperate.

– Checking that each role posses at least one dependency link.

The approach described above has been partly implemented in and illustrated
by the OperettA prototype [5]. The results obtained with that prototype have
encouraged us to move towards a more standardised and accessible version of
the tool. The actual version is currently under development using Eclipse.

3.3 Conforming design models to domain ontology

The second aspect of our approach permits the use of ontology within our models
as the source of domain specific related knowledge, necessary for the description
and support of roles interaction and communication in OperA organisation and
at a lesser extend, domain specific semantics constraints enrichment. That is,
domain ontologies are integrated at the model level. They are defined, used and
imported within the OperA modelling language as well as exported from it.
For the latter two, a relation is defined at the meta-level, between the Eclipse
Ontology Definition Metamodel and the OperA metamodel enabling the interaction
with standard ontology representation languages like OWL. Meanwhile, in the
ontological world the integration is at the same level. That is, the OperA ontology
and domain ontology are at the same level within logic hierarchy; paving the way
for the analysis of the overall structural aspect of the organisation, consisting in
querying one knowledge base being the combination of the OperA ontology, the
Domain Ontology and the derived MAS ontology instantiation.

Firstly, a vocabulary is available for describing interactions and supporting
communications related to a domain. Referring back to our Fire Station organ-
isation, given the equivalent formal notation for the objective extinguish –e.g.,
Extinguish-Fire(L : location)– of the Firefigther Team role, the concept of Lo-
cation must be defined in the Domain ontology, otherwise the parameter type
will not be available when defining the objective. Furthermore, at run-time, this
ontology will be used by members of the organisation in order to communicate.

59

Secondly, the OperA Ontology can be enlarged by further modelling domain-
specific constraints enriching the generic semantic constraints. It provides the op-
portunity to define modelling rules within the domain ontology as (re)configuration
rules e.g., a specific domain could forbid more than 2 dependencies between two
specific roles.

This second aspect provides a separation of concerns for knowledge taking
into account its domain specific part and enabling at the same time the tool to
tailor himself based on it.

4 Conclusions

This paper describes the features of an implemented design tool, OperettA,
based on the OperA methodology. This enables the construction of a devel-
opment framework to support software and services engineering. Besides, this
contributes to the achievements of a more general research objective established
within the ALIVE project. Specifically, the ALIVE project combines cutting
edge Coordination technology and Organisation theory mechanisms to provide
flexible, high-level means to model the structure of inter-actions between services
in the environment.

The proposed approach (partly) implemented in OperettA deals with tech-
niques to integrate features of the model driven architecture (MDA) with fea-
tures of the ontology languages (OWL). Main benefits of our approach come
from the fact that it provides a model driven approach for the specification of a
MAS dealing with its semantics and its provision of domain specific knowledge.
Hence, our approach allows designers for powerful reasoning mechanisms to be
employed as well as a smart integration of domain specific knowledge that comes
first to refine and enrich (along with further constraints) the specification of the
design model.

References

1. V. Dignum. A Model for Organizational Interaction: based on Agents, founded in
Logic. PhD thesis, Universiteit Utrecht, 2004.

2. Brian Henderson-Sellers and Paolo Giorgini, editors. Agent-Oriented Methodologies.
Idea Group Inc., 2005.

3. A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. Information systems as social
structures. In FOIS ’01: Proceedings of the international conference on Formal
Ontology in Information Systems, pages 10–21, New York, NY, USA, 2001. ACM.

4. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: representing knowl-
edge about information systems. ACM Trans. Inf. Syst., 8(4):325–362, 1990.

5. D. M. Okouya and V. Dignum. A prototype tool for the design, analysis and
development of multi-agent organizations. In DEMO Session: Proc. of the 7th Int.
Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS-08). ACM,
2008.

6. J. Bézivin, N. Farcet, J.-M. Jézéquel, B. Langlois, and D. Pollet. Reflective model
driven engineering. In UML, pages 175–189, 2003.

60

	cover
	preface
	reviewers
	table_of_contents
	Binder1.pdf
	paper01.pdf
	paper02
	paper03
	paper04
	paper05

