
The CURUPIRA-2 Block Cipher for Constrained

Platforms: Speci�cation and Benchmarking

Marcos Simpl��cio Jr1, Paulo S. L. M. Barreto1 ?, Tereza C. M. B. Carvalho1,
Cintia B Margi1, and Mats N�aslund2

1Laboratory of Computer Architecture and Networks, PCS-EP, University of S~ao
Paulo, Brazil

{mjunior,pbarreto,carvalho,cbmargi}@larc.usp.br
2Ericsson Research - Stockholm, Sweden

mats.naslund@ericsson.com

Abstract. Privacy is a key concern in Location Based Applications
(LBAs), especially due to their intensive use resource constrained devices
in which general purpose ciphers are di�cult to deploy. In this paper, we
address this issue by specifying a new, faster key-schedule algorithm for
the Curupira block cipher. This special-purpose cipher follows the Wide
Trail Strategy (such as AES) and is tailored for resource-constrained plat-
forms, such as sensors and mobile devices. Furthermore, we present our
benchmark results for both the Curupira-1 (which adopts the original
key-schedule speci�cation) and the Curupira-2 (which adopts the new
one) in appropriate testbeds.
Keywords: location based services, symmetric cryptography, involutional
block ciphers, sensor networks, constrained platforms, ciphers bench-
mark.

1 Introduction

The continuous and widespread development of context-aware applications based
on Wireless Sensor Networks (WSNs) shows their potential to allow a high
level of integration between computers and the physical environment. Location-
Based Applications (LBAs) play an important role in this scenario, automati-
cally adapting their behaviors to the available geo-spatial location information
and the nearby sensors and devices. This way, these systems are able to provide
both novel and more e�ective services. However, due to the sensitive nature of
the data involved (both location information and other data collected by the
network nodes) the security of the communication in these applications is an
important concern.

Battery-powered sensor nodes and other limited platforms normally em-
ployed in LBAs impose several constraints over the cryptographic algorithms

? Supported by the Brazilian National Council for Scienti�c and Technological De-
velopment (CNPq) under grant 312005/2006-7. yThis work was supported by the
Research and Development Centre, Ericsson. Telecomunica�c~oes S.A., Brazil



that can be e�ectively deployed. For example, commercial motes usually have a
memory size of 8-12 KB for code and 512-4096 bytes of RAM, as well as 4-16 MHz
processors [21, 17]. Moreover, messages exchanged in these applications are fre-
quently small, a typical packet being 24 bytes in length [22, 30]. In this context,
complex all-purpose algorithms not only take longer to run but also consume
more energy, which motivates the research for more e�cient alternatives.

To date, many architectures have been proposed to provide security in WSNs.
One of the most popular is TinySec [19], which o�ers link layer security to
TinyOS [18], the de facto standard operating system for sensor networks. As
default block cipher, TinySec has chosen Skipjack [33] due to its superior per-
formance. Meanwhile, RC5 [34] was not considered as an alternative since it is
considered to be encumbered with patents and, even if it can run faster than
Skipjack when the round keys are pre-computed, this incurs extra RAM require-
ments [15]. However, as Skipjack uses relatively small (80-bit) keys and 31 out of
its 32 rounds can be successfully cryptanalyzed [9], it presents a very low margin
of security. These observations lead to security concerns regarding TinySec, as
well as other architectures based on the same cipher, such as TinyKeyMan [24],
MiniSec [25] and Sensec [23].

The literature includes numerous analyses of modern cryptographic algo-
rithms, aiming to identify those well-suited to WSNs both in terms of security
and performance. One of the most extensive is presented by [21], which con-
cludes that Skipjack is the most energy-e�cient of all surveyed ciphers, while
the Advanced Encryption Standard (AES) [32] and MISTY1 [27] are considered
reasonable alternatives in scenarios with higher security requirements. However,
MISTY1 is considered to be encumbered with patents, while AES has larger
code, memory, and energy requirements, as well as a block size which is too
big for sensor networks. It could also be possible to rely on cryptographic hard-
ware [16], but this is not a solution available in many modern devices.

An alternative to address these issues is the adoption of Curupira [6], a
special-purpose block cipher specially developed with constrained platforms in
mind. The cipher follows the Wide Trail strategy [11], such as the AES itself,
which assures a good security against cryptanalysis. Also, it presents an invo-
lutional structure (meaning that the encryption and decryption processes are
identical except by the key-schedule) and is very exible in terms of implemen-
tation. This way, the cipher is well adapted to resource constrained scenarios
such as those faced by LBAs.

In this paper, we propose a new, faster key-schedule algorithm for the Cu-
rupira algorithm and analyze its security. We also present a benchmark com-
paring Skipjack, AES and Curupira in relevant platforms. In order to discern
between the two versions of the Curupira cipher, we write `Curupira-1" for
the one adopting the original key-schedule and \Curupira-2" for the new spec-
i�cation. We write simply \Curupira" when the discussion applies to both.

This document is organized as follows. We introduce basic mathematical tools
and notation in section 2. An overview of the Curupira-1, including its key-
schedule algorithm, is given in section 3. The second version of the key-schedule



is presented in section 4, which also discuss security, performance and implemen-
tation issues for the resultant Curupira-2 block cipher. Our benchmark results
are presented in section 5. We conclude in section 6.

2 Mathematical preliminaries and notation

The �nite �eld GF(2n) will be represented as GF(2)[x]=pn(x), where pn(x) is a
primitive pentanomial of degree n over GF(2), i.e. deg(pn(x)) � n. This way, all
multiplications over GF(28) are made modulo p8(x) = x8 + x6 + x3 + x2 + 1.
This choice of p8(x) incurs in a simple form for the primitive cube root of unity,
c(x) = x85 mod p8(x) = x4 + x3 + x2.

An element u = u7x
7+: : :+uix

i+: : :+u0 of GF(2
8) where ui 2 GF(2) for all

i = 0; : : : ; 7, will be denoted by the numerical value u7 �2
7+ : : :+ui �2

i+ : : :+u0,
written in hexadecimal notation. Thus, the polynomial c(x) is written 1C, while
p8(x) is written 14D. The multiplication by the polynomials x and c(x) are
denoted xtimes and ctimes, respectively.

The set of all 3 � n matrices over GF(2m) is denoted by Mn. Let D and E
denote the MDS matrices (see [26] for a de�nition) as follows:

D =

2
43 2 2

4 5 4

6 6 7

3
5 ; E =

2
41+c(x) c(x) c(x)

c(x) 1+c(x) c(x)

c(x) c(x) 1+c(x)

3
5 :

3 Overview of the CURUPIRA-1 structure

This section gives a brief description of the Curupira-1 original speci�cation.
For further details, we refer to [6].

The Curupira is a block cipher specially tailored for constrained platforms.
It operates on 96-bit data blocks (organized asM4 matrices, mapped by columns
instead of by rows) and accepts 96-, 144- or 192-bit keys, with a variable number
of rounds. The cipher round structure is similar to the one in BKSQ [12], with
the advantage of being involutional, resulting in a more compact cipher. Its
round function structure is used for both Curupira-1 and Curupira-2 and is
composed by the following self-inverse transforms (see Figure 1:

{ Nonlinear Layer (): all bytes in the block pass through a highly nonlinear
S-Box, identical to that used in Anubis [7] and Khazad [8] block ciphers;

{ Linear Di�usion Layer(�): the block is left-multiplied by the MDS matrix
D (the one de�ned in section 2), which results in intra-columnar di�usion;

{ Permutation Layer (�): all the bytes in the second and third rows of the
block are permuted according to the rule �(a) = b , bi;j = ai;i�j ; 0 6 i <
3; 0 6 j < n;

{ Key addition Layer (�): the round key is XORed with the block.



Fig. 1. Curupira Round Structure

These transforms only involve basic operations such as table lookups, XORs
and byte shifts. Thus, they can be implemented in most platforms in a very e�-
cient way. Nonetheless, when space is available, they can be further accelerated
using pre-computed tables, operating over entire columns of the block instead of
byte-to-byte.

3.1 The CURUPIRA-1 key-schedule

The Curupira-1 key-schedule algorithm is easily invertible and follows a struc-
ture closely related to the one dictated by the Wide Trail Strategy, which assures
a high di�usion speed. Also, it has the advantage of being cyclical, which means
that the original key is recovered after a certain number of rounds, avoiding the
need of storing any intermediary sub-key during both encryption and decryption.

In this �rst construction, a 48t-bit user key K, 2 6 t 6 4 is internally repre-
sented as a matrix K 2 M2t. To generate a sub-key Kn+1 from its predecessor
Kn, the sub-keys pass through three di�erent transformations (illustrated in
Figure 2):

{ Constant Addition (�(q)): a set of nonlinear constants, incrementally taken
from the S-Box, are XORed with the bytes in the �rst row of the round key;

this way, for a 48t-bit key, the rth round and the column j, the q
(r)
j constant

is given by: q
(0)
j = 0 and q

(r)
j = S[2t(r � 1) + j], 0 6 j 6 2t;

{ Cyclic Shift (�): rotates the second row one position to the left, and rotates
the third row one position to the right, keeping the �rst row unchanged;

{ Linear Di�usion (�): the round-key is left-multiplied by the matrix E (de-
�ned in section 2).



Fig. 2. The original key-schedule speci�cation (adopted by Curupira-1)

Furthermore, the round keys �(r) e�ectively combined with the data blocks
are chosen by the Key Selection algorithm �r, which applies the S-Box to the
�rst row of the sub-key Kr and truncates it to 96 bits (i.e., the size of the
block). Thus, even if the Key Selection is not part of the key evolution, it adds
nonlinearity to the key-schedule.

4 The CURUPIRA-2 key-schedule

The Curupira-1 key-schedule speci�cation is quite conservative, aiming for a
high security level against related-key attacks. Thus, it is reasonable to adopt a
simpler yet secure key-schedule algorithm in order to improve the overall cipher
performance. That is the approach of the Curupira-2 key-schedule, which will
be described in the following sections.

4.1 Key representation

A 48t-bits long user key K (2 6 t 6 4) is internally represented as an element
K belonging to the �nite �eld GF(248t) = GF(2)=p48t(x), where p48t(x) is a
pentanomial in GF(2) chosen in such a way that x8 is a primitive root of p(x).
An element u(x) in this �eld can be seen as a byte vector, i.e. u = (U6t�1; : : : ; U0),
where U0 indicates the lesser signi�cant byte. This way, the cryptographic key
K is directly mapped to K, starting at its most signi�cant byte, K6t�1.

A pentanomial representation was chosen because primitive pentanomials are
available for all values of t used by the Curupira. In fact, the use of trinomials
would result in a better performance, but unfortunately they do not exist for
�elds of type GF(2n) when n is multiple of 8 [28] and, thus, they cannot be used
for any of the cipher key sizes.

For reasons that will become clearer in section 4.3, the pentanomials chosen
for Curupira-2 are:



{ p96(x) = x96 + x16 + x13 + x11 + 1;
{ p144(x) = x144 + x56 + x53 + x51 + 1;
{ p192(x) = x192 + x43 + x41 + x40 + 1:

4.2 Schedule constants

The schedule constants are denoted q(s), where the index (s) indicates the round
in which they are applied. As in the Curupira-1, the constants are directly
taken from the S-box and, thus, no extra storage is needed. This time, however,
they are interpreted as elements of GF(248t) in such a way that q(0) = 0 and, for
s > 0, q(s) = (S[s� 1]; 0 : : : ; 0) i.e. a single S-box output is mapped to the most
signi�cant byte of q(s). As shown in the next section, this is a strategic position
that makes each constant a�ect exactly 3 bytes of the round key right after its
addition.

4.3 The key evolution �s

The sub-keys are updated during the cipher operation by means of two oper-
ations: a reversible transform, @ : GF(248t) ! GF(248t); and an auto-inverse
transform � : GF(248t)! GF(248t). They are de�ned in such a way that @(u) �
u � x8 and, for the polynomials u = (U6t�1; : : : ; U0) and v = (V6t�1; : : : ; V0) in
GF(248t) :

v = �(u),

�
Vi = U11�i � U12+i if 0 6 i < 6t� 12;
Vi = Ui otherwise:

Together with the schedule constants, these transforms compose the key evo-
lution function �r : GF(2

48t)! GF(248t), de�ned as �r(u) � � � @(u� q(r)), in
such a way that K(0) � K and K(r+1) = �r(K

(r)).
The � transform is used to ensure a greater di�usion to the schedule when

keys greater than 96 bits are adopted, since it combines some of the least sig-
ni�cant bytes of the key with the most signi�cant ones. Without this operation,
two 144-bit keys di�ering only at the byte K11 would generate sub-keys whose
12 least signi�cant bytes would be identical for the �rst 6 rounds; also, for 192-
bit keys, this result would hold true for the �rst 12 sub-keys. As these least
signi�cant bytes are the ones actually selected in each round, the e�ect of the
� transform is essential to assure a higher di�usion speed for 144- and 192-bit
keys.

Also, the @ transform is particularly interesting due to its performance, spe-
cially on resource-constrained platforms, as stated in the following theorem:

Theorem 1. Let p(x) = xn + xk3 + xk2 + xk1 + 1 be a primitive pentanomial

of degree n = bw over GF(2) such that k3 > k2 > k1, k3 � k1 6 w, and

either k3 mod w = 0 or k1 mod w = 0. Then multiplication by xw in GF(2n) =
GF(2)[x]=p(x) can be implemented with no more than 5 XORs and 4 shifts on

w-bit words. Moreover, if 2� 2w bytes of storage are available, the cost drops to

no more than 2 XORs on w-bit words and 2 table lookups.



Proof. For u =
Ln�1

d=0 (udx
d) 2 GF(2n), let Ui = uwi+w�1x

w�1+ : : :+uwi where
i = 0; : : : ; b � 1, so that u = Ub�1x

w(b�1) + Ub�2x
w(b�2) + : : : + U0, which for

brevity we write u = (Ub�1; : : : ; U0). Then one can compute u � xw as:

(Ub�1x
w(b�1) + Ub�2x

w(b�2) + : : :+ U0) � x
w =

Ub�1x
n + Ub�2x

w(b�1) + : : :+ U0x
w =

Ub�2x
w(b�1) + : : :+ U0x

w + Ub�1(x
k3 + xk2 + xk1 + 1) =

(Ub�2; : : : ; U0; Ub�1) � Ub�1(x
k3 + xk2 + xk1):

Assume that k3 = w(k + 1) for some k; the case k1 mod w = 0 is handled
analogously. Thus:

u � xw = (Ub�2; : : : ; U0; Ub�1) � Ub�1(x
w + xw�k3+k2 + xw�k3+k1)xwk

Since deg(Ub�1) 6 w � 1 and deg(xw + xw�k3+k2 + xw�k3+k1) = w, their
product is a polynomial of degree not exceeding 2w � 1, and hence it �ts two
w-bit words for any value of Ub�1. Besides, multiplication of this value by xwk

corresponds to simply displacing it k words to the left. We can de�ne:

T1[U ] � U � (U � (w � k3 + k2)))� (U � (w � k3 + k1)));

T0[U ] � (U � (k3 � k2))� (U � (k3 � k1));

Thus, we can write u�xw = (Ub�2; : : : ; Uk�T1[Ub�1]; Uk�1�T0[Ub�1]; : : : ; U0; Ub�1).
The values T1 and T0 can be either computed on demand or else pre-computed
and stored in two 2w-entry tables. One easily sees by direct inspection that the
computational cost is that stated by the theorem.

Applying this theorem for the polynomials adopted by the Curupira-2, we
can evaluate the cost of the transforms @ and its inverse:

p96(x) = x96 + x16 + x13 + x11 + 1 :
@ : (U11; : : : ; U0) � x

8 = (U10; : : : ; U1 � T1[U11]; U0 � T0[U11]; U11);
@�1 : (U11; : : : ; U0) � x

�8 = (U0; U11; : : : ; U2 � T1[U0]; U1 � T0[U0]);

p144(x) = x144 + x56 + x53 + x51 + 1 :
@ : (U17; : : : ; U0) � x

8 = (U16; : : : ; U6 � T1[U17]; U5 � T0[U17]; : : : ; U0; U17);
@�1 : (U17; : : : ; U0) � x

�8 = (U0; U17; : : : ; U7 � T1[U0]; U6 � T0[U0]; : : : ; U1);

p192(x) = x192 + x48 + x45 + x43 + 1 :
@ : (U23; : : : ; U0) � x

8 = (U22; : : : ; U5 � T1[U23]; U4� T0[U23]; : : : ; U0; U23):
@�1 : (U23; : : : ; U0) � x

�8 = (U0; U23; : : : ; U6 � T1[U0]; U5 � T0[U0]; : : : ; U1):

For all key sizes, we have T0 = U � (U � 5) � (U � 3) and T1 = (U �

3)� (U � 5).
These equations show that both @ and @�1 transforms have the same cost

and, thus, it is also valid for �r and its inverse, ��1r (u) � (@�1 � �(u)) � q(r).
In contrast, when compared to the key-schedule of the Curupira-1, this second
schedule algorithm has one disadvantage: there is no simple way to reinitialize the
key after a reduced number of rounds. However, in many applications, its higher
speed both during encryption and decryption can be a much more interesting
feature, compensating its lack of cyclicity.



4.4 The key selection ��
r

The round keys �(r) 2Mn e�ectively used in each round are calculated by means
of the key selection function ��r : GF(2

48t)!Mn, de�ned in such a way that:

�(r) = ��r(K),

(
�
(r)
i;j = S[K

(r)
i+3j ] if i = 0;

�
(r)
i;j = K

(r)
i+3j otherwise:

This way, only the 12 least signi�cant bytes are taken by ��r . Also, the S-box is
applied to the bytes that will be combined with the �rst row of the block, adding
nonlinearity to the key-schedule, while the bytes for the other rows are taken
directly. The whole process involved in this second version of the key-schedule
algorithm is depicted in Figure 3.

Fig. 3. The new key-schedule speci�cation (adopted by Curupira-2)

4.5 Security analysis revisited

Since, for both versions of our cipher, the round structure remains the same, most
of the Curupira-1 security analysis [6, section 4] also applies to the Curupira-
2: the adoption of the Wide Trail Strategy in combination with a highly non-
linear S-Box thwarts the most well known modalities of attacks, such as linear,
di�erential and integral cryptanalysis. As a consequence, no attack faster than
exhaustive search was found for more than 7 rounds of the cipher. These results
were also con�rmed by third party analysis [31]. The main di�erence between the
two analysis concerns the existence of weak keys and the viability of related-key
attacks.

Weak keys are keys that result in a block cipher mapping with detectable
weaknesses, which normally occurs when the nonlinear operations depend on the
actual key value. This is not the case for the Curupira, where keys are applied
using XOR and all nonlinearity is �xed in the S-box. Also, the nonlinear round



constants considerably reduce the probability of �xed points in the key-schedule
process, making the existence of weak keys very unlikely.

Related-key attacks exploit a known relationship between di�erent unknown
keys, leading to a predictable behavior for the sub-keys generated by the key
schedule. Some of the most widespread techniques involve key di�erentials and
key rotations (cf. [10]) in order. Due to its slower di�usion, it is clear that it
is easier to �nd relationships between subsequent sub-keys in Curupira-2 than
in Curupira-1, making the former less resistant to related-key attacks. In fact,
between any two rounds, the di�erence in a single internal byte (i.e. in a position
that will only be shifted as a result of the multiplication by x8) results in a dif-
ference on a single byte of the next sub-key, which could be somehow exploited.
In spite of this, some fundamental elements are introduced to the key-schedule
proposed in this paper in order to prevent attacks. First, the nonlinearity in-
troduced by the key selection thwarts related-key attacks involving di�erentials.
Second, the generation of sub-keys does not involve simple rotations, but rather
a multiplication over GF(248t) after the addition of nonlinear constants. Third,
the truncation of the sub-keys make some advanced related-key attack variants
such as that described in [13, section 4] improbable. Finally, the slow di�usion
in the key schedule is counterbalanced by the round function fast di�usion, as-
suring that each byte of the key a�ects many block bytes after a few rounds.
Together, these features make this kind of attacks unlikely to work against the
full cipher.

Furthermore, for key lengths that are larger than the length of one round
key, the existence of sets of keys that produce identical values for at least one
round key is inevitable. Thus, even if the � transform adds di�usion power to the
key-schedule and prevents the existence of trivial sets with this property, they
should be more easy to �nd than in the Curupira-1. Even so, it remains unclear
how such keys could possibly be successfully used in a related-key attack.

As a last remark, the Curupira structure involves only simple operations
such as XORs, shifts and table lookups. As long as the running times for these
transforms are not data-dependent on the target platform, the cipher implemen-
tation can avoid many side-channel attacks (such as timing-attacks [20]) in a
straightforward way.

4.6 Implementation and Performance Issues

The Curupira-2 algorithm is very exible in terms of implementation, o�ering
many memory/performance trade-o�s. It cannot only use the same techniques
developed for the Curupira-1 round functions [6, section 5]. These include the
usage of a few tables with pre-computed results, but its key-schedule also allow
some useful optimizations depending on resources available.

The round keys can be either computed on-demand or fully pre-calculated
and stored in a table for ready access. In the �rst case, the cipher requires a
reduced amount of RAM memory, since only one sub-key is stored at any given
time. However, as the key-schedule of Curupira-2 is not cyclic, there is no easy
way to compute the �rst round key from the last one. An easy way to overcome



this problem is to use two arrays ka and kb to store the �rst and the last sub-
keys, respectively: when one wants to encrypt, it su�ces to copy ka into kb and
reuses ka memory space to create the encryption sub-keys; in the end, ka will
have the last key while kb will store the �rst one, assuring that both sub-keys
are always available. The decryption is handled analogously. In this case, the
last sub-key could be computed during the cipher initialization. We note that
this strategy is only possible because the key schedule is easily invertible.

For 6t-byte keys (2 6 t 6 4), the round sub-keys can be calculated in any
direction at the cost of one circular permutation, 2+6(t-2) XORs and one com-
putation of T0 and T1. Also, T0 and T1 can be either implemented using two
256-bit tables or calculated on-the-y, taking 1 XOR + 2 shifts and 2 XORs +
2 shifts, respectively. In fact, the circular permutation does not need to be e�ec-
tively implemented: the same e�ect can be achieved if the index corresponding
to the most signi�cant byte of the key is stored and used as the �rst byte of
the key for every calculation; this way, it su�ces to update this index after each
invocation of the @ and @�1 operations.

Reviewing the Curupira preliminary calculations [6, section 5.1], the cost
of its round function is 3R � 1 XORs, 2(R � 1)=3 xtimes operations and R
S-box lookups per byte. When the key-schedule and key selection are taken
into account, we add at most 1=3 S-Box lookups, 1=3 ctimes operations and 2
XORs per key byte and per round in the Curupira-1, while this cost drops to
at most 5=12 S-Box lookups, 5=8 XORs and 1=12 computations of T0 and T1
per key byte and per round in the Curupira-2. In comparison, Skipjack takes
basically 48 XORs and 16 F-table lookups per encrypted byte. Thus, supposing
that the cost of any of these basic operations are approximately the same and
not counting auxiliary operations not directly related to the ciphers structures
(such as counter increments and key index updates), Curupira-1 with 96-bit
keys and 10 rounds is about (45+ 27)=64 � 112:5% as Skipjack when the round
keys computed on demand. On the other hand, Curupira-2 with the same key-
size corresponds to (45 + 7:5)=64 � 82% of Skipjack computation in the same
conditions. This result should be expected for similar implementations of both
ciphers on byte-oriented platforms.

Furthermore, more powerful processors (32-bit servers, for example) could
implement the �s transform in a more e�cient way, operating over columns
instead of bytes. Also, the multiplication by x8 can be easily implemented using
a single table that calculates T0 and T1 at the same time, an approach similar
to those adopted in some very optimized versions of AES [14].

5 Benchmark

In this section, we present the results of our comparison between Curupira,
Skipjack and AES in terms of processing time and memory usage. As discussed
in section 1, the motivation behind the choice of Skipjack resides in the results
presented in [35] and in [21] which shows that, in spite of its low security level, the
cipher is a very interesting choice to achieve a high performance in constrained



platforms, surpassing many other hardware-oriented ciphers like MISTY1 and
Kasumi [1]. AES, on the other hand, provides higher security but is recom-
mended for less constrained platforms, since it is a less memory-e�cient cipher.
Considering these remarks, we decided to develop a deep analysis on the com-
parison of Skipjack and Curupira in both constrained and powerful platforms,
while AES is taken into account only on powerful ones. Three di�erent platforms
were chosen as testbeds:

{ Microcontroller (8 bits): a RISC microcontroller PIC18F8490 [29] equipped
with a 8MHz processor, 768 bytes of RAM and a memory size of 16KB for
code. The reason behind this choice resides in its capacity, slightly superior
to the one presented by the ATmega8535 [2]. This last device, with a 4 MHz
processor, 8 KB of ash memory and 512 bytes of RAM, is the one used in
the Smart Dust Project [17] for sensor networks.

{ Microcontroller Simulator (8 bits): Avrora version 1.6.0 - Beta [36], simulat-
ing a microcontroller from the ATmega128 [3] series. The goal of using this
simulator is mainly to validate the results obtained with the PIC processor
in a more powerful, yet tiny platform.

{ Pentium 4 (32 bits): a notebook equipped with Pentium 4 (3.2GHz) and 1GB
of RAM. This platform was chosen to evaluate the proposed optimizations
of the cipher when the resources in the target platform are abundant.

5.1 Implementation Characteristics

For the 8-bit versions of Curupira and Skipjack, the same C-written imple-
mentations were analyzed in both the PIC18F84908 and the Avrora simulator.
Furthermore, they adopt similar interfaces in each of these platforms, in order
to assure a fair comparison. They also are more speed-oriented than memory-
oriented, since the consumption of energy with processing is proportional to the
number of operations performed by the algorithm, and this is normally consid-
ered the most critical resource in constrained platforms, particularly in WSNs.

For the implementation running on Avrora, as recommended by its documen-
tation, we adopted avr-objdump and avr-gcc (both GNU utilities) as compilation
tools, while MPLAB IDE v7.60 and MPLAB C18 compiler are used together
with the PIC microcontroller. The speed-optimized versions of each cipher, re-
sulting from the available compiler optimizations, are the ones considered in this
document. It is important to notice that, even if both platforms include indirect
addressing in their instruction sets, our tests showed that the compilers were
not able to fully take advantage of these instructions, resulting in less than opti-
mal machine codes when pointers and/or matrices were used. That is the reason
why we decided to evaluate two di�erent programming techniques: one that uses
pointers and matrices and another that uses basic-type variables more inten-
sively, avoiding indirect addressing. While the �rst approach normally results
in more exible code (where the size of the keys can be more easily changed,
for example), the second allows more optimized implementations with �xed-size
keys (enabling loop unrolling with little loss of compactness)

The implementations running on the 8-bit platforms are detailed below:



CURUPIRA (8 bits) using the proposed optimizations for constrained plat-
forms, we elected two versions of the Curupira for each scheduling algo-
rithm:

1. Curupirac-1: complete version (meaning that it accepts all key sizes) of
the Curupira-1. It requires two 256-byte tables, one for the S-Box and
another for the ctimes operation and uses many pointers and matrices

2. Curupirac-2: complete version of the Curupira-2, using two 256-byte
tables for the S-Box and xtimes operations. Such as Curupirac-1, it is
also based on indirect addressing instructions.

3. Curupirak96 -1: Curupira-1 restricted to 96-bit keys. It uses the same
tables as the Curupirac-1, but relies on basic types instead of indirect
addressing instructions.

4. Curupirak96 -2: Curupira-2 restricted to 96-bit keys, using the same
tables as the Curupirac-2 but relying on basic-type variables.

Skipjack (8 bits) two versions were developed according to the speci�cation:
1. Skipjackc: relies on indirect instructions just like Curupirac-1 and Cu-

rupirac-2, providing a useful source of comparison with these ciphers. It
uses a single 256-byte F-table and calculates the round keys on demand.

2. Skipjackk: adopts programming strategies similar to those present in the
Curupirak96 , strongly relying on operations over basic-type variables
instead of matrices and pointers. Such as the Skipjackc, it also uses a
256-byte F-table and calculates the round keys on-the-y.

For the 32-bits platform, we decided to take advantage of some highly opti-
mized cipher implementations publicly available. The chosen algorithms, written
in Java, were compiled and run on Netbeans IDE 5.5, using the JDK 1.6. The
details of the implementations are given below:

AES (32 bits) we adopted the implementation of Barreto [5], which pre-computes
the round keys and employs ten 256-word tables to greatly accelerate the
cipher operation.

CURUPIRA (32 bits) the optimizations in the algorithm are similar to those
present in AES, specially regarding the pre-computation of the round keys
and the intensive use of tables, in the same number as AES.

Skipjack (32 bits) the cipher tested is a Java adaptation of Barreto's algo-
rithm [4], originally developed in C language. It operates over 16-bit words
and stores some important key-dependent pre-computed values in a 10x256-
word matrix; this last operation can be seen as a kind of \key-schedule",
since it must be performed each time the cipher key is changed.

5.2 Results: 8-bits platforms

The ciphers memory usage, for both 8-bit platforms, is presented in Table 1. This
table shows that all tested versions of the Curupira take more space in memory
than Skipjack, an expected result considering the higher complexity of its round
function and key-schedule algorithms. Despite this di�erence, the tested ciphers



Table 1. Memory Occupation (in bytes) of the tested ciphers on the 8 bits platforms

Algorithm ROM Code-PIC18F8490 Code-Avrora Simulator

Curupirac-1 822 1444 1648
Curupirac-2 512 1238 1718
Curupirak96 -1 768 1372 1936
Curupirak96 -2 512 1532 1846

Skipjackc 256 1012 940
Skipjackk 256 972 1352

are both compact enough to be easily deployed in most constrained platforms,
taking less than 3KB as a whole.

Both Curupira and Skipjack do not need to pre-compute the round keys
and, thus, they require a reduced amount of RAM. We were not able, however, to
directly measure the RAM usage with the tools available for the tested platforms.
Nevertheless, due to its greater block and key size, we speculate that Curupira
takes a higher amount of RAM than Skipjack. For example, when using two
arrays to store the �rst and the last keys, Curupira-2 would take about twice
((96+2�96)=(64+80)) the amount of RAM needed by Skipjack. These numbers
remain very tiny when compared to pre-computed keys storage, though.

For the PIC microcontroller, Figure 4 shows the number of CPU cycles, per
byte encrypted, of both tested ciphers. The time measured corresponds to a
single encryption of random blocks using di�erent keys. Even if the Curupirac
implementations allow three di�erent key sizes, only the 96-bit keys are depicted
in this graph. Also, we explicitly distinguish the processing time required for the
key scheduling and the encryption itself (as Skipjack reuses the original key
cyclically, we considered it part of the encryption instead of a \key-schedule").

Fig. 4. Comparison between the cipher encryption speeds on the PIC18F8490



The �gure shows that Curupirac-1 and Curupirac-2 are respectively �
20% and � 45% faster than Skipjackc, with the round keys computed on de-
mand. Despite this very positive result, it should be carefully considered since
the measured number of cycles includes not only the operations directly involved
in the encryption process but also a non-negligible number of auxiliary ones. The
inuence of these secondary operations is less expressive on both Skipjackk and
Curupirak96 and, as depicted in the right side of Figure 4, Curupirak96 -2 is
still � 18% faster than Skipjack, while Curupirak96 -1 is � 12% slower. One can
see that the cost of both Curupirak96 versions in this �gure are approximately
the ones theoretically calculated in Section 4.6.

Fig. 5. Comparison between the cipher encryption speeds on the Avrora Simulator

The results on the Avrora Simulator were slightly di�erent from those in the
PIC18F8490, as depicted in Figure 5. Skipjackk speed was considerably improved
by this platform change, running about 30% and 4% faster than Curupirak96 -1
and Curupirak96 -2, respectively. A further analysis of the assembly codes show
that these results were caused by the inuence of the compiler, which were able
to apply di�erent optimizations to each algorithm. In contrast, this unexpected
behavior was not observed with Curupirac and Skipjackc implementations,
which sustained the relative performances presented on the PIC18F8490.

5.3 Results: 32-bits platforms

The encryption speed of each cipher on the 32-bits platform, with di�erent key
sizes (and, thus, number of rounds), is depicted in Figure 6. It is important to
point out that, as all round keys are computed at cipher initialization, there is
no di�erence between the encryption speeds of Curupira-1 and Curupira-2.

We obtained similar results for AES and Curupira with the same number
of rounds (note the additional graph entry where, for the sake of comparison,
both ciphers were tested with the same number of rounds for each key size). This
is an expected result since both ciphers adopt well-known optimizations for the
Wide Trail Strategy family. On the other hand, the modest result of Skipjack



Fig. 6. Encryption Performance x Number of Rounds - 32 bits

(about 3 times slower than the other ciphers) may seem surprising at �rst sight,
since its performance usually is the main factor for its adoption on constrained
platforms. However, this can be explained by its 16-bit oriented operations, very
attractive on constrained processors but less adapted to fully take advantage
of the higher number of bits available on powerful platforms. Both AES and
Curupira, though, can easily be implemented to operate over 32- and 24-bit
words (columns), respectively.

The processing time involved on the ciphers key-schedules was also measured.
As depicted in Figure 7, while Curupira and AES presented similar speeds,
Skipjack was about 10 times slower. As this operation has to be performed
a single time (at initialization), the impact on the cipher overall operation is
reduced on scenarios where the keys are not frequently changed.

6 Conclusions

We have described a new and faster key-schedule proposal for the Curupira
block cipher. As a drawback, when compared to the original speci�cation, it has
a lower level of security against related-key attacks. However, according to our
security analysis, both versions of the full cipher are secure against cryptanalysis.

We also presented a benchmark comparing Curupira, Skipjack and AES in
terms of performance and memory occupation, both on constrained and pow-
erful platforms. According to the results obtained, the proposed block cipher is
fast and compact, especially when using the new key-schedule presented in this
paper. While Skipjack is considered a good candidate for constrained scenarios,
such as LBAs dependent on sensors and low-power mobile devices, Curupira is



Fig. 7. Key Schedule Performance x Number of Rounds - 32 bits

a suitable alternative to increase the security level and potentially improve per-
formance, introducing a reduced impact in terms of memory usage. Also, when
more powerful platforms are also available, the several optimizations allowed by
the Curupira can be deployed to obtain an even higher performance in the
whole network.

All together, these results show that the Curupira block cipher is a use-
ful solution for providing data encryption at low cost, being recommended for
constrained-resource devices and for applications based on such platforms, such
as WSNs and LBAs.

6.1 Future and Ongoing work

We are currently working on the deployment of Curupira on a real WSN in
order to evaluate its impact (especially in terms of energy consumption) in some
signi�cant scenarios. Also, we are developing a new MAC algorithm namedMar-

vin, designed to provide a low-cost authenticated-encryption scheme on WSNs,
particularly when used in conjunction with Curupira.

6.2 Acknowledgments

We would like to thank Richard Gold for his useful comments and the review of
this paper.

References

1. 3GPP. Speci�cation of the 3gpp con�dentiality and integrity algorithms document
2: Kasumi speci�cation. Technical report, 3GPP, 1999.



2. Atmel. AVR 8-Bit RISC processor - ATmega8535 (90LS8535), 2006.

3. Atmel. AVR 8-Bit RISC processor - ATmega128 e ATmega128L, 2007.

4. P. Barreto. The Skipjack block cipher { 32 bit implementation.
http://planeta.terra.com.br/informatica/paulobarreto/skipjack32.zip, 1998.

5. P. Barreto. The AES block cipher (rijndael) { 32 bit implementation.
http://planeta.terra.com.br/informatica/paulobarreto/JEAX.zip, 2003.

6. P. Barreto and M. Simplicio. Curupira, a block cipher for constrained platforms.
In Anais do 25o Simpsio Brasileiro de Redes de Computadores e Sistemas Distribu-
dos - SBRC 2007, volume 1, pages 61{74. SBC, 2007.

7. P. S. L. M. Barreto and V. Rijmen. The Anubis block cipher. In First open
NESSIE Workshop, Leuven, Belgium, November 2000. NESSIE Consortium.

8. P. S. L. M. Barreto and V. Rijmen. The Khazad legacy-level block cipher. In First
open NESSIE Workshop, Leuven, Belgium, November 2000. NESSIE Consortium.

9. E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of skipjack reduced to 31
rounds using impossible di�erentials. In Advances in Cryptology { Eurocrypt'99,
volume 1592 of Lecture Notes in Computer Science, pages 55{64. Springer, 1999.

10. M. Ciet, G. Piret, and J. Quisquater. Related-key and slide attacks: Analysis,
connections, and improvements - extended abstract. In 23rd Symposium on Infor-
mation Theory in the Benelux, Louvain-la-Neuve, Belgium, pages 315{325, 2002.

11. J. Daemen. Cipher and hash function design strategies based on linear and di�er-
ential cryptanalysis. Doctoral dissertation, Katholiek Universiteit Leuven, March
1995.

12. J. Daemen and V. Rijmen. The block cipher BKSQ. In Smart Card Research and
Applications { CARDIS'98, volume 1820 of Lecture Notes in Computer Science,
pages 236{245. Springer, 1998.

13. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting.
Improved cryptanalysis of Rijndael. In Fast Software Encryption { FSE'2000,
volume 1978 of Lecture Notes in Computer Science, pages 213{230. Springer, 2000.

14. B. R. Gladman. AES second round implementation experience.
http://fp.gladman.plus.com/cryptography technology/aesr2/index.htm, 2000.

15. G. Guimaraes, E. Souto, D. Sadok, and J. Kelner. Evaluation of security mecha-
nisms in wireless sensor networks. In ICW '05: Proceedings of the 2005 Systems
Communications, pages 428{433. IEEE Computer Society, 2005.

16. M. Healy, T. Newe, and E. Lewis. E�ciently securing data on a wireless sensor
network. Journal of Physics, 76, 2007.

17. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architec-
ture directions for networked sensors. In Architectural Support for Programming
Languages and Operating Systems, pages 93{104, 2000.

18. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architec-
ture directions for networked sensors. In Architectural Support for Programming
Languages and Operating Systems, pages 93{104, 2000.

19. C. Karlof, N. Sastry, and D. Wagner. Tinysec: a link layer security architecture for
wireless sensor networks. In 2nd International Conference on Embedded Networked
Sensor Systems { SenSys'2004, pages 162{175, Baltimore, USA, 2004. ACM.

20. P. Kocher, J. Ja�e, and B. Jun. Introduction to di�erential power analysis and
related attacks. Technical report, Cryptography Research Inc., 1998.

21. Y. W. Law, J. Doumen, and P. Hartel. Survey and benchmark of block ciphers
for wireless sensor networks. ACM Transactions on Sensor Networks (TOSN),
2(1):65{93, 2006.



22. P. Levis and D. Culler. Mat�e: a tiny virtual machine for sensor networks. In
ASPLOS-X: Proceedings of the 10th international conference on Architectural sup-
port for programming languages and operating systems, pages 85{95. ACM, 2002.

23. T. Li, H. Wu, X. Wang, and F. Bao. SenSec design. Technical report, InfoComm
Security Department, February 2005.

24. D. Liu, P. Ning, and R. Li. Establishing pairwise keys in distributed sensor net-
works. In CCS'03: Proceedings of the 10th ACM conference on Computer and
communications security, pages 52{61. ACM, 2003.

25. M. Luk, G. Mezzour, A. Perrig, and V. Gligor. Minisec: A secure sensor network
communication architecture. In IPSN'07: Proceedings of the 6th international con-
ference on Information processing in sensor networks, pages 479{488, New York,
NY, USA, 2007. ACM.

26. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes,
volume 16. North-Holland Mathematical Library, 1977.

27. M. Matsui. New block encryption algorithmMISTY. In Fast Software Encryption {
FSE'97, volume 1267 of Lecture Notes in Computer Science, pages 54{68. Springer,
1997.

28. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, USA, 1999.

29. Microchip. PIC18F8490 Datasheet, 2006.
30. R. M�uller, G. Alonso, and D. Kossmann. SwissQM: Next generation data process-

ing in sensor networks. In CIDR, pages 1{9, 2007.
31. J. Nakahara. Analysis of Curupira block cipher. In Anais do 8o Simpsio Brasileiro

em Segurana da Informao e Sistemas Computacionais, 2008.
32. NIST. Federal Information Processing Standard (FIPS 197) { Advanced Encryption

Standard (AES). National Institute of Standards and Technology, November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

33. NSA. Skipjack and KEA Algorithm Speci�cations, version 2.0. National Security
Agency, May 1998.

34. R. L. Rivest. The RC5 encryption algorithm. In Fast Software Encryption {
FSE'94, volume 1008 of Lecture Notes in Computer Science, pages 86{96. Springer,
1995.

35. R. Roman, C. Alcaraz, and J. Lopez. A survey of cryptographic primitives and
implementations for hardware-constrained sensor network nodes. Mobile Networks
and Applications, 12(4):231{244, 2007.

36. B. Titzer, D. Lee, and J. Palsberg. Avrora scalable simulation of sensor networks
with precise timing. Center for Embedded Network Sensing Posters - Paper 93,
2004.

The name

According to a Brazilian legend, the Curupira is a spirit of nature and protector
of the forests. It assumes the form of a boy with red hair, whose feet are turned
backwards. This way, when hunters think they are on the right trail to get it,
they in fact are going to the wrong direction, getting confused and lost. This
should also work against cryptanalysts :-).


