
The ICS-FORTH RDFSuite:
Managing Voluminous RDF Description Bases�

Sofia Alexaki
Vassilis Christophides

Gregory Karvounarakis
Dimitris Plexousakis

Institute of Computer Science, FORTH,
Vassilika Vouton, P.O.Box 1385
GR 711 10, Heraklion, Greece

[alexaki, christop, gregkar, dp]
@ics.forth.gr

Karsten Tolle

Johann Wolfgang Goethe-University,
Robert-Mayer-Str. 11-15 P.O.Box 11 19 32,

D-60054 Frankfurt/Main, Germany

tolle@dbis.informatik.uni-frankfurt.de

ABSTRACT
Metadata are widely used in order to fully exploit informa-

tion resources available on corporate intranets or the Inter-
net. The Resource Description Framework (RDF) aims at
facilitating the creation and exchange of metadata as any
other Web data. The growing number of available infor-
mation resources and the proliferation of description ser-
vices in various user communities, lead nowadays to large

volumes of RDF metadata. Managing such RDF resource
descriptions and schemas with existing low-level APIs and
�le-based implementations does not ensure fast deployment
and easy maintenance of real-scale RDF applications. In
this paper, we advocate the use of database technology to
support declarative access, as well as, logical and physical

independence for voluminous RDF description bases.
We present RDFSuite, a suite of tools for RDF validation,

storage and querying. Speci�cally, we introduce a formal
data model for RDF description bases created using mul-
tiple schemas. Next, we present the design of a persistent

RDF Store (RSSDB) for loading resource descriptions in an
ORDBMS by exploring the available RDF schema knowl-
edge. Our approach preserves the exibility of RDF in re-
�ning schemas and/or enriching descriptions at any time,
whilst it outperforms, both in storage volumes and query
execution time, other approaches using a monolithic table

to represent resource descriptions and schemas under the
form of triples. Last, we briey present RQL, a declarative
language for querying both RDF descriptions and schemas,
and sketch query evaluation on top of RSSDB.

�This work was partially supported by the EC project C-
Web (IST-1999-13479) and Mesmuses (IST-2000-26074).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission by the authors.
Semantic Web Workshop 2001 Hongkong, China
Copyright by the authors.

1. INTRODUCTION
Metadata are widely used in order to fully exploit infor-

mation resources (e.g., sites, documents, data, images, etc.)
available on corporate intranets or the Internet. The Re-
source Description Framework (RDF) [17] aims at facilitat-

ing the creation and exchange of metadata as any other Web
data. More precisely, RDF provides i) a Standard Repre-
sentation Language for metadata based on directed labeled
graphs in which nodes are called resources (or literals) and
edges are called properties and ii) an XML syntax for ex-

pressing metadata in a form that is both humanly read-
able and machine understandable. Due to its exible model,
RDF is playing a central role in the next evolution step of
the Web - termed the Semantic Web. Indeed, RDF/S enable
the provision of various kinds of metadata (for administra-
tion, recommendation, content rating, site maps, push chan-

nels, etc.) about resources of quite diverse nature (ranging
from PDF or Word documents, e-mail or audio/video �les to
HTML pages or XML data) to di�erent target communities
(corporate, inter-enterprise, e-marketplace, etc.). The most
distinctive RDF feature is its ability to suport superimposed
descriptions for the same Web resources, enabling content

syndication - and hence, automated processing - in a variety
of application contexts. To interpret resource descriptions
within or across communities, RDF allows for the de�nition
of schemas [6] i.e., vocabularies of labels for graph nodes
(i.e., classes) and edges (i.e., properties). Furthermore, these
vocabularies can be easily extended to meet the description

needs of speci�c (sub-)communities while preserving the au-
tonomy of description services for each (sub-)community.
Many content providers (e.g., ABCNews, CNN, Time Inc.)

and Web Portals (e.g., Open Directory, CNET, XMLTree1)
or browsers (e.g., Netscape 6.0, W3C Amaya) already adopt
RDF, as well as, emerging application standards for Web

data and services syndication (e.g., the RDF Site Summary
[5], the Dublin Core [25], or the Web Service Description
Language [26]). In a nutshell, the growing number of avail-
able information resources and the proliferation of descrip-
tion services in various user communities, lead nowadays to

large volumes of RDF metadata (e.g., the Open Directory

1www.dmoz.org, home.cnet.com, www.xmltree.com respec-
tively.

A
PI

E
ng

in
e

RQL

Optimizer
Module

Graph

Pa
rs

er

E
va

lu
at

io
n Constructor

L
oa

de
r

VRP Model

VRP

Validator

Pa
rs

er

A
PI

id

4

Class

DBMS

c_name rangeid
Property

ns1#title

ns2#Hotel

ns2#Hotel Direct

1211

1

subid superid

4

SubProperty

5

1

3
2

URI
ns1#Ext.Resource

r1

SubClass

12

targetsource

r1 SunScale

ns3#title

superid

2

subid

3

p_namedomainidid

5
ns1#Ext.Resource

ns3#title

Figure 1: Overview of the ICS-FORTH RDFSuite

Portal of Netscape exports in RDF around 170M of Subject
Topics and 700M of indexed URIs). It becomes evident that
managing such voluminous RDF resource descriptions and
schemas with existing low-level APIs and �le-based imple-

mentations [22] does not ensure fast deployment and easy
maintenance of real-scale RDF applications. Still, we want
to bene�t from three decades of research in database tech-
nology to support declarative access and logical and phys-
ical independence for RDF description bases. In this way,
RDF applications have to specify in a high-level language

only which resources need to be accessed, leaving the task
of determining how to eÆciently store or access them to the
underlying RDF database engine.
In this paper we present ICS-FORTH RDFSuite [14], a suite

of tools for RDF validation (Validating RDF Parser-VRP),
storage (RDF Schema Speci�c DataBase-RSSDB), and query-
ing (RDF Query Language-RQL) using an object-relational
DBMS (see Figure 1). To illustrate the functionality and the
performance of RDFSuite we use as testbed the catalog of
the Open Directory Portal exported in RDF (see Section 2).
The paper makes the following contributions:
� Section 3 introduces a formal data model for descrip-
tion bases created according to the RDF Model & Syn-
tax and Schema speci�cations [17, 6] (without rei�ca-
tion). The main challenge for this model is the rep-
resentation of several interconnected RDF schemas, as

well as the introduction of a graph instantiation mech-
anism permitting multiple classi�cation of resources.

� Section 4 presents our persistent RDF Store (RSSDB)

for loading resource descriptions in an object-relational
DBMS (ORDBMS) by exploiting the available RDF
schema knowledge. Our approach preserves the ex-
ibility of RDF in re�ning schemas and/or enriching
descriptions at any time whilst it can be customized
in several ways according to the speci�cities of both

the manipulated desription bases and the underlying
RDF application scenario.

� Section 5 sketches the functionality of a declarative

language, called RQL, for querying both RDF de-
scriptions and related schemas. The implementation
of RQL on top of RSSDB is described with emphasis
on how the RQL interpreter pushes query evaluation
as much as possible to the underlying ORDBMS.

� Section 6 illustrates the performance of RSSDB for
storing and querying voluminous RDF descriptions,
such as the ODP catalog. In particular, RSSDB out-

performs both in storage volumes and query execution
time other approaches using a monolithic table [20,
18, 7] to represent resource descriptions and schemas
under the form of triples.

Finally, Section 7 presents our conclusions and draws direc-

tions for further research.

2. THE OPEN DIRECTORY CATALOG
Portals are nowadays becoming increasingly popular by

enabling the development and maintenance of speci�c com-
munities of interest (e.g., enterprise, professional, trading)
[12] on corporate intranets or the Internet. Such Commu-
nity Web Portals essentially provide the means to select,

classify and access, in a semantically meaningful way, var-
ious information resources. Portals may be distinguished
according to the breadth of the target community (e.g., tar-
geting horizontal or vertical markets), and the complexity
of information resources (e.g., sites, documents, data). In

all cases, the key Portal component is the Knowledge Cat-
alog holding descriptive information, i.e., metadata, about
the community resources.
For instance, the catalogs of Internet (or horizontal) Por-

tals, like Yahoo! or Open Directory (ODP), use huge hi-
erarchies of topics to semantically classify Web resources.

Speci�cally, Table 1 lists statistics of 15 (out of 16) ODP
hierarchies (version of 16-01-2001), comprising 252840 top-
ics under which 1770781 sites are classi�ed. We can observe
that ODP hierarchies are not deep (the maximum depth is
13) while the number of direct subclasses of a class varies
greatly (the maximum number of subclasses is 314 but the

average is around 4.02). Additionally, various administra-
tive metadata (e.g., titles, mime-types, modi�cation dates)
of resources are usually created using an OCLC Dublin-Core
like schema [25]. Users can either navigate through the top-
ics of the catalog to locate resources of interest, or issue a
full-text query on topic names and the URIs or the titles of

described resources. In Section 5 we will illustrate how our
query language can be used to provide declarative access to
the catalog content. In the sequel, we illustrate how Por-
tal Catalogs can be easily and e�ectivelly represented using
RDF/S.

The middle part of Figure 2 depicts the two schemas em-
ployed by the Open Directory: the �rst is intended to cap-
ture the semantics of web resources, while the second is in-
tended for Portal administrators. The scope of the declara-
tions is determined by the corresponding namespace de�ni-
tion of each schema, e.g., ns1 (www.dmoz.org/topics.rdfs)

and ns2 (www.oclc.com/dublincore.rdfs). For simplicity,
we will hereforth omit the namespaces as well as the paths
from the root of the topic hierarchies (since topics have
non-unique names) pre�xing class and property names. Fig-
ure 2 depicts 2 (out of the 16) hierarchies in the ODP topics
schema, namely, Regional and Recreation, whose topics are

represented as RDF classes (see the rdf and rdfs default
namespaces in the upper part of Figure 2). Various semantic
relationships exist between these classes either within a topic
hierarchy (e.g., subtopics) or across hierarchies (e.g., related
topics). The former, is represented using the RDF subclass

Integer

String

String

Ext.Resource Date
last_modified

title

description

file_size

r2: http://www.hotelpulitzer.com
r3: http://www.hotel-bedford.fr/index/hotel.htm
r4: http://www.disneylandparis.com

typeOf (instance)

subClassOf (isA)
r1: http://www.sunscale.com/france/paris

Regional Recreation

Lodging

Hotel Directories

Hotel related

Class
property

ns1:www.dmoz.org/topics.rdfs ns2:www.oclc.org/dublincore.rdfs

Travel Vacation
-Rentals

Paris

Ile-de-France

Disneyland
title

Site officiel de
Disneyland Paris

description

Official site of
Disneyland Paris

description&r4&r1
&r3&r2

title titletitle

Pulitzer OperaSunScale Bedford

P
or

ta
l S

ch
em

as
R

es
ou

rc
e

de
sc

ri
pt

io
ns

rdf:www.w3.org/1999/02/22-rdf-syntax-ns rdfs:www.w3.org/TR/2000/CR-rdf-schema-20000327

R
D

F
/S

Figure 2: Modeling in RDF the Catalog of the Open Directory Portal

relationship (e.g., Travel is a, not necessarily direct, sub-
class of Paris) and the latter using an RDF property named
related (e.g., between the classes Ile-de-France and Hotel).
Finally, the ODP administrative metadata schema captures
various descriptive elements of Dublin-Core [25] (with the

execption of the Subject element), as literal RDF properties
de�ned on class ExtResource. Note that properties serve
to represent attributes of resources as well as relationships
between resources. Properties can also be organized in tax-
onomies in a manner similar to the organization of classes.

Using these schemas, we can see in the lower part of Fig-
ure 2, the descriptions created for four sites (resources &r1-
&r4). For instance, &r4 is a resource classi�ed under both
the classes Paris and ExtResource and has three associated
literal properties: a title property with value \Disneyland"
and two description properties with values \OÆcial site of

Disneyland Paris" and \Site oÆciel de Disneyland Paris"
respectively. In the RDF jargon, a speci�c resource (i.e.,
node) together with a named property (i.e., edge) and its
value (i.e., node) form a statement. Each statement is rep-
resented by a triple having a subject (e.g., &r4), a predicate
(e.g., title), and an object (e.g., \Disneyland "). The sub-

ject and object should be of a class compatible (under class
specialization) with the domain and range of the predicate
(e.g., &r4 is of type ExtResource). In the rest of the pa-
per, the term description base will be used to denote a set of
RDF statements. Although not illustrated in Figure 2, RDF
also supports structured values called containers (e.g., Bags)
for grouping statements, as well as, higher-order statements
(i.e., rei�cation2). Finally, both RDF graph schemas and
descriptions can be serialized in XML using various forests

2We will not treat rei�cation in this paper.

of XML trees (i.e., there is no root XML node).
Hence, RDF properties are unordered (e.g., the property

title can appear before or after the property description), op-
tional (e.g., the property �le size is not used), can be multi-
valued (e.g., we have two description properties), and they

can be inherited (e.g., to subclasses of ExtResource), while
resources can be multiply classi�ed (e.g., &r4). These mod-
eling primitives provide all the exibility we need to rep-
resent superimposed descriptions of community resources,
while preserving a conceptually uni�ed view of the descrip-

tion base through one or the union of all related schemas. It
becomes clear that the RDF data model di�ers substantially
from standard object or relational models [3] or the recently
proposed models for semistructured or XML databases [1]:
� Classes do not de�ne object or relation types: an in-
stance of a class is just a resource URI;
� Resources may belong to di�erent classes not necessar-
ily pairwise related by specialization: the instances of
a class may have quite di�erent properties associated
with them, while there is no other class on which the
union of these properties is de�ned;
� Properties may also be re�ned by respecting a minimal

set of constraints (domain and range compatibility).
Note also that due to multiple classi�cation, resources

may have quite irregular descriptions modeled only through

an exception mechanism a la SGML [15]. Last but not
least, semistructured or XML models can't distinguish be-
tween entity (e.g., ExtResource) and property labels (e.g.,
title). Therefore existing proposals cannot be used, as
such, to manipulate RDF description bases. In the sequel,

we will present a logical data model allowing users to issue
high-level queries on RDF/S graphs, while several physical
representations can be used by the underlying DBMS to im-
prove storage volumes and optimize queries on these graphs.

Hierarchy Max.Depth Avg.Depth Max.Subclass Avg.Subclass #Topics #Resources

news.rdf 7 5 51 5.625 721 47735

kat.rdf 7 4.8 46 6 761 7730

home.rdf 8 5 53 5 1722 26688

shopping.rdf 9 4.8 61 4.5 3349 88821

health.rdf 9 5.3 52 5.3 3202 45519

games.rdf 10 5.4 125 5.3 4857 36181

computers.rdf 10 5.3 147 5 6010 91597

recreation.rdf 11 5.87 85 5.47 7269 93929

business.rdf 11 5.9 52 4.69 6833 161877

reference.rdf 13 7.13 154 3.92 6483 75105

sports.rdf 9 5.56 178 7.02 10625 66280

science.rdf 10 6.53 314 5.05 8667 65939

society.rdf 12 6.3 157 6.27 16250 161433

arts.rdf 11 5.5 267 6.5 25314 214795

regional.rdf 13 7.7 254 3.37 150762 587152

Total 13 6.86 314 4.02 252825 1770781

Table 1: ODP Topic Hierarchy Statistics

3. A FORMAL DATA MODEL FOR RDF
Since the notion of resource is somehow overloaded in the

RDF M&S and RDFS speci�cations [17, 6], we distinguish
RDF resources w.r.t. their nature into individual entities
(i.e., nodes) and properties of entity resources (i.e., edges).

� Nodes : a set of individual resources, representing
abstract or concrete entities of independent existence,

e.g., class ExtResource de�ned in an RDF Schema or
a speci�c web resource e.g., &r4 (see Figure 2).

� Edges : a set of properties, representing both at-
tributes of and binary relationships between nodes, ei-
ther abstract or concrete, e.g., the property title de-

�ned in our example schema and used by the speci�c
resource &r4.

RDF Resources are also distinguished according to their
concreteness into tokens and classes.

� Tokens : a set of concrete resources, either objects,
or literals (e.g., &r4, \SunScale").

� Classes : a set of abstract entity or property re-
sources, in the sense that they collectively refer to a set
of objects similar in some respect (e.g., ExtResource).

To label abstract (i.e., schema) or concrete (i.e., token)
RDF nodes and edges, we assume the existence of the fol-
lowing countably in�nite and pairwise disjoint sets of sym-
bols: C of Class names, P of Property names, U of Resource
URIs as well as a set L of Literal type names such as string,

integer, date, etc. Each literal type t 2 L has an associated
domain, denoted dom(t) and dom(L) denotes

S
t2L

dom(t)
(i.e., the rdfs:Literal declaration). Without loss of gen-
erality, we assume that the sets C and P are extended to
include as elements the class name Class and the prop-
erty name Property respectively. The former captures the

root of a class hierarchy (i.e., the rdfs:Class declaration)
while the latter captures the root of a property hierarchy
(i.e., the rdf:Property declaration) de�ned in RDF/S [17,
6]. The set P also contains integer labels (f1; 2; : : : g) used
as property names (i.e., the rdfs:ContainerMembership-

Properties declaration) by the members of container values

(i.e., the rdfs:Bag, rdfs:Sequence declarations).

Each RDF schema uses a �nite set of class names C � C
and property names P � P whose scope is determined by
one or more namespaces. Property types are then de�ned
using class names or literal types so that: for each p 2 P ,
domain(p) 2 C and range(p) 2 C [L. We denote by H =
(N;�) a hierarchy of class and property names, where N =

C [P . H is well-formed if � is a smallest partial ordering
such that: if p1; p2 2 P and p1 � p2, then domain(p1) �
domain(p2) and range(p1) � range(p2)

3.

3.1 Additional RDF Constraints
Three remarks are noteworthy. First, unlike the current

RDF M&S and RDFS speci�cations [17, 6] the domain and
range of properties should always be de�ned. This additional
constraint is required mainly because the sets of RDF/S
classes C and literal types L are disjoint. Then, a prop-
erty with unde�ned range may take as values both a class
instance (i.e., a resource) or a literal. Since, the union of

rdfs:Class and rdfs:Literal is meaningless in RDF/S,
this freedom leads to semantic inconsistencies. Additional
semantic problems arise in the case of specialization of prop-
erties with unde�ned domain and range. More precisely, to
preserve the set inclusion requirement of specialized proper-

ties (binary predicates) their domain and range should also
specialize the domain and range (unary predicates) of their
superproperties. This is something which, in the case of mul-
tiple specialization of properties (see Figure 3 -a-), cannot
always be ensured because RDF/S do not support intersec-
tion of classes (in a Description Logics style). The second

constraint imposes that both domain and range declarations
of a property be unique. This is foremost required because
RDF/S do not support union of classes, which can be consid-
ered as the domain of properties. Furthermore, it is not pos-
sible to infer domains in case of specialization of properties
with multiple domains (see Figure 3 -b-). In this context,

the rdfs:Class de�nition should be used, in order to de�ne
a property with domain or range all the token resources.
Conforming to RDF/S, rdf:Resource should be used as
the domain or range, when we need to de�ne properties
viewing schema classes also as tokens (e.g., rdfs:seeAlso,
rdfs:isDefinedBy, rdfs:comment, rdfs:label).

3The symbol � extends � with equality.

Figure 3: Inconsistencies in Property Specialization

Last, we need to consider an additional constraint of a
syntactic nature, imposing that class and property de�ni-
tions be complete. This means that, on the one hand, super-
class and superproperty declarations should accompany the
class and property de�nitions respectively and, on the other
hand, the domain and range of a property should be given

along with the de�nition of the property. In this manner,
the extension of existing RDF hierarchies of names by re�n-
ing their classes and properties in a new namespace is still
permitted, while at the same time semantic inconsistencies
that may arise due to arbitrary unions of used hierarchies
are avoided. Such inconsistencies include the introduction of

multiple ranges of properties or the introduction of cycles in
class or property hierarchies. Unlike the current RDF M&S
and RDFS speci�cations [17, 6] this constraint ensures that
the union of two valid RDF hierarchies of names is always
valid. The imposed constraints (C3-C5) are summarized in
Table 2 using the notation introduced in this section.

3.2 RDF Typing System
In this context, RDF data can be atomic values (e.g.,

strings), resource URIs, and container values holding query

results, namely rdf:Bag (i.e., multi-sets) and rdf:Sequence

(i.e., lists). The main types foreseen by our model are:

� = �L j �U j f�g j [�] j (1 : � + 2 : � + : : :+ n : �)

where �L is a literal type in L, f:g is the Bag type, [:] is the

Sequence type, (:) is the Alternative type, and �U is the type
for resource URIs4. Alternatives capture the semantics of
union (or variant) types [8], and they are also ordered (i.e.,
integer labels play the role of union member markers). Since
there exists a prede�ned ordering of labels for sequences
and alternatives, labels can be omitted (for bags, labels are

meaningless). Furthermore, all types are mutually exclusive
(e.g., a literal value cannot also be a bag) and no subtyping
relation is de�ned in RDF/S (e.g., between bags of di�erent
types). The set of all type names is denoted by T .
The proposed type system o�ers all the arsenal we need

to capture containers with both homogeneous and heteroge-

neous member types, as well as, to interpret RDF schema
classes and properties. For instance, unnamed ordered tu-
ples denoted by [v1; v2; : : : ; vn] (where vi is of some type �i)
can be de�ned as heterogeneous sequences5 of type [(�1 +
�2 + : : :+ �n)]. Unlike traditional object data models, RDF
classes are then represented as unary relations of type f�Ug

while properties as binary relations of type f[�U ; �U]g (for
relationships) or f[�U ; �L]g (for attributes). Furthermore,
RDF containers can also be used to represent n-ary rela-
tions (e.g., as a bag of sequences). Finally, assignment of a

4In Section 5, we will see that our query language treats
URIs, i.e., identi�ers, as simple strings.
5Observe that, since tuples are ordered, for any two permu-
tations i1; : : : ; in and j1; : : : ; jn of 1; : : : ; n, [i1 : v1; : : : ; in :
vn] is distinct from [j1 : v1; : : : ; jn : vn].

�nite set of URIs (of type �U) to each class name6 is cap-

tured by a population function � : C ! 2U . The set of all
values forseen by our model is denoted by V .

De�nition 1. The interpretation function [[:]] is de�ned
as follows:
� for literal types: [[L]] = dom(L);

� for the Bag type, [[f�g]] = fv1; v2; : : : vng where v1; v2; : : : vn
2 V are values of type � ;

� for the Seq type, [[[�]]] = [v1; v2; : : : vn] where v1; v2; : : : vn
2 V are values of type � ;

� for the Alt type [[(�1+�2+ : : :+�n)]] = vi where vi 2 V
1 < i < n is a value of type �i;

� for each class c 2 C, [[c]] = �(c) [
S
c0�c

[[c0]];

� for each property p 2 P , [[p]] = f[v1; v2] j v1 2 [[domain(p)]];
v2 2 [[range(p)]]g [

S
p0�p

[[p0]].

As usual, the interpretation of classes and properties in
our model is set-based. This implies that a resource URI
appears only once in the extent of a class even when it is
classi�ed several times under its subclasses (i.e., it belongs to
the direct extent of the most speci�c class). The notation

^[[:]] is used in Table 2 to distinguish between strict and
extended interpretation of classes and properties.

3.3 RDF Description Bases and Schemas
De�nition 2. An RDF schema is a 5-tuple RS = (VS;

ES; ; �;H), where: VS is the set of nodes and ES is the set
of edges, H is a well-formed hierarchy of class and property
names H = (N;�), � is a labeling function � : VS [ES !

N [T , and is an incidence function : ES ! VS � VS.

The incidence function captures the rdfs:domain and rdfs:
range declarations of properties7. Note that the incidence
and labeling functions are total in VS [ES and ES respec-
tively. This does not exclude the case of schema nodes which
are not connected through an edge. Additionally, we impose
a unique name assumption on the labels of RS nodes and

edges.

De�nition 3. An RDF description base, instance of a
schema RS, is a 5-tuple RD = (VD; ED; ; �; �), where: VD
is a set of nodes and ED is a set of edges, is the incidence
function : ED ! VD�VD, � is a value function � : VD !
V , and � is a labeling function � : VD [ED ! 2N[T which
satis�es the following:
� for each node v in VD, � returns a set of names n 2
C[T where the value of v belongs to the interpretation
of each n: �(v) 2 [[n]];

� for each edge � in ED going from node v to node v0, �
returns a property name p 2 P .

Note that the labeling function captures the rdf:type dec-
laration that associates each RDF node with one or more
class names (opposite to traditional object models) which
may be de�ned in several well-formed hierarchies of names.
Additionally, integer labels (f1; 2; : : : g) are used as property

names by the members of RDF container values. The im-
posed constraints (C6-C7) are summarized in Table 2 using
the notation introduced in this section.

6Note that we consider here a non-disjoint object id assign-
ment to classes due to multiple classi�cation.
7Constraint C4 of Table 2 ensures that rdfs:domain and
rdfs:range are not any more relations as in the current
RDF M&S and RDFS speci�cations [17, 6].

Alphabets: C1 Class, Property and Type names are mutually exclusive
C \ P \ T = ;

C2 Literal, Resources and Container values are mutually exclusive
L \ U \ V n (L [U) = ;

Schema: C3 8c; c0; c00 2 C :
C3.1 � Class is the root of the class hierarchy:

c � Class
C3.2 � subClassOf relation is transitive:

c � c0; c0 � c00) c � c00

C3.3 � subClassOf relation is antisymmetric:
c � c0) c 6= c0

C4 Domain and range of properties should be de�ned and they should be unique:
8p 2 P; 9!c1 2 C (c1 = domain(p)) ^ 9!c2 2 C [TL (c2 = range(p))

C5 8p; p0; p00 2 P :

C5.1 � Property is the root of the property hierarchy:
p � Property

C5.2 � subPropertyOf relation is transitive:
p � p0; p0 � p00) p � p00

C5.3 � subPropertyOf relation is antisymmetric:

p � p0) p 6= p00

C5.4 � if p is subPropertyOf p0 then the domain (range) of p is a subset of the domain (range) of p0:
p � p0) domain(p) � domain(p0) ^ range(p) � range(p0)

Data: C6 8v 2 V :

C6.1 � if v is a URI then it is an instance of one or more classes not related by �:
v 2 U) �(v) � C
8c; c0 2 C; v 2 ^[[c]]; c � c0) v =2 ^[[c0]]

C6.2 � if v is a literal value then it is an instance of one (and only one) Literal type:
v 2 L) �(v) � TL and �(v) is a singleton

C6.3 � if v is a container value then it is an instance of one (and only one) Container type:

v 2 V n (L [U)) �(v) � TBjSjA and �(v) is a singleton
C7 8p 2 P; [v1; v2] 2 [[p]]:
C7.1 � if p belongs to the set f1; 2; : : : g then v1 is an instance of either rdf:Bag or rdf:Seq or rdf:Alt:

p 2 f1; 2; : : : g) �(v1) � TBjSjA
C7.2 � if p doesn't belong to the set f1; 2; : : : g then v1 (v2) belongs to the domain (range) of p:

p 2 P n f1; 2; : : : g) 9n 2 �(v1); n � domain(p) ^ 9m 2 �(v2);m � range(p)

C7.3 � Additionally, the direct extends of properties must be unique
p 2 P n f1; 2; : : : g) (8p0 2 P n f1; 2; : : : g; p � p0) [v1; v2] =2 ^[[p

0]])

Rei�cation: C8 A rei�ed statement should have exactly one rdf:predicate, rdf:subject and rdf:object property

Table 2: Formal De�nition of Imposed RDF Constraints

3.4 The Validating RDF Parser (VRP)
To conclude this section, we briey describe the Validat-

ing RDF Parser (VRP) we have implemented to analyze,

validate and process RDF descriptions. Unlike other RDF
parsers (e.g., SiRPAC8), VRP (see Figure 4) is based on
standard compiler generator tools for Java, namely CUP/-
JFlex (similar to YACC/LEX). As a result, users do not
need to install additional programs (e.g., XML Parsers) in

order to run VRP. The VRP BNF grammar can be eas-
ily extended or updated in case of changes in the RDF/S
speci�cations. VRP is a 100% Java(tm) development under-
standing embedded RDF in HTML or XML and providing
full Unicode support. The stream-based parsing support of
JFlex and the quick LALR grammar parsing of CUP ensure

good performance when processing large volumes of RDF
descriptions. Currently VRP is a command line tool with
various options to generate a textual representation of the
internal model (either graph or triple based).
The most distinctive feature of VRP is its ability to verify

8www.w3.org/RDF/Implementations/SiRPAC

the constraints speci�ed in the RDF M&S and RDFS speci-

�cations [17, 6] as well as the additional constraints we intro-
duced previously (see Table 2). This permits the validation
of both the RDF descriptions against one or more RDFS
schemas, and the schemas themselves. The VRP validation
module relies on (a) a complete and sound algorithm [24] to
translate descriptions from an RDF/XML form (using both

the Basic and Compact serialization syntax) into the RDF
triple-based model (b) an internal object representation of
this model in Java, allowing to separate RDF schema from
data information. As we will see in the sequel, this approach
enables a �ne-grained processing of RDF statements w.r.t.
their type, which is crucial in order to implement an incre-
mental loading of RDF descriptions and schemas.

4. THE RDF SCHEMA SPECIFIC DATABASE
This section describes the persistent RDF store (RSSDB)

for loading resource descriptions in an object-relational DBMS
(ORDBMS). We begin by presenting our schema generation
strategy in comparison to monolithic approaches [20, 18, 7]

representing resource descriptions and schemas as triples.

Figure 4: The Validating RDF Parser (VRP)

The core RDF/S model is represented by four tables (see
Figure 6-A), namely, Class, Property, SubClass and Sub-

Property which capture the class and property hierarchies

de�ned in an RDF schema. To save space when storing class
and properties names, we also consider a table NameSpace

keeping the namespaces of the RDF Schemas stored in the
ORDBMS. Furthermore, a table Type is used to hold the
names of RDF/S built-in types (e.g., rdf:Property, rdfs:-

Class), as well as, those of Container (e.g., rdf:Bag, rdf:Seq,
rdf:Alt) and Literal types (e.g., string, integer, date).
The main novelty of our representation is the separation
of the RDF schema from data information, as well, as the
distinction between unary and binary relations holding the
instances of classes and properties. More precisely, class ta-

bles store the URIs of resources while property tables store
the URIs of the source and target nodes of the property.
Indices are constructed on the attributes URI, source and
target of the above tables in order to speed up joins and
the selection of speci�c tuples of the tables. Indices are also
constructed on the attributes lpart, nsid and id of the ta-

bles Class and Property and on the attribute subid of the
tables SubClass and SubProperty.
It should be stressed that the taxonomic relationships

between schema labels is captured by the SubClass and
SubProperty tables, while the corresponding instance tables
are also connected through the subtable relationship, sup-

ported today by all ORDBMSs9. In other words, RSSDB
relies on a schema speci�c representation of resource de-
scriptions, called SpecRepr, similar to the attribute-based ap-
proach proposed for storing XML data [13, 23]. SpecRepr
preserves the exibility of RDF in re�ning schemas and/or

enriching descriptions at any time, and as we will see in the
sequel, it can be customized in several ways according to the
speci�cities of both the manipulated description bases and
the RDF application scenario (i.e., querying functionality).
This is not the case of other proposals employing a mono-

lithic table [20, 18, 7] to represent RDF metadata under

the form of triples. These approaches provide a generic rep-
resentation (i.e., for all RDF schemas), called GenRepr, of
both RDF schemas and resource descriptions using two ta-
bles (see Figure 6-B), namely, Resources and Triples. The
former represents each resource (including schema classes
and properties) by a unique id whereas the latter represents
the statements made about the resources (including classes
and properties) under the form of predicate-subject-object
triples (captured by predid, subid and objid respectively).
Note that in the Triples table we distinguish between prop-
erties representing attributes (i.e., objvalue with literal val-
ues) and those relationships between resources (i.e., objid

9Note that the syntactic constraint (see Section 3) impos-
ing complete class and property de�nitions, ensures that
the table hierarchy created in RSSDB can be only extended
through specialization

Figure 5: RDF Schema Speci�c DataBase & Loader

with URI object values). Indices (i.e., B-trees) are con-

structed for all table attributes.
Compared to GenRepr, our SpecRepr is exible enough

to allow the customization of the physical representation of
RDF metadata in the underlying ORDBMS. This is impor-
tant since no representation is good for all purposes and in
most real-scale RDF applications variations of a basic rep-

resentation are required to take into account the speci�c
characteristics of employed schema classes and properties.
Our main goal here is to reduce the total number of cre-
ated instance tables. This is justi�ed by the fact that some
commercial ORDBMSs (and not PostgreSQL) permit only
a limited number of tables. Furthermore, numerous tables

(e.g., the ODP catalog implies the creation of 252840 tables,
i.e. one for each topic) have a signi�cant overhead on the
response time of all queries (i.e., to �nd and open a table,
its attributes, etc.). One of the possible variations we have
experimented for the ODP catalog is the representation of

all class instances by a unique table Instances (see dashed
rectangular in Figure 6-A). This table has two attributes,
namely uri and classid, for keeping the uri's of the re-
sources and the id's of the classes in which resources belong.
The bene�ts of this SpecRepr variation are illustrated in Sec-
tion 6 given that most ODP classes (i.e. topics) have few or

no instances at all (more than 90% of the ODP topics con-
tain less than 30 URIs). For other RDF schemas it could be
also interesting to represent in a similar way all the instances
of properties, but in general real-scale RDF schemas have
more classes than properties. Another alternative to our ba-
sic SpecRepr could be the representation of properties with

range a literal type, as attributes of the tables created for the
domain of this property. Consequently, new attributes will
be added to the created class tables. The tables created for
properties with range a class will remain unchanged. The
above representation is applicable to RDF schemas where
attribute-properties are single-valued and they are not spe-

cialized. Finally, our SpecRepr opens the way for a more
cleaver representation of class and property names using ap-
propriate encoding systems that preserve the taxonomic re-
lationships of schema labels and enable to optimize recursive
traversals on subclass (or subproperty) hierarchies.

4.1 The RDF Description Loader
Figure 5 depicts the architecture of our system for loading

RDF metadata in an ORDBMS, namely PostgreSQL10. The
loader has been implemented [4] in Java and communication

10www.postgresql.org

Figure 6: Relational Representation of RDF Description Bases

with PostgreSQL relies on the JDBC protocol.

The loader comprises two main modules. The �rst mod-
ule checks the consistency of analyzed schemas descriptions
in comparison with the stored information in the ORDBMS.
For example, in case that an analyzed property has already
been stored, it checks whether its domain and range are the

same as the ones stored in the ORDBMS. Another func-
tionality of this module is the validation of RDF metadata
based on stored RDF schemas instead of connecting to the
respective namespaces. Thus, we avoid analyzing and vali-
dating repeatedly the RDF schemas used in metadata and
reduce the required main memory, since only parts of RDF

schemata are fetched. Consequently, our system enables in-
cemental loading of RDF descriptions and schemas, which
is crucial for handling large RDF schemas and even larger
RDF description volumes created using multiple schemas.
The second module implements the loading of RDF de-

scriptions in the DBMS. To this end, a number of load-

ing methods have been implemented as member functions
of the related VRP internal classes. Speci�cally, for every
attribute of the classes of the VRP model, a method is cre-
ated for storing the attribute of the created object in the
ORDBMS. For example, the method storetype is de�ned
for the class RDF Resource, in order to store object type

information. The primitive methods of each class are incor-
porated in a storage method de�ned in the respective class
invoked during the loading process. A two-phase algorithm
is used for loading the RDF descriptions. During the �rst
phase, RDF class and properties are stored to create the cor-

responding schema. During the second phase the database
is populated with resource descriptions.

5. QUERYING RDF DESCRIPTION BASES
As shown in Table 1, the catalog of Portals like Netscape

Open Directory comprises huge hierarchies of classes and an
even bigger number of resource descriptions. It becomes ev-
ident that browsing such large description bases is a quite
cumbersome and time-consuming task. Consider, for in-
stance, that we are looking for information about hotels
in Paris, under the topic Regional of ODP (see Figure 2).

ODP allows users to navigate through the topic hierarchy;
as shown in Table 1, even if one knows the exact path to
follow, this would require approximately 8 steps, in order to
reach the required topics (i.e., Hotels, Hotel Directories in
Figure 2). Then, in order to �nd the URIs of the sites whose
title matches the string "*Opera*", users are forced to man-

ually browse the entire collection of resources directly classi-

�ed under the topic of interest. Note that, in order to locate

resources classi�ed under the subtopics (e.g., Hotel Directo-
ries) of a given topic, browsing should be continued by the
users. RQL aims to simplify such tasks, by providing power-
ful path expressions permitting smooth �ltering/navigation
on both Portal schemas and resource descriptions. Then the

previous query can be expressed as follows:
Q: Find the resources under the hierarchy Regional, about

hotels in Paris whose title matches "*Opera*".
select Z
from (select $X

from Regionalf:$Xg
where $X like "*Hotel*"

and $X < Paris)fYg.fZgtitlefTg
where T like "*Opera*"
The schema path expression in the from clause of the

nested query, states that we are interested in classes (vari-
ables pre�xed by $ like $X) specializing the root Regional.

Then, the �ltering condition in the where clause will re-
tain only the classes whose name matches "*Hotel*" and
they are also subclasses of Paris (e.g., Hotel and Hotel Di-
rectories. Here, to get all relevant topics, the only required
schema knowledge is that the subtopics of Regional contain
geographical information and a topic Paris is somewhere in

the hierarchy. Thanks to RQL typing, variable Y is of type
class name and ranges over the result of the nested query.
The data path expression in the outer query iterates over the
source (variable Z of type resource URI) and target values
(variable T of type resource URI) of the title property. The
\." implies an implicit join condition between the extent of

each class valuating Y and the resources valuating Z. Fi-
nally, the result of Q will be a bag of resources whose title
value matches "*Opera*". Obviously, RQL schema queries

are far more powerful than the corresponding topic queries

of common portals, which allow only full-text queries on the

names of topics. Furthermore, compositions of schema and

data queries like Q, are not possible in current portals, since
one cannot specify that some query terms should match the
topic names and other should be found in the descriptions
of the resources.
To make things more complex, relevant information in

portals may also be found under di�erent hierarchies, that
may be \connected" through related links. For example, as
we can see in Figure 2, information about hotels in Paris
may also be found in the Recreation hierarchy. Moreover,
such links are not necessarily bi-directional; thus, a user
starting from the Regional hierarchy may never �nd out

that similar information may be found under Recreation

Z

Project

T like ‘‘*Opera*’’

DJoin

Select

Semijoin

W = Z
title[Z,T]^(Y)[W]

$X

subclassOf(Regional)[$X]
$X < Paris
and
$X like ‘‘*Hotel*’’

Project

Y:$X

Map

Select

Z

Project

T like ‘‘*Opera*’’

DJoin

Select

$X

subclassOf(Regional)[$X]
$X < Paris
and
$X like ‘‘*Hotel*’’

Project

Y:$X

Map

Select

Semijoin

W = Z
title[Z,T]

C = Y

Select

Instance[C,W]

Z

Project

T like ‘‘*Opera*’’

Select

title[Z,T]
subclassOf(Regional)[Y]

and

Select Join

Join

Y like ‘‘*Hotel*’’

Y < Paris

Y = C

W = Z
Instance[C,W]

(a) (b) (c)

Figure 7: Example of an RQL Query Optimization

e.g., Vacation-Rentals. For such cases, RQL path expres-
sions allow us to navigate through schemas as for exam-
ple, f: $Zgrelated:Regionalf: $Xg. The above examples
illustrate a unique feature of RQL, namely that RQL pro-
vides the ability to smoothly switch between schema and

data querying while exploiting - in a transparent way - the
taxonomies of labels and multiple classi�cation of resources
(unlike logic-based RDF query languages, e.g., SiLRI [11],
Metalog [19]). More examples on RQL can be found in [14].

5.1 RQL Interpreter
The RQL interpreter, implemented in C++, consists of

(a) the parser, analyzing the syntax of queries; (b) the graph
constructor, capturing the semantics of queries in terms of

typing and interdependencies of involved expressions; and
(c) the evaluation engine, accessing RDF descriptions from
the underlying database [16]. Since our implementation re-
lies on a full-edged ORDBMS like PostgreSQL, the goal
of the RQL optimizer is to push as much as possible query
evaluation to the underlying SQL3 engine. Then pushing

selections or reordering joins to evaluate RQL path expres-
sions is left to PostgreSQL while the evaluation of RQL
functions for traversing class and property hierarchies relies
on the existence of appropriate indices (see Section 6). The
main diÆculty in translating an entire RQL algebraic ex-
pression (expressed in an object algebra a la [10]) to a single

SQL3 query is due to the fact that most RQL path expres-
sions interleave schema with data querying [9]. This is the
case of the query Q presented previously.
Figure 7 (a) illustrates the algebraic translation of Q. The

translation of the nested query - given in the left branch -

is rather straightforward: the class variable $X over all the
subclasses of Regional and its values are �ltered according
to the conditions in the where clause. The operator Map on
top is a simple variable renaming for the iterator (Y) de�ned
over the nested query result. Then, the data path expression
in the from clause is translated into a semi-join between the

source-values of title and the proper instances of the class
extents (W) returned by the nested query, as shown in the
right branch. The connection between the two expressions
is captured by a Djoin operation (i.e., a dependent join in
which the evaluation of the right expression depends on the
evaluation of the left one). Djoin corresponds to a nested

loop evaluation with values of variable Y passed from the

left-hand side (i.e., nested query) to the right-hand side.
Using the database representation, we can substitute the
scan operation on class instances (^(Y)[W]) with a selection
on the Instances relation, as shown in Figure 7 (b). Then,
each of the subqueries in the shadow boxes can be pushed

down to PostgreSQL, leaving the evaluation of the Djoin to
the interpreter. However, transforming the semijoin on the
right into a join and pushing the selection criterium C =
Y up to the Djoin operation leads to the evaluation plan
shown in Figure 7 (c). As one can see, the whole query
is expressible in SQL3 (subclassof and issubclassof are

procedural SQL functions) as follows:
select Z.source
from subclassesof(Regional) Y, Intances I, title* Z
where issubclassOf(X, Paris) and X like *Hotel" and

I.classid=Y and Z.source=I.uri and
Z.target like *Opera*"

Note that the * indicates an extended interpretation of

tables, according to the subtable hierarchy. Thus, the whole
query can be pushed down to PostgreSQL, and the Post-
greSQL optimizer can perform on further (common) opti-
mizations, as pushing down selections, join reordering etc.

6. PERFORMANCE TESTS
In order to evaluate the performance of the two represen-

tations, we used as testbed the RDF dump of the Open Di-
rectory Catalog (version of 16-01-2001). Experiments have
been carried out on a Sun with two UltraSPARC-II 450MHz
processors and 1 GB of main memory, using PostgreSQL
(Version 7.0.2) with Unicode con�guration. During loading
and querying, we have used 1000 and 10000 bu�ers (of size

8KB) respectively. We have loaded 15 ODP hierarchies (see
Table 1) with a total number of 252825 topics (i.e., classes)
contained in 51MB of RDF/XML �les11. For these hierar-
chies, we have also loaded the corresponding descriptions of
1770781 resource URIs (672MB).

6.1 Loading
The leftmost graph of Figure 8 depicts the database size

required to load the ODP schema and resource descrip-
tions measured in terms of triples in the schema-speci�c

(SpecRepr) and in the generic (GenRepr) representation sche-
mes. Note that to each class de�nition correspond two

11This is the volume of the pure ODP schema, produced
when properties attributed to the classes are removed.

Figure 8: Statistics for Loading Schema and Resource Descriptions

triples: one for the class itself and one for its unique super-
class (multiple class specialization is not used in the ODP
Catalog). We can observe that in both representations the
size of the DBMS scales linearly with the number of schema
triples. The tests show that, in SpecRepr, each schema

triple requires on average 0.086KB versus 0.1582KB in the
GenRepr. This is mainly attributed to the space saved in
SpecRepr due to the Namespace table, as well as to the fact
that for each class de�nition in GenRepr three tuples are
stored: one in table Resources and two tuples in table
Triples (i.e., 1770781 extra tuples). Although not illus-

trated here, the average time for loading a schema triple is
about 0.0021 sec and 0.0025 sec respectively in the two rep-
resentations. The time required to store a schema triple is
larger in GenRepr because of extra (252825) tuples stored.
When indices are constructed, the average storage volumes
per schema triple become 0.1734KB (SpecRepr) and 0.3062KB
(GenRepr) and the average loading times become 0.0025 sec
and 0.00317 sec respectively. The total validation time for
the ODP schema is 1539 sec.
The database size required for the resource descriptions

is shown in the rightmost graph of Figure 8. As expected,
the DBMS size in both representations scales linearly with

the number of data triples. The average space required to
store a data triple is 0.123KB in both representations. This
should not appear as a surprise since the extra space re-
quired in SpecRepr for storing the URIs of resources in the
property tables compensates for the extra tuples stored for
each resource description in GenRepr. Note that we could

obtain better storage volumes in the SpecRepr by encoding
the resource URIs as integers, as we did in the GenRepr,
but this solution comes with extra loading and join costs
(between the class and property tables) for the retrieval of
the URIs. The tests also show that the average time for

loading a data triple is about 0.0033 sec and 0.0039 sec
respectively in the two representations. When indices are
constructed, the average storage volumes per data triple be-
come 0.2566KB (SpecRepr) and 0.2706KB (GenRepr) while
the average loading time become 0.0043 sec and 0.00457 sec
respectively. Despite the use of ids, the indexes in GenRepr
take up more space because of: a) the extra tuples stored
b) the index constructed on the predid attribute for which
there is no corresponding index in SpecRepr.
To summarize, after loading the entire ODP catalog, the

size of tables in GenRepr is 545MB for Triples (5835756 tu-

ples), 202MB for Resources (2022869 tuples) and the total
size of indexes on these tables is 900MB. In SpecRepr, the
size is 32MB for Class (252825 tuples), 8KB for Property

(5 tuples), 11MB for SubClass (252825 tuples) and 0MB for
SubProperty, and the total size of indexes on these tables is

44MB. The size of the Instances table is 150MB (1770781
tuples) whereas the size of indexes created on it is 140 MB.

6.2 Querying
Table 3 describes the RDF query templates that we used

for our experiments, as well as their respective algebraic ex-
pressions in the two representations (capital letters abreviate
the table names of Figure 6). This benchmark illustrates the
desired querying functionality for RDF description bases,
namely: a) pure schema queries on class and property de�-

nitions (e.g., Q1-Q4); b) queries on resource descriptions us-
ing available schema knowledge (e.g., Q5-Q9); and c) schema
queries for speci�c resource descriptions (e.g., Q10, Q11). As
a matter of fact, these query templates depict the core func-
tionality of RQL presented in the previous section.
To get signi�cant experimental results, we carried out all

benchmark queries several times: one initially to warm up
the database bu�ers and then nine times to get the average
execution time of a query. Table 4 illustrates the obtained
execution time (in sec) for both representations in up to
three di�erent result cases per query. The main observa-
tion is that SpecRepr outperforms GenRepr for all types of
queries considered. The deviation in performance is more
apparent in the cases where self-join computations on the
large Triples table are required.
GenRepr and SpecRepr exhibit comparable performance

in queries Q1, Q2, Q5, Q7, Q10 and Q11, with SpecRepr
outperforming GenRepr by a factor of up to 3.73 approx-
imately. This is clearly illustrated in Q1, where one tu-
ple is selected from both table Triples (selectivity 1,7e-
5%) and Property (selectivity 20%) using index and se-
quential scans respectively. As expected, in Q2, we can see
that the time required to �lter a table in both representa-

tions depends on the number of tuples in the query results:
we have experimented with classes having 1, 30, 314 sub-
classes which represent in GenRepr (SpecRepr) selectivities
of 1.7e-5% (3.955e-4%), 5.14e-4% (1,19e-2%) and 5.38e-3%
(0.124%) for table Triples (SubClass) in the three cases
respectively. The (semi-)joins involved in the evaluation of

queries Q5, Q7 and Q11 incur an additional cost for GenRepr,

Query Description Algebraic Expression Algebraic Expression
in GenRepr in SpecRepr

Q1 Find the range (or domain) �predid=9^subjid=propid(T) �id=propid(P)

of a property

Q2 Find the direct subclasses �predid=6^objid=clsid(T) �superid=clsid(SC)

of a class

Q3 Find the transitive sub- repeat Wi (Wi�1 repeat Wi (Wi�1

classes of a class >�id=subjid(�predid=6(T)))�Wi�1 >�id=superidSC)�Wi�1

until Wi =Wi�1 until Wi =Wi�1

Q4 Check if a class is a repeat Wi (Wi�1 repeat Wi (Wi�1

subclass of another class >�id=objid(�predid=6(T)))�Wi�1 >�id=subidSC)�Wi�1

until Wi =Wi�1 _ clsid 2Wi until Wi =Wi�1 _ clsid 2 Wi

Q5 Find the direct extent of (�predid=5^objid=clsid(T)) �id=clsid(I)

a class (or property) >�subjid=idR

Q6 Find the transitive extent [clsid2Q3((�predid=5^objid=clsid(T)) [clsid2Q3(�id=clsid(I))

of a class (or property) >�subjid=idR)

Q7 Find if a resource is (�predid=5^objid=clsid(T)) �URI=r^id=clsid(I)

an instance of a class 1subjid=id (�URI=r(R))

Q8 Find the resources having (�predid=propid^objvalue=val(T)) �target=val(tpropid)

a property with a speci�c 1subjid=id R
(or range of) value(s)

Q9 Find the instances of a class (�predid=5^objid=clsid(T)) (�id=clsid(I)) >�source=URI

that have a given property >�subjid=subjid(�predid=propid(T)) (tpropid)

>�subjid=id(R)

Q10 Find the properties of a (�URI=r(R)) 1id=subjid [propid2P (�source=r(tpropid))

resource and their values (�predid6=5(T)) 1predid=id (R)

Q11 Find the classes under which (�URI=r(R)) >�id=subjid�predid=6(T) �URI=r(I)
a resource is classi�ed

Table 3: Benchmark Query Templates for RDF Description Bases

whereas in Q10 the join cost (for GenRepr) is comparable to
the cost of evaluating set union (for SpecRepr).
Queries Q3, Q4 and Q6 involve a transitive closure compu-

tation (using a variation of the Æ-wavefront algorithm [21])

over the subclass hierarchy. SpecRepr outperforms GenRepr
by a factor of up to 2.8. In Q3 and Q6, we use the same
three classes having 3, 30 and 3879 subclasses and a total of
2, 20 and 9049 instances respectively. The execution times
in these three cases depend on the sizes of intermediate re-

sults (i.e., the costs of joins involving the tables Triples or
SubClass) as well as, the number of iteration steps of the
algorithm (i.e., the length of the longest path from the given
class to its leaves, called depth). In Q4, for the same root
class, we have checked for subclasses residing at depth 3,
5 and 7 respectively. The di�erence in the obtained times

between Q3, Q6 and Q4 is due to the di�erent evaluation
method used: "top-down" for the former (i.e., from the sub-
tree root to the leaves) and "bottom-up" for the latter.
In the case of queries Q8 and Q9 SpecRepr exhibits a much

better performance than GenRepr. GenRepr reaches its lim-
its when table Triples needs to be self-joined (here Post-

greSQL uses a hash join algorithm), whereas in SpecRepr,
a join between two small tables suÆces to be evaluated as
expected. Speci�cally, SpecRepr outperforms GenRepr by a
factor ranging from 1753 up to 95538. Note that GenRep
will su�er similar performance limitations in the evaluation
of queries involving complex path expressions (e.g., in more

sophisticated schemas than in the case of the ODP cata-
log) which will essentially result in a number of self-joins of
table Triples. Query Q8 has been tested for value ranges
returning 1, 10 and 40 resources respectively. In SpecRepr,

its evaluation involves index scans on the property table,
whereas in GenRepr di�erent evaluation plans are executed
in each case. Q9 has been tested for three properties with
6292, 52029 and 1770584 instances respectively.

To summarize, SpecRepr outperforms GenRepr, which -
in the case of complex path expressions - pays a severe per-
formance penalty for maintaining large tables. We argue
that the performance of SpecRepr can be further improved
by employing an appropriate encoding system (e.g., Dewey,

post�x, pre�x, etc.) that preserves the taxonomic relation-
ships of schema labels. In this way, checking subclass rela-
tionships can be done in constant time. We believe that this
approach will prove to be quite useful, not only for RDF, but
for tree-structured data, such as XML [2].

7. SUMMARY
In this paper we presented the architecture and function-

ality of ICS-FORTH RDFSuite, a suite of tools for RDF
metadata management. RDFSuite addresses a notable need

for RDF processing in Web-based applications (such as Web
portals) that aim to provide a rich information content made
up of large numbers of heterogeneous resource descriptions.
It comprises eÆcient mechanisms for parsing and validating
RDF descriptions, loading into an ORDBMS as well as query
processing and optimization in RQL. We also presented a

formal data model for RDF metadata and de�ned a set of
constraints that enforce consistency of RDF schemas, thus
enabling the incremental validation and loading of volumi-
nous description bases. We argue that, given the immense
volumes of information content in Web Portals, this is a vi-
able approach to providing persistent storage for Web meta-

data. By the same token, eÆcient access to information in

Query Generic Speci�c

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Q1
Q2
Q3
Q4

Q5
Q6
Q7
Q8
Q9
Q10

Q11

0.0015
0.0017 0.0028 0.02
0.0460 0.082 344.91
0.033 0.0415 0.0662

0.0043 0.008 0.04
0.0573 0.315 627.43
0.0034 0.0034 0.0034
124.20 365.73 675.42
110.58 117.68 185.7
0.0072 0.0072 0.0072

0.0035 0.0043 0.0056

0.0012
0.0012 0.0022 0.0124
0.0463 0.0612 341.98
0.0333 0.0415 0.0662

0.0015 0.0028 0.027
0.0508 0.1118 482.45
0.0016 0.0016 0.00174
0.0013 0.0069 0.0466
0.031 0.0338 0.1059
0.0071 0.0071 0.0076

0.0013 0.0015 0.0015

Table 4: Execution Time of RDF Benchmark Queries

such Portal applications is only feasible using a declarative
language providing the ability to query schema and data

and to exploit schema organization for the purpose of op-
timization. We also reported on the results of preliminary
tests conducted for assessing the performance of the loading
component of RDFSuite. These results illustrate that the
approach followed is not only feasible, but also promising for

yielding considerable performance gains in query processing,
as compared to monolithic approaches.
Current research and development e�orts focus on study-

ing the transactional aspects of loading RDF descriptions in
an ORDBMS, as well as, the problem of updating or revising
description bases. A detailed analysis of query optimiza-

tion using alternative representation schemes is underway.
Furthermore, appropriate index structures for reducing the
cost of recursive querying of deep hierarchies need to be de-
vised as well. Speci�cally, an implementation of hierarchy
linearization is underway, exploring alternative node encod-
ings. Last, but not least, we intend to extend our formal

data model to capture higher-order aspects such as state-
ment rei�cation.

8. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann, 1999.

[2] S. Abiteboul, H. Kaplan, and T. Milo. Compact
labeling schemes for ancestor queries. In 12th
Symposium on Discrete Algorithms, 2001.

[3] Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison-Wesley, 1995.

[4] S. Alexaki. Storage of RDF Metadata for Community

Web Portals. Master's thesis, Univ. of Crete, 2000.

[5] G. Beged-Dov et.al. RSS 1.0 Speci�cation Protocol.
Draft, August 2000.

[6] D. Brickley and R.V. Guha. Resource Description
Framework (RDF) Schema Speci�cation 1.0, W3C
Candidate Recommendation. Technical report, , 2000.

[7] D. Brickley and L. Miller. Rdf, sql and the semantic
web - a case study. Available at
ilrt.org/discovery/2000/10/swsql/.

[8] L. Cardelli. A semantics of multiple inheritance.

Information and Computation, 76(2/3):138{164, 1988.

[9] V. Christophides, S. Cluet, and G. Moerkotte.
Evaluating Queries with Generalized Path
Expressions. In Proc. of ACM SIGMOD, pages
413{422, 1996.

[10] S. Cluet and G. Moerkotte. Nested Queries in Object
Bases. In DBPL'93, pages 226{242, 1993.

[11] S. Decker, D. Brickley, J. Saarela, and J. Angele. A
query and inference service for rdf. In W3C QL
Workshop, 1998.

[12] C. Finkelstein and P. Aiken. Building Corporate
Portals using XML. McGraw-Hill, 1999.

[13] D. Florescu and D. Kossmann. A performance

evaluation of alternative mapping schemes for storing
xml data in a relational database. Technical Report
3680, INRIA Rocquencourt, France, 1999.

[14] ICS-FORTH. The ICS-FORTH RDFSuite web site.

http://139.91.183.30:9090/RDF, 2001.

[15] ISO. Information Processing-Text and OÆce Systems-
Standard Generalized Markup Language (SGML).
ISO 8879, 1986.

[16] G. Karvounarakis. A Declarative RDF Metadata
Query Language for Community Web Portals.
Master's thesis, University of Crete, 2000.

[17] O. Lassila and R. Swick. Resource Description
Framework (RDF) Model and Syntax Speci�cation,
W3C Recommendation. Technical report, , 1999.

[18] J. Liljegren. Description of an rdf database
implementation. Available at
WWW-DB.stanford.edu/~melnik/rdf/db-jonas.html.

[19] M. Marchiori and J. Saarela. Query + metadata +

logic = metalog. In W3C QL Workshop, 1998.

[20] S. Melnik. Storing rdf in a relational database.
Available at
http://WWW-DB.stanford.edu/~melnik/rdf/db.html.

[21] G. Qadah, L. Henschen, and J. Kim. EÆcient
Algorithms for the Instantiated Transitive Closure
Queries. IEEE Transactions on Software Engineering,
17(3):296{309, 1991.

[22] Some proposed RDF APIs.
GINF, RADIX, Mozzila, Jena, Redland:
www.w3.org/RDF/Interest.

[23] F. Tian, D. DeWitt, J. Chen, and C. Zhang. The
Design and Performance Evaluation of Alternative
XML Storage Strategies. Technical report, Univ. of
Wisconsin, 2000.

[24] K. Tolle. ICS-Validating RDF Parser: A Tool for
Parsing and Validating RDF Metadata and Schemas.
Master's thesis, University of Hannover, 2000.

[25] S. Weibel, J. Miller, and R. Daniel. Dublin Core. In

OCLC/NCSA metadata workshop report, 1995.

[26] Web service description language www106.ibm.com.

/developerworks/library/ws-rdf, 2000.

