
Semantic Web Languages:
RDF vs. SOAP Serialisation

Stefan Haustein
University of Dortmund,
Computer Science VIII,

D-44221 Dortmund, Germany

haustein@ls8.cs.uni-dortmund.de

ABSTRACT
Although RDF is considered the Semantic Web language,
it may not be the only one. SOAP serialisation provides
several advantages, especially if the Semantic Web is not
just about providing meta data for existing web pages, but
also about exchange of content that is machine-readable in
the �rst place. This paper discusses some problems with
the RDF syntax and data model. RDF is compared to
SOAP, and some SOAP advantages like better integration
with existing standards and systems, improved readability,
and industry support are pointed out.

Keywords: SOAP Serialisation, RDF, RDFS, Object-
Orientation

1. INTRODUCTION
What are the consequences if the term \Semantic Web"

does not just mean HTML with some meta-data, but also
content that is machine-readable in the �rst place, thus be-
ing suitable for applications like software agent communica-
tion? Although RDF is suitable for that purpose, its syntax
and data model are clearly optimised for annotating exist-
ing documents with meta data, describing existing web re-
sources using a machine readable format.
In contrast to HTML, the exibility of XML allows stor-

ing all relevant (meta) data in a machine-readable format
in the �rst place. With the increasing separation of content
and layout into XML and XSLT �les, and the dynamic gen-
eration of (X)HTML, the need for a separate meta model
may decrease. Naturally, RDF is well suited for annotat-
ing the generated HTML with information like PICS, but is
content annotation really all the Semantic Web is about?
This article discusses some serious issues concerning the

RDF syntax and data model when used as a primary ma-
chine readable content format, instead of just adding meta-
data to existing HTML or XML pages. It presents SOAP
serialisation as an alternative. In contrast to [16], the sug-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission by the authors.
Semantic Web Workshop2001 Hongkong, China
Copyright by the authors.

gestion is not to use SOAP just as a syntax encoding of the
RDF data model but to build a part of the Semantic Web
on SOAP serialisation in the �rst place.

2. RDF EVOLUTION
The Resource Description Framework (RDF) [15] was

originally designed by the World Wide Web Consortium
(W3C) as a meta-language for annotating existing web pages
with additional machine-readable information. A typical
RDF application is the Platform for Internet Content Se-
lection (PICS) [6], that is intended to annotate existing web
resources with meta-data about e.g. the suitability of the
content for children.
Although RDF was originally designed for annotation of

existing web pages only, it is currently widely considered
as machine-readable format for the Semantic Web and the
DARPA Agent Meta Language (DAML).
However, when using RDF as the primary information

format, and not just for meta data annotation, some issues
arise. These problems are described in detail in the following
sections. For an overview of additional general RDF issues
and inconsistencies, the reader is referred to [4] and [10].

3. RDF SYNTAX ISSUES
The requirement that RDF should be usable for annotat-

ing existing pages with meta-data without breaking browser
compatibility for the actual content resulted in a syntax that
is more complicated than necessary for plain RDF docu-
ments. Also, several alternative syntax forms exist. All
alternatives are semantically equivalent, but have di�erent
e�ects on the rendering process in the browser that is used
to view the document.
The general RDF syntax consists of simple resource de-

scriptions (\properties") embedded in a \description" ele-
ment. In order to illustrate RDF and SOAP syntax alterna-
tives, a FIPA 2000 Agent Platform description [14] is used as
a common example here, where the serialised instances are
taken from the Paris Agentcities node ApDescription1 . Al-
though the Paris node Agent Platform Description consists
of four small objects only, the corresponding RDF serialisa-
tion (�gure 1) becomes rather verbose.
In the RDF example, the rdf:Description elements are

already replaced by their abbreviated form for improved

1see http://www.agentcities.org/Cities/paris city.html, the
dashes are replaced by \Camel" syntax for compatibility



<ApDescription id="1">
<name>paris.agentcities.org</name>
<dynamic>true</dynamic>
<mobility>true</mobility>
<transportProfile>

<ApTransportDescription id="2">
<availableMtps>
<rdf:Bag>
<rdf:li>

<MtpDescription id="3">
<mtpName>fipa.mts.mtp.iiop.std</mtpName>
<addresses>
<rdf:Bag>

<rdf:li>iiop://leap.crm-paris.com:9000/paris.agentcities.org/acc</rdf:li>
<rdf:li>iiopname://leap.crm-paris.com:9000/paris.agentcities.org/acc</rdf:li>

</rdf:Bag>
</addresses>

</MtpDescription>

</rdf:li>
<rdf:li>

<MtpDescription id="4">
<mtpName>fipa.mts.mtp.http.std</mtpName>
<addresses>
<rdf:Bag>
<rdf:li>http://leap.crm-paris.com:8080/acc</rdf:li>
</rdf:Bag>
</addresses>
</MtpDescription>

</rdf:li>
</rdf:Bag>

</availableMtps>
</ApTransportDescription>

</transportProfile>
</ApDescription>

Figure 1: RDF Syntax Example



readability. The example encoding is not the only RDF en-
coding option, though. RDF allows several syntax variants:

Resource description and type abbreviation: An
rdf:Description element may be replaced by an
element named like the type of the resource described,
also obsoleting a corresponding rdf:type element.
In the example, the abbreviated form was already
used. All object descriptions in the example could
be replaced by the corresponding standard form. For
example,

<ApDescription id="1">
...

</ApDescription>

is equivalent to

<rdf:Description>
<type resource="&fipaNS;#ApDescription" />
...

</rdf:Description>

Obviously, the second variant adds �ve extra elements
to the example code.

Using attributes instead of elements: RDF elements
may be replaced by attributes if they occur only once
in their parent element, and contain only literal text
without further substructures. For example, some of
the ApDescription sub-elements could be replaced by
attributes:

<ApDescription id="1">
<name>paris.agentcities.org</name>
<dynamic>true</dynamic>
<mobility>true</mobility>
...

</ApDescription>

is equivalent to

<ApDescription id="1"
name="paris.agentcities.org"
dynamic="true" mobility="true">
...

</ApDescription>

Nesting instead of linking Instead of referring to an ob-
ject using the rdf:resource attribute, the correspond-
ing object can be embedded into the predicate element.
In the original example, all objects are embedded for
better readability.

<ApDescription id="1">
<name>paris.agentcities.org</name>
<dynamic>true</dynamic>
<mobility>true</mobility>
<transportProfile>
<ApTransportDescription id="2">

...
</ApTransportDescription>
</transportProfile>
</ApDescription>

is equivalent to

<ApDescription id="1">
<name>paris.agentcities.org</name>
<dynamic>true</dynamic>
<mobility>true</mobility>
<transportProfile resource="#2" />
</ApDescription>

<ApTransportDescription id="2">
...

</ApTransportDescription>

The various RDF syntax options lead to two main prob-
lems: XSLT (and XML Schema) compatibility problems and
problems with human readability.

3.1 XSLT Compatibility
The Extensible Stylesheet Language Transformations

(XSLT) were designed with the main goal of separating the
content and layout of Web pages. The basic idea is to de-
sign the original page using an XML language. The XML
content is then converted to a \regular" (X)HTML page by
an XSLT template.
The various RDF encoding options described above make

development of XSLT templates for RDF di�cult: In or-
der to be fully applicable to RDF, XSLT templates would
need to de�ne a mapping covering all possible syntax alter-
natives. It would certainly be possible to design relatively
simple XSLT templates for one concrete serialised form of
RDF. But then the XSLT transformation would become ei-
ther very fragile, or another processing step converting any
RDF �le to the form expected by the template would be
necessary.

3.2 Human Readability
Another problem with RDF is human-readability. While

one of the original ideas of XML is to provide some kind of
compromise between machine and human-readability, RDF
is actually di�cult to read for humans. Again, the main
reason are the meta language roots of RDF. With the various
syntax options, it is even quite di�cult to just see if two
RDF documents are semantically equivalent. In order to
read RDF documents, a human must be familiar with all
syntax variants of RDF. When RDF is used to annotate an
existing HTML page, the situation becomes even worse since
it is often di�cult to di�erentiate between RDF annotation
and actual content. In addition, the verbosity of RDF makes
it di�cult to read when compared to other XML languages
or SOAP.



4. RDF DATA MODEL ISSUES
While it seems relatively simple to �x the problems con-

cerning the RDF syntax, this is far more di�cult for the
RDF data model.
The RDF data model is very simple. It is basically a

labelled graph consisting of (subject predicate object)

triples. With the RDF Schema language (RDFS [5]), the
data model becomes signi�cantly more structured. RDFS
introduces a type system that can be used to express prop-
erty constraints. Figure 2 shows the RDFS diagram corre-
sponding to the RDF example. An corresponding Uni�ed
Modelling Language (UML) [17] diagram of the ontology is
shown in �gure 3.
To some extent, RDFS is similar to object oriented struc-

tures, except that properties must have globally unique
names. The RDFS speci�cation claims that the property
centric approach makes it "very easy for anyone to say any-
thing they want about existing resources, which is one of
the architectural principles of the Web". However, deviating
from \standard" object orientation also raises some interop-
erability issues with existing system or modelling tools.

4.1 Compatibility to Object Oriented Systems
Unfortunately, treating properties as �rst class members

of the data model makes it impossible to map existing ob-
ject hierarchies or database systems to RDFS automatically,
without additional handling of property names to ensure
global uniqueness. This is not just a problem with object-
oriented systems or relational databases, also knowledge sys-
tems like Ontobroker [11] or Prot�eg�e [12] are seriously af-
fected. When properties have a global domain and range
de�nition, it is not possible to re�ne the de�nition in a sub-
class. It is also not possible for di�erent classes to use the
same property name with di�erent value and domain restric-
tions [19].
In order to work around this problem, di�erent mappings

already exist, all having their own advantages and disadvan-
tages, and it is quite simple to invent new ones. Possibilities
are:

Facets: Facets were added to RDF by Stefan Decker to sim-
plify RDF compatibility of the Prot�eg�e system [18].
The idea behind facets is to allow multiple ranges and
re�nements for properties. The mapping problem for
other OO systems could be solved by introducing con-
icting properties at a common base class and intro-
ducing the actual restrictions later where needed.

Name Concatenation: Stephen Crane�eld designed an
XSLT template mapping the property names to glob-
ally unique names by just concatenating them with the
class names [8]. Applied to the UML diagram repre-
senting the course sample schema shown in Figure 3,
the generated RDF Schema would be identical to Fig-
ure 2, except that all property names were concate-
nated the corresponding domain name. For example,
name would be renamed to ApDescription.name.

Other options: It is quite simple to invent other mecha-
nisms to ensure globally unique property names. For
example, a dedicated XML namespace could be as-
signed to each object, preserving the original name
but requiring extensive usage of XML namespaces.

The main problem is that there is no intuitive mapping.
All mappings have their own advantages and disadvantages,
without one being clearly preferable to the others. More-
over, except from the facets solution, which has the dis-
advantage of extending RDFS, it is not possible to apply
the inverse mapping to any RDFS schema without precon-
ditions. The inverse mapping is only possible if the RDFS
is already of the right "form". It is not possible to gen-
erate compatible RDF among di�erent mappings by using
the output from one mapping as input for another (inverse)
mapping. So even if all mappings are using RDFS as their
target format, that does not help for interoperability at all.
Furthermore, this problem does not only a�ect connecting

existing systems to the Semantic Web, but also ontology
design using UML [9]. When using UML in the ontology
design process, it becomes necessary to take special care of
property names again.
Concatenating a property name with the domain name or

a namespaces may also create problems for derived classes
inheriting that property. All derived classes are a valid do-
main for the property, too, but one would need to remember
the domain where the property was de�ned for constructing
the right name and thus being able to access the property.
Another signi�cant di�erence between the RDFS data

model and standard object oriented systems is that a
resource can have more than one type. For example,
the Prot�eg�e system is not able to handle this without
workaround. Prot�eg�e was designed to allow only one class
for each instance because of user interface considerations.
Prot�eg�e solves the problem by internally creating arti�cial
concepts that are merged from the di�erent types of a re-
source.
Please note that two di�erent descriptions of one object

can exist without requiring that an object is allowed to have
several types. The described object and the descriptions just
need to be separate objects.

4.2 Statements about Statements
The RDF data model is a set of (subject predicate

object) statements, where the statements themselves do
not have an address. In order to be able to make statements
about statements, it is necessary to model the original state-
ment as a resource having a subject, a predicate, an object,
and a type.

5. SOAP
A potential alternative to RDF may be contained in

the Simple Object Access Protocol (SOAP) [3] speci�cation.
SOAP is a speci�cation covering remote procedure calls over
HTTP. It contains an object serialisation format that can
be compared to the Resource Description Format (RDF) to
some extent, even if RDF is not just an object serialisation
format. Although RDF was already existing when SOAP
was being speci�ed, RDF was not chosen as the default se-
rialisation format for SOAP. Instead, SOAP introduces a
completely new format de�ned from scratch.
SOAP is supported by computer industry leaders like Mi-

crosoft, IBM and SUN. The simplicity of SOAP together
with the support from the industry suggests that many
SOAP-based services will be available in the near future.
While industry support is usually not really relevant for re-
search, research in Arti�cial Intelligence may take signi�cant
advantage from the amount of structured data provided by



ApDescription

name

rdfs:subclassOf

rdf:type

rdfs:Property

domain

range

rdfs:ressource

rdfs:Class

rdf:type

Literal

dynamic

ApTransportDescription

transportdescription

rdfs:Bag

availableMtps

MtpDescription

range

domain

domain

range
rdf:type

mtpName

profile

addresses

rdf:type

rdf:type

rdfs:subclassOf

domain

domain

range

rdf:type

rdf:type

Figure 2: RDF Schema of the FIPA AP description

1..*

availableMtps

1

transportProfile

ApDesc rip t ion

+name:String
+dynamic:boolean
+mobility:String

ApTranspo rtDesc rip t ion MtpDesc rip t ion

+profile:String
+mtpName:String
+addresses:String[]

Figure 3: UML Diagram of the FIPA Agent Platform Description



a Semantic Web that is widely accepted and used. SOAP
Implementations are available for a wide range of program-
ming languages (C++, Java, Perl, Python)2 . In contrast to
HTML, SOAP is de�ned for direct communication between
machines over the Internet, so it may a�ect the Semantic
Web in many ways or even become a signi�cant part of it.
SOAP is suitable for all kinds of automated Internet services
like weather forecasts, tra�c services, or logistics coordina-
tion. Although SOAP supports alternative content formats,
it is likely that most of the content will actually be encoded
using SOAP serialisation. Thus, some questions arise: How
can SOAP be integrated into the Semantic Web? Can the
Semantic Web pro�t from SOAP services?
In his WWW9 presentation, Henrik Frystyk Nielsen ([16])

demonstrated how RDF can be encoded utilising the SOAP
serialisation syntax. While he states in his presentation that
SOAP is not meant to replace RDF, this is clearly one of the
possible future scenarios in the areas where \Semantic Web"
means exchange of information that is machine readable in
the �rst place.

5.1 SOAP and CORBA
Although SOAP was originally designed as a remote

method invocation protocol running over the Internet,
SOAP is not just another Common Object Request Broker
Architecture (CORBA). SOAP di�ers from CORBA in sig-
ni�cant points:

Human Readability: In contrast to the CORBA Inter-
net Inter ORB Protocol (IIOP), SOAP is not a bi-
nary format but an XML-based format that is human-
readable. Even if SOAP is mainly intended to be read
by machines, human readability is very helpful for de-
bugging purposes and quick implementation.

Simple Installation: While CORBA requires huge soft-
ware packages and does not provide a commonly ac-
cepted bootstrapping mechanism, SOAP is based on
HTTP and can be implemented with little e�ort on
top of existing libraries for XML and HTTP.

Even if SOAP still lacks a reasonable security model, it
has the potential to become the connecting point between
Java, Perl and Microsoft's .NET architecture by just o�ering
a suitable feature set, while still being simple enough to be
implemented by a broad range of programmers.

5.2 SOAP Syntax
Probably the main reason for SOAP becoming quite pop-

ular in the very short time it is available now is its simplicity.
The serialised format of the FIPA example encoded in SOAP
is shown in Figure 4. The format is much more similar to
an XML special purpose format designed \by hand" than
the RDF serialisation.
The main di�erence visible on �rst glance is the re-

duced nesting level of XML elements. In RDF, both ob-
jects and properties have their own tags. In SOAP, the
nested tags starting a new object are always merged with
the property tags if possible. This also has the advantage
that navigating through a SOAP serialised document us-
ing path expressions becomes very similar to usual path

2http://www.superopendirectory.com/directory/4/
standards/�23�/implementations

expressions in object oriented programming or query lan-
guages. If the type of a property is not �xed, it can be re-
solved by adding a type attribute (e.g. <transportProfile
xsi:type="ApTransportDescription">). Moving the type
information into an attribute maintains the advantage of the
reduced nesting level when compared to RDF.
Similar to RDF, SOAP allows alternative syntax forms for

embedded and referenced objects, but in contrast to RDF
the speci�cation contains clear rules when an object is em-
bedded and when it is referenced: Objects may be embedded
if there exists only one referenced to them, otherwise they
are linked. And in contrast to RDF, SOAP serialisation
does not allow additional abbreviated or alternative XML
syntaxes. Actually, there is no need for an abbreviated syn-
tax since SOAP serialisation is compact enough in the �rst
place.
The complete speci�cation of SOAP serialisation syntax

is given in [3].

5.3 SOAP Data Model
SOAP is based on a simple object oriented data model.

The SOAP Data Model consists of structured objects having
properties and a type. Thus, the basic building blocks are
more complex than plain RDF. However, when compared
to RDFS, there is no signi�cant di�erence. Larger basic
building blocks may have advantages e.g. when tracking the
source of statements: The source information would be at-
tached to just one object instead of needing rei�cation for a
lot of RDF statements. Also, when constructing URLs from
OIDs, it becomes very simple to make statements about
statements, again avoiding explicit rei�cation that would be
required in RDF.
In contrast to RDF, SOAP does not come along with its

own schema language. Instead, XML Schema is used for
validation of the syntactical correctness of SOAP serialised
objects. While XML Schema does not seem the appropriate
level of ontology modelling, SOAP serialisation �ts well into
UML modelling without the property naming problems of
RDF. And when comparing the RDFS and UML diagrams
(�gure 3 and �gure 2), UML seems signi�cantly more ap-
propriate for modelling ontologies.

6. IS SOAP SUITABLE FOR THE SEMAN-
TIC WEB?

As shown in the preceding sections, SOAP has advantages
over RDF in several areas. But does that mean that SOAP
is su�cient to build a \Semantic Web"? The Semantic Web
is meant to be more than just turning some existing object-
oriented systems into SOAP services. How can a collection
of SOAP services evolve into a Semantic Web? Are there any
RDF core features missing in SOAP? Can the advantages of
SOAP and RDF be combined to accelerate or simplify the
process of building a Semantic Web?

6.1 Using SOAP Syntax for the RDF Data
Model

Henrik Frystyk Nielsen [16] suggests to apply SOAP seri-
alisation to the RDF data model to simplify integration of
the SOAP RMI protocol with RDF data. Since this would
mean yet another alternative syntax, the RDF syntax sit-
uation would not be simpli�ed, except if the new syntax
became the only one. But limiting RDF syntax variants



<ApDescription>
<name>paris.agentcities.org</name>
<dynamic>true</dynamic>
<mobility>true</mobility>

<transportProfile>
<availableMtps>

<MtpDescription>
<mtpName>fipa.mts.mtp.iiop.std</mtpName>
<addresses>

<url>iiop://leap.crm-paris.com:9000/paris.agentcities.org/acc</url>
<url>iiopname://leap.crm-paris.com:9000/paris.agentcities.org/acc</url>

</addresses>
</MtpDescription>

<MtpDescription>
<mtpName>fipa.mts.mtp.http.std</mtpName>
<addresses>

<url>http://leap.crm-paris.com:8080/acc</url>
</addresses>

</MtpDescription>

</availableMtps>
</transportProfile>

</ApDescription>

Figure 4: SOAP Syntax Example

in general would generate problems when using RDF for its
original purpose of annotating existing documents. Also, the
proposed syntax would not help for a seamless integration
of other SOAP-based services since the property mapping
problem would persist.

6.2 Saying Anything about Anything
In [2], Tim Berners-Lee justi�es the usage of the property-

centric data model instead of an \usual" object-oriented
data model by claiming that object-oriented systems gen-
erally assume that information about an object is stored
inside that object. So, in order to be able to say anything
about anything, it becomes necessary to store the properties
apart from the object.
While for object oriented systems it is true that property

information is stored with the objects, this does not mean
that objects cannot hold information about other objects.
So there is no real requirement that e.g. the PICS rating
of an HTML page is a property of that page. It could also
be a separate object holding a pointer to the original page.
A more complex example could be a car being the primary
object and its description stored at an insurance company.
Even if a \standard" object-oriented data model is suit-

able for the Semantic Web, there is still a problem with
SOAP. The SOAP speci�cation does not specify how to as-
sign URLs to objects. There is also no general mechanism to
say \something" about a given URL. However, it seems rel-
atively simple to assign URLs to objects built from the ser-
vice address and a local unique number (OID). If an object
is intended to describe a resource, it could have an \about"
property like in the SOAP-encoded RDF syntax proposed
by Henrik Frystyk Nielsen [16].

6.3 Schema Language
The SOAP speci�cation does not contain any schema lan-

guage, but refers to XML Schema for syntax validation.
However, a syntax speci�cation language like XML Schema
is not really suitable for modelling ontological elements like
classes, attributes and associations. Actually, the SOAP
speci�cation just describes how to get an XML Schema from
the data structure and not vice versa.
But even if SOAP does not come along with its own

schema language, the SOAP data model �ts quite well into
UML. Thus, UML tools can be used for modelling, without
the limitations shown for the RDF case.
Furthermore, even if SOAP describes instance serialisa-

tion only, the UML meta model [17] can still be utilised
to serialise UML models using SOAP serialisation syntax.
Some UML constructs would require the de�nition of a con-
crete mapping, but there is no general incompatibility in
the data model. Distinction between di�erent types of as-
sociations in UML could also be utilised to de�ne the cases
where embedded objects are allowed in SOAP serialisation
more clearly.

6.4 Integration of existing Services and Sys-
tems

In his XML2000 keynote, Tim Berners-Lee suggested to
use "screen-scraper"-like XSLT templates to convert XML
into RDF for the starting century of the a Semantic Web
[1], like shown in �gure 5. However, the SOAP serialisation
syntax is simple enough to be widely accepted as a general
XML modelling convention. So it may be possible to elim-
inate the need for an additional \screen scraping" template
in many cases. Also, the compatibility with XSLT allows
building HTML or WML transformation templates, just like



Server (XML)

Browser (HTML) Software Agent

RDF "Screen Scraper" 
(XSLT)

HTML Transformation
(XSLT)

Figure 5: RDF screen scraping

RDF SOAP

Serialisation RDF SOAP

HTML/WAP generation ? XSLT

Query Language ? OQL

Syntax Validation ? XML Schema

Schema Serialisation RDFS UML Meta-model

Schema Modelling ? UML

Table 1: Integration with existing standards

for XML languages designed \by hand".
Moreover, since SOAP �ts nicely into existing object ori-

ented and relational database systems, it may simplify the
schema generation process. Instead of needing to design an
XML DTD or XML Schema, it would be su�cient to agree
on an UML diagram, allowing a much more appropriate level
of abstraction.
Another SOAP advantage is that SOAP quite nicely in-

tegrates with a lot of existing standards (Table 1). This
was already discussed for XSLT and UML, but we also have
a well designed query language for object oriented systems.
The Object Query Language (OQL) [7], designed by the Ob-
ject Data Management Group (ODMG) �ts perfectly with
SOAP and preserves a high degree of SQL compatibility.

7. WHAT IS MISSING
For a real \Semantic Web", the upper logical levels are

missing from SOAP. But this holds for RDF as well, and
looking at existing inference systems, it does not seem more
di�cult to build them for SOAP than for RDF [13].
Also, mechanisms for schema translations may become

necessary. For example, if a legacy system with a direct
SOAP mapping needs to be adapted to a SOAP based stan-
dard, or if SOAP based standards for di�erent areas need
to interoperate. However, this will probably be more sim-
ple than general XML-XML translations, where XML-XML
translations are possible today using XSLT. Again, the same
would be necessary for RDF.

8. CONCLUSION
Obviously, we have two formats and data structures that

are similar to some extent, and both are relevant for the
\Semantic Web", especially when the term means something
di�erent than annotation of existing pages with additional
meta data. The main problem is that both approaches are
di�cult to translate into each other.
In contrast to SOAP, RDF is suitable for \in place" anno-

tation of existing web pages. For being able to say \anything
about anything", RDF uses URLs as global unique identi-
�ers.
Although SOAP is not suitable for \in place" annotation

and would require an extension assigning URLs to objects
in order to become really suitable for the Semantic Web, it
has several advantages in other areas. SOAP �ts quite well
into other standards like UML, XSLT and OQL. It provides
a clear and simple syntax. The SOAP Serialisation syntax
nearly reaches the quality of a \hand-made" one. Thus,
SOAP serialisation is suitable as content encoding conven-
tion in the �rst place. So, in contrast to RDF, an extra
conversion step can be avoided completely.
The logical level is not yet covered for both approaches,

RDF and SOAP.
For the future, it seems to make sense to work on both

approaches without dooming the other. Even if looking at
SOAP may split the Semantic Web community to some ex-
tend, competition may also set free a lot of development
energy. Perhaps the logical layer to be built on top of RDF
and SOAP may allow for an integration of both approaches
at some future point of time.



9. REFERENCES
[1] Tim Barners-Lee. RDF and the Semantic Web. In

XML 2000. GCA, 2000.

[2] Tim Berners-Lee. What the smantic web can
represent, September 1998.
http://www.w3.org/DesignIssues/RDFnot.html.

[3] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew
Layman, Noah Mendelsohn, Henrik Frystyk Nielsen,
Satish Thatte, and Dave Winer. Simple Object Access
Protocol (soap) 1.1. Note, World Wide Web
Consortium, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-
20000508.

[4] Dan Brickley. RDF interest group - issue tracking.
Technical report, World Wide Web Consortium, 2000.
http://www.w3.org/2000/03/rdf-tracking/.

[5] Dan Brickley and R. V. Guha. Ressource Description
Framework (RDF) Schema speci�cation 1.0. Technical
report, World Wide Web Consortium, 2000.
http://www.w3.org/TR/CR-rdf-schema-20000327.

[6] Dan Brickley and Ralph R. Swick. PICS rating
vocabularies in XML/RDF. Technical report, World
Wide Web Consortium, 2000.
http://www.w3.org/TR/2000/NOTE-rdf-pics-
20000327.

[7] R. G. G. Cattell, editor. The Object Database
Standard: ODMG 2.0. Morgan Kaufmann, 1997.

[8] S. Crane�eld. Networked knowledge representation
and exchange using UML and RDF. Journal of Digital
Information, 1(8), 2001. http://jodi.ecs.soton.ac.uk/.

[9] S. Crane�eld and M. Purvis. Uml as an ontology
modelling language. In Proceedings of the Workshop
on Intelligent Information Integration, 16th
International Joint Conference on Arti�cial
Intelligence (IJCAI-99, 1999.

[10] Stefan Decker. Proposed updates of RDF, 1999.
http://www-db.stanford.edu/�stefan/updates.html.

[11] Stefan Decker, Michael Erdmann, Dieter Fensel, and
Rudi Studer. Ontobroker: Ontology based access to
distributed and semi-structured information. In
R. Meersman and other, editors, Semantic Issues in
Multimedia Systems, Kluwer Academic Publisher,
Boston, 1999. Kluwer Academic Publisher, Boston,
1999.

[12] H. Eriksson, R. W. Fergerson, Y. Shahar, and M. A.
Musen. Automatic generation of ontology editors. In
Twelfth Ban� Knowledge Acquisition for
Knowledge-based systems Workshop, Ban�, Alberta,
Canada, 1999.

[13] A. S. Evans. Reasoning with UML class diagrams. In
Proceedings of the Workshop on Industrial Strength
Formal Methods (WIFT'98). IEEE Press, 1998.
http://www.cs.york.ac.uk/puml/papers/evanswift.pdf.

[14] Foundation For Intelligent Physical Agents (FIPA).
FIPA Agent Management Speci�cation, 2000.
http://www.�pa.org/specs/�pa00023/XC00023F.pdf.

[15] Ora Lassila and Ralph R. Swick. Ressource
Description Framework (RDF) model and syntax
speci�cation. Technical report, World Wide Web
Consortium, 1999.
http://www.w3.org/TR/1999/REC-RDF-SYNTAX-
19990222.

[16] Henrik Frystyk Nielsen. Soap, RDF and the Semantic
Web. In WWW9, 2000.

[17] Object Management Group. OMG Uni�ed Modeling
Language Speci�cation, June 1999. Version 1.3.

[18] Stanford University. Using Prot�eg�e-2000 to Edit RDF,
June 2000.
http://www.smi.stanford.edu/projects/protege/protege-
rdf/protege-rdf-20000629.html.

[19] Frank van Harmelen and Dieter Fensel. Practical
knowledge representation for the web. In IJCAI'99
Workshop on Intelligent Information Integration,
1999.


