
An RDF Framework for Resource Discovery

 Franklin Reynolds

Nokia Research Center

5 Wayside Road

Burlington, MA, 01803 USA

1-781-993-3619

franklin.reynolds@nokia.com

ABSTRACT

Resource discovery is a problem common to almost all

distributed systems. Instead of resulting in a one or a small

number of discovery mechanisms, completely different and

incompatible discovery services have proliferated. It can be

reasonably argued that a discovery protocol optimised for small

wireless LANs, such as Bluetooth piconets, is unlikely to be

suitable for enterprise scale networks or the Web. Drawing

inspiration from the database community's success with

standardising APIs, data models and query languages, we

propose a protocol independent framework based on RDF. The

framework consists of a flexible data model, metadata API and

query language.

General Terms

Algorithms, Management.

Keywords

RDF, Discovery Protocols, SLP.

1. INTRODUCTION

The need to resolve names and discover resources is common to

almost all distributed systems. Problems related to discovery

occur in large networks and small, in dynamic networks and

relatively static networks and at high levels and low levels of

network abstraction. Many different, successful discovery

protocols and applications have been developed over the years

including:

�� Dynamic Host Configuration Protocol [DHCP]

�� Bluetooth Service Discovery Protocol [SDP]

�� Universal Plug and Play Simple Service Discovery Protocol

[SSDP]

�� Service Location Protocol [SLP]

�� Ligtweight Directory Application Protocol [LDAP]

�� Web search engines such as [Google] and [AltaVista]

These examples are intended to illustrate the range of discovery

protocols in current use. DHCP is a very low level service used

primarily to configure the basic network services of a host before

it can communicate with other hosts on the Internet. No one

would seriously consider DHCP a suitable basis for a Web search

engine. Different protocols are needed for different applications.

And yet, while each discovery protocol is different, the

fundamental problem solved by each service is similar.

Given this similarity, it is not surprising that study of different

discovery services reveals common issues, design patterns or

components shared by most if not all of the servicess. We have

found it useful to characterize discovery services by their

approach to the following issues:

1. Discovery of the discovery service (for example, the use of

DHCP to discover the SLP service)

2. Advertizement (for example, SSDP advertizes services via

multicast to clients and SLP DAs advertize themselves so

that SAs can register their services and clients will know to

use new DAs)

3. Existence of a Registry or Centralized Name Server(s) and

how they are organised

4. Query Protocol (multicast or unicast)

5. Query Language

6. Metadata model, vocabulary and schemas

None of these services interoperate. The metadata used to

describe resource in one discovery service must be duplicated in

an incompatible format to be used by a different discovery

service. There is no common interface applications can reuse

when using two or more of these services. In some cases there

are strong similarities, such as the query languages of SLP and

LDAP. But interoperability has never been a compelling goal.

One of the strongest lessons learned by the database community

over the years is the importance of application level

interoperability. A common data model, such as the relational

model and a common query language, such as SQL, provides

considerable interoperability for applications that use SQL.

Among other benefits it allows UI and application level

innovation to proceed independent of specific database products

and it allows the database vendors to innovate without the risk of

breaking all existing applications.

Theres are strong similarities between simple databases and

service discovery applications and yet the service discovery

community has not learned to provide application level

interoperability.

2. Application level interoperability

We propose the use of a single, flexible metadata model,

metadata language and query language to serve as the basis for

interoperability between service discovery systems. This is

similar in spirit to the database community choosing a relational

data model and SQL for interoperability. While it may be that no

single choice would reasonably support all possible discovery

services, we are confident that we can cope with most important

services.

We choose the W3C's Resource Decription Framework [RDF] to

serve as the basis for our framework. RDF was designed as a

general purpose knowledge representation language and has a

very flexible data model which is more than expressive enough

for our needs. RDF vocabularies can be named via XML

namespaces and defined according the RDF Schema

specification. This permits the definition of application specific

vocabularies without the need for a standardization organization,

such as IANA.

Though the specification for RDF was completed in early 1999,

RDF and RDF tools have not matured as we expected. No

standard RDF APIs or tools exist that are comparable to DOM

[DOM] for XML or pattern matching grammer such as XSLT

[XSLT] patterns for XML. Consequently we developed our own

RDF API and pattern matching language.

2.1 The RDF Data Model

The RDF data model is a labelled, directed graph. A graph

consists of nodes and arcs. Each node and each arc have labels.

Labels associated with nodes must be unique within a graph.

Labels associated with arcs need not be unique. Each arc in the

graph can be described triple consisting of three fundamental

RDF entities:

�� Resource - a resource corresponds to a node on a graph

�� Property - a property corresponds to an arc

�� Value - A property can be either a string literal or a

Resource

The most simple RDF graph consists of a single node, property,

value triple. For example, a triple consisting of a resource named

"myCar", a property named "color" and a value of "red" would

look like the following graph:

RDF graphs can be represented using XML. A simple

representation of the above graph using XML would be:

 <rdf:Description about=myCar>

 <fdr:color>red</fdr:color>

 </rdf:Description>

In addition to the graph-based data model, an RDF class system

has been defined [RDFschema]. Together, RDF and RDF

Schemas provide very powerful and sophisticated tools for

modeling information. For our initial work we have choosen to

restrict ourselves to the core data model rather than integrate the

use of RDF Schemas and possible complications of a federated

class hierarchy. Searchable metadata is expected to be encoded

using RDF without schemas and the query language is designed

for labelled, directed graphs.

Though RDF can be serialized using XML, the RDF data model

is actually quite different from the XML data model. The RDF

data model is a labeled, directed graph and XML's data model is

a tree with different types of nodes. The RDF data model could

be expressed using a different syntax but the use of XML has a

variety of advantages, including the promise of XML tool reuse.

However, DOM, the XML document object model and API

[DOM], is not really adequate for RDF.

2.2 A Simple RDF API

Several RDF toolkits have been developed including [GINF],

[Jena] and [Redland] but at the time of this work, no standard,

official or de facto, has emerged. Proposals have ranged from

simple APIs that mimic the data model to much more ambitious

efforts that allow for the manipulation of the graph, inference

engines and other features beyond the basic data model. For our

purposes, a simple approach is sufficient. Our API is a small

collection of classes which, define a graph, a node in the graph

which has arcs to other nodes and an RDF triple. Once a graph is

created, it can be navigated or destroyed but it cannot be

changed.

This API is more similar in spirit to DOM than the richer APIs

provided by other toolkits. Obvious improvements would be to

allow for addition, change and deletion of nodes and arcs from

the graph and explicit support for RDF schemas. A general

purpose RDF API would need similar features but a simple

DOM-like API meets our needs. Our API is based on Java and

while still under development, it has already proven to be a

useful tool.

The class definitions for the API are:

public class RDFGraph {

public RDFGraph(String filename) ;

public Enumeration elements() ;

public Enumeration elements(RDFNode
root);

}

public class RDFNode {

 public Enumeration elements() ;

 public void display() ;

}

class Triple {

 public RDFNode resource ;

 public String property ;

 public RDFNode value ;

 public boolean stop_hint ;

}

class Depth_first implements Enumeration {

 public boolean hasMoreElements() ;

 public Object nextElement() ;

 Depth_first(Enumeration enum, Stack s)
;

}

The class RDFGraph is intended to contain a graph described by

an RDF fragment. RDFGraph provides two views of the graph.

myCar red
color

One is the list of all the triples in the graph and the other is a

depth-first spanning tree of the graph. RDFGraph has a

constructor that takes a file name as an input parameter. The file

should contain the list of RDF triples to be used to construct a

graph. The SiRPAC [SIRPAC] RDF parser is used to generate

the file of triples. Though unusual, the list of triples may

describe a disconnected graph or multiple graphs. To deal with

this, an RDFGraph object may actually be a collection of graphs.

In the future, a new collection object may be added to the API to

explicitly provide for aggragating graphs.

An RDFNode object is equivalent to a resource. An RDFNode

object is a node in a graph and the object contains the list of

triples that describe arcs eminating from the node. Each

RDFNode contains a Resource, all its Properties and the Values

of each Property. An Enumeration method exports the list of

Properties. The Values of Properties are other RDFNodes. An

RDFNode with no Properties corresponds to a Value, as opposed

to a Resource. Finally, in a glaring violation of good object

oriented design, RDFNode exports its member data for easy

manipulation by other objects rather than exporting methods that

perform the manipulation.

The data model for RDF allows a single graph to contain merged

branches, cycles and multiple roots. To simplify the task of

navigating within a graph, Enumeration methods are provided as

a means of traversing all the arcs of all the graphs associated

with the RDFGraph object. When an RDFGraph object is

constructed, a depth-first spanning tree is overlaid upon the

graph. The "stop-hint" member of a Triple is used to detect

leaves of the spanning tree. The leaves terminate cycles and

merged branches in the graph. Graph traversal using the

spanning tree results in visiting every arc once and only once.

The Depth_first class, which implements the Enumeration

abstract class, works in conjunction with the enumeration

methods of RDFNode to provide the mechanisms for walking the

graph.

The following is an example of code that walks the graph and

displays each RDFNode:

 // perform a depth first walk of

 // the graph and display each

 // node as it is traversed.

 Enumeration e = graph.elements();

 while (e.hasMoreElements()) {

 ((RDFNode)e.nextElement()).display();

 }

2.3 Directed Graph Query Language (DGQL)

There is active work to define XML based query mechanisms at

the W3C and other organizations. Though several different

research groups have considered various approaches to RDF

based queries, no standards have emerged. DGQL is our attempt

to define a simple query language based on graph matching.

Object-oriented database query services usually provide schema

or class based query mechanisms. The schemas or object

definitions provide the basis for dealing with structured data.

RDF provides a schema framework that may be suitable for a

schema based query languague, but the use of RDF schemas is

optional and adds more intellectual complexity than we desire.

Consequently DGQL does not use schemas or class definitions

but it can be used to query graphs created using RDF Schemas.

The use of RDF Schemas, specifically inheritence, raises some

interesting challenges associated with indefinitely recurring

patterns that we hope to explore in the future.

Our goal was to design a simple, general purpose, query

language suitable for automated queries and upon which other

languages could be built. We expect that as the Semantic Web

evolves, a wide range of query languagues and services will be

built and deployed. These may include new, natural language

based services for human interactions, domain specific, schema

based, search engines and support for legacy query services.

Performance optimizations are not a primary goal, but we are

sensitive to the need for a query service to provide reasonable

performance. DGQL is designed to hide some of the most

peculiar characteristics of RDF in order to serve as a general

purpose, though not necessarily human friendly, tool that

simplies the task of providing higher level query services. DGQL

is a pattern matching language. Both Resources (Nodes) and

Properties (Arcs) can be tested. The syntax is based on simple,

parenthesized S-expressions. The AND and OR logical

operations are supported. The S-expressions can be nested which

is how the direction of an arc (Property) is expressed.

2.3.1 Syntax

Basic DGQL statements have the general form of:

 (OpCode Parameter List)

Legal OpCodes are NTEST, ATEST, AND and OR. NTEST is

the command to match a pattern to a node and ATEST is the

command to match a pattern to an arc.

A Node (Resource) test has the following syntax:

 (NTEST pattern [arc test|logical])

The [...|...] notation is used to indicate that the last parameter is

optional. If it occurs, it can be an arc test or a logical command.

An Arc (Property) test has the following syntax:

 (ATEST pattern [node test|logical])

The [...|...] notation indicates that the last parameter is optional.

If it occurs, it can be an node test or a logical command.

The pattern used in node and arc tests can be a string or *.

Strings are tested for equality. The * character matches anything.

Future work may include the introduction of regular expression

string matching rules.

Node tests cannot be parameters to a node test and arc tests

cannot beparameters for arc tests. This is because the nesting of

tests is how the relationship between nodes and arcs is

expressed. In a graph, nodes are only connected to other nodes

via arcs. Similarly, arcs are associated with nodes, not other arcs.

A logical command has the following syntax:

 (AND|OR list_of_tests)

Logical AND and OR commands take a list of tests as

parameters. Because of the nesting rules for nodes and arcs, a

logical command that is a parameter of a node test can only have

arc tests in its parameter list and a logical command that is a

parameter of an arc test can only have node tests in its parameter

list.

2.3.2 DGQL Class

DGQL queries have been implemented in Java as the DGQuery

class. To fully process a query against an RDFGraph, the query

must be applied to each node in the graph. To do this, the

DGQuery object uses the depth-first graph traversal methods

exported by RDFGraph and RDFNode.

As the query is applied to a node the query processing may

traverse some fraction of the graph. Currently DGQL does not

provide recursive queries, but this is planned for the future. To

avoid infinite loops that could occur with the combination of

recursive queries and cyclic graphs, the query engine will use the

lstop-hints of the RDFGraph spanning tree.

DGQuery exports a constructor that takes a String containing a

valid query as an input parameter. DGQuery provides an evalq()

method that applies the query against an RDFNode supplied as

an input parameter. As the constraints in the query are evaluated,

evalq() may traverse any reachable portion of the graph.

public class DGQuery {

 public DGQuery(String query);

 public boolean evalq(RDFNode
current_node,

 StringBuffer ms)

 throws bailout_exception ;

}

An example of how to use the DGQuery class follows:

// input a stream of queries and

// look for a match

try {

 // Open the queries input file

 BufferedReader input = new

 BufferedReader(new InputStreamReader(

 new FileInputStream(args[3])));

 // read next query from file

 // EOF == null

 while (null != (query_line =

 input.readLine())) {

 StringBuffer match_string =

 new StringBuffer();

 DGQuery q = new DGQuery(query_line);

 e = graph.elements();

 while (e.hasMoreElements()) {

 if (q.evalq(RDFNode)e.nextElement(),

 match_string)) {

 System.out.println(" success! "
+

match_string);

 break;

 }

 }

 }

 } catch(IOException e1) {

 System.out.print("Error: " + e);

 System.exit(1);

 } catch (bailout_exception ee) {

 System.out.println("parsing error ");

 }

3. Query Results

The reply from a query includes all the matching sub-graphs.

Consider a very simple graph that models a collection of four

objects, including the name and URL of each object:

 Figure 1.

If the query's constraints can be satisfied, then the matching

graph(s) are returned. The format of the reply is somewhat

similar to the query syntax

Bag

 Object1

 Nokia

 FDR

 car

type

http://www.foo.com/objects/object1

http://www.foo.com/objects/Nokia

http://www.foo.com/objects/FranklinReynolds

http://www.foo.com/objects/car

_1

 _2

_3

 _4

URL

URL

URL

URL

Collection

(N resource

 (P list_of_props (N list_of_resources))

 (P list_of_props(N list_of_resources)))

Between wildcards and OR conditions it is possible for many

patterns to match a single query. All instances of matching

patterns can be returned. Though unusual, multiple instances of

property with the same name but different values can be

associated with a single resource. Thus, even an exact match rule

can match multiple properties. If there is more than one match

for an individula rule, a comma separated list of each instance of

a matching pattern can returned. In some cases, this list can be

quite large.

There is an irregularity in the way the query reply is constructed.

DGQuery.evalq() takes two parameters: an initial node in the

graph and the reply string. The first rule of the query is only

applied to the initial node. As shown in the example, to apply the

query to all nodes in the graph requires the use of the RDFGraph

walking methods. This means that if the first rule is a wild card

that matches every thing, then the maximum number of replies

will equal the number of nodes, rather than a single reply with a

list of nodes matching the inital rule. Though this may result in

many replies it is still on the order of N where N is the number

of nodes in the graph.

The reason for the irregularity is to permit the selection to be

short circuited if application is only interested in the first

successful match. For example, you may wish to apply a query to

a particular node, instead of the entire graph. This mechanism

could be used to traverse the graph using a series of queries.

4. Experience and Lessons Learned

4.1 Prototype Discovery Services

In an effort to experimentally validate the idea that a common

metadata toolkit and query language could provide some level of

interoperability, we implemented DGQL extentions to SLP and a

web based discovery service. The protocols, usage models and

user interface to each service is quite different.

The Web search engine has a synchronous, request-response

protocol based on HTTP. The Web and Web search engines were

designed to be used interactively by human beings. The User

interface is based on HTML Forms. Our web search engine is

intended to be reminiscent of other search engines. While it is

certainly possible for a computer program to construct the proper

HTTP messages to interact with the Web discovery server, this is

not the typical usage case.

The design of SLP has less emphasis on interactive human users.

SLP uses both synchronous and asynchronous request-response

protocols. The synchronous SLP protocol is similar in behavior to

the Web search engine protocol. A single request results in a

single reply, though the reply may contain multiple matches.

Asynchronous SLP requests can result in multiple replies. Any of

those replies could contain multiple matches.

The RDF APIs, DGQL and the Java classes that implement

DGQL have been used to implement new, structured queries as

additional funtionality to SLP and a prototype Web search

engine. The reuse of these components resulted in several

benefits:

�� The use of RDF as the data model makes it possible the use

of structured, almost arbitrarily complex metadata and

multiple, user defined vocabularies. This allowed us to

model the information we wanted to advertise in a natural

fashion, rather than being forced to flatten or otherwise

coerce the metadata into some simple format, such as the

schemas used by SLP.

�� The same metadata can be used and queried using both

protocols. Most discovery services use completely different

data models and vocabularies. In order to advertise a

resource to SLP clients and Web clients requires the

resource to be described in completely different languages.

There is no guarantee that it is possible to create equivalent

descriptions in different languages. We were able to use the

identical RDF description files for both the SLP and Web

based discovery services. This makes it easier to reduce

undesired information inconsistencies between services.

�� The availability of the DGQL classes greatly simiplified the

task of reimplementing DGQL functionality for multiple

discovery services. This was possible because our

prototypes were all implemented in Java. If we were

concerned about optimising performance we might need to

reimplement DGQL classes in a different language such as

C.

�� The common query language made it possible to send the

same queries via different protocols. Except for differences

due to the behavior of their protocols, our SLP and web

discovery services provide consistent search behavior for

applications and users.

�� This approach was surprisingly efficient. SLP and some

other discovery protocols can operate in a peer-to-peer

mode. Clients multicast their queries to all hosts, rather

than directing their queries to a single server. This is

particularly useful in ad hoc networks that are composed of

many different types of hosts, including very small devices

and services, but have no centralled administered network

infrastructure (such as name servers, etc.). Since DGQL can

act on the RDF data model rather than the RDF language,

small clients can have very compact representations of the

metadata and the parsing of DGQL requires only a few

hundred lines of Java. This eliminates the need for XML

and RDF parsers on these resource limited devices.

While the use of a protocol independent query language has

advantages, it does not fully isolate the user or application from

the need to know about the different types of discovery services

available. The scope and accuracy of the knowledge of each

service as well as the expense associated with using each service,

may be quite different. It is not always desirable to send every

query to every known discovery service.

Tools such as Apple's Sherlock [Sher1180] and other meta-search

mechanisms attempt to provide a framework for aggragating

multiple discovery services or selecting the appropriate discovery

service or services for each query. In the future, we hope to

explore the use of "context-awareness" for the dispatching of

queries to appropriate discovery services. In general, we feel that

more work in this area is warranted.

4.2 Some problems

We judged our prototyping experience a success. The basic idea

we were interested in exploring was the practicality of a common

metadata model, metadata toolkit and query language for

different discovery protocols. Our RDF based toolkit allowed us

to use very different protocols to advertise and discover the same

resources using the same resource descriptions and queries.

However, there were a few bumps in the road.

Though RDF was standardised a couple of years ago, there are

still no standard or de facto standard RDF APIs or tools. Though

we believe our RDF API has a simple elegance, the only reason

we invented an RDF API was because there was no standard API

to use.

In the absence of a standard, DOM-like API, a standard triple

API for RDF parsers would be valuable. The format of RDF

triples is not standardised, and as a consequence, each RDF

parser is different and it is quite difficult to write RDF

applications that are parser-independent. For example, the

treatment of anonymous resources is underspecified, resulting in

parser specific behavior.

An RDF triple consists of a resource, a property and a value. The

value can be a string or a URL. RDF does not explicitly support

other types of values such as integers. This limits DGQL to

string matching operations. Numeric comparisons such as ">"

and "<" would be useful. One approach would be to add the

numeric test operations to DGQL and to use the RDF schema

mechanism to define a RDF vocabulary for service discovery.

Applications that need to define their own vocabularies would be

free to inherit data types from the discovery vocabulary.

Unfortunatly, introducing types and the use of RDF Schemas

adds a great deal of complexity to the system.

The RDF specification seems to permit multiple instances of

identical triples. The benefit of multiple, identical triples is

unclear. While it is not particularly difficult to create appropriate

algorithms deal with non-unique triples, it was our experience

that non-unique triples lead to human errors and

misunderstandings.

There is a debate within the RDF community on the best way to

deal with collections of RDF graphs. One approach is to

maintain each graph as a separate entity and another is to

combine all available triples into a single "triple store". We have

chosen to maintain the separateness of each graph. This

preserves the information of what was and what was not asserted

by each graph. One disadvantage of this approach is that it is

difficult to compose a query that tests assertions made in

multiple graphs.

RDF is intended to allow for the creation of application specific

vocabularies. This flexibility allows new applications to describe

themselves without being dependent on standard vocabularies

but it creates a challenge for users of discovery serivces. Usually,

a discovery service includes a standard vocabulary and there is

some organisation that controls modifications to that vocabulary.

This simplifies the task of advertising resources and constructing

queries. In the absence of a priori knowledge of the language

used to describe resources, clients will need mechanisms to

discover and utilize the languages used by different resources.

This problem is not unique to RDF and is an active area of

research.

5. Summary

The goal of this project was to investigate the use of RDF as a

basis for application level interoperability between discovery

services. We developed an experimental RDF toolkit and

prototyped a web based discovery service and extentions to SLP

based on the RDF toolkit.

Though the prototyping exercise exposed some of the limitations

of our approach, the benefits of a discovery protocol independent

query language, data model, metadata language and toolkit were

clear.

6. Acknowledgements

My colleagues at the Nokia Research Center in Burlington, MA

have been very generous with their time and advice during this

project. I am particularly grateful to June Tran, Ora Lassila,

Mark Adler, Jarkko Hietaniemi and Louis Theran, who have all

contributed to the ideas described in this paper. In addition, June

implemented the web based discovery service using early and

very buggy versions of the tools.

7. REFERENCES

[1] [DHCP] Dynamic Host Configuration Protocol. R. Droms.
March 1997, IETF RFC 2131

[2] [SDP] Part E Service Discovery Protocol (SDP), Dale
Farnsworth, ed., Bluetooth Specification, Bluetooth Special

Interest Group;

http://www.bluetooth.com/link/spec/bluetooth_e.pdf

[3] [SSDP] Simple Service Discovery Protocol/1.0 Operating
without an Arbiter. Y. Y. Goland, T. Cai, P. Leach, Ye Gu,

S. Albright, http://upnp.org/draft_cai_ssdp_v1_03.txt

[4] [SLP] Service Location Protocol. J. Veizades, E. Guttman,
C. Perkins, S. Kaplan. June 1997. IETF RFC 2165

[5] [LDAP] Lightweight Directory Access Protocol (v3). M.
Wahl, T. Howes, S. Kille. December 1997, IETF 2251

[6] [RDFschema] Resource Description Framework (RDF)
Schema Specification 1.0, Brickley, Guha, eds., World

Wide Web Consortium andidate Recommendation;

http://WWW.W3.ORG/TR/2000/CR-rdf-schema-20000327/

[7] [RDF] Resource Description Framework (RDF) Model and
Syntax Specification, O. Lassila, R. R. Swick, eds., World

Wide Web Consortium ecommendation;

http://www.w3.org/TR/REC-rdf-syntax

[8] [SIRPAC] SiRPAC - Simple RDF Parser and Compiler,
Janne Saarela,

http://www.w3.org/RDF/Implementations/SiRPAC

[9] [DOM] Document Object Model (DOM) Level 2 Core
Specification Version 1.0, A. Le Hors, P. Le Hegaret, L

Wood, G. Nicol, J Robie, M Champion, S Byrne. World

Wide Web Consortium Recommendation;

http://www.w3.org/TR/REC-DOM-Level-2-Core-20001113

[10] [XSLT] XSL Transformations (XSLT) Version 1.0, James
Clark, World Wide Web Consortium Recommendation;

http://www.w3.org/TR/xslt.html

[11] [GINF] Generic Interoperability Framework, Sergey
Melnik, http://www-diglib.stanford.edu/diglib/ginf/

[12] [Redland] Redland RDF Application Framework, Dave
Beckett http://www.redland.opensource.ac.uk/docs

[13] [Jena] Jena - A Java API for RDF, Brian McBride;
http://www-uk.hpl.hp.com/people/bwm/rdf/jena/index.htm

[14] [Sher1180] Sherlock's Find by Content Library, Apple Tech
Note 1180;

http://developer.apple.com/technotes/tn/tn1180.html

