
Scaling up Pattern Induction for Web Relation
Extraction through Frequent Itemset Mining

Sebastian Blohm and Philipp Cimiano

Institute AIFB, Universität Karlsruhe (TH)

Abstract. In this paper, we address the problem of extracting relational infor-
mation from the Web at a large scale. In particular we presenta bootstrapping
approach to relation extraction which starts with a few seedtuples of the target
relation and induces patterns which can be used to extract further tuples. Our
contribution in this paper lies in the formulation of the pattern induction task as a
well-known machine learning problem, i.e. the one of determining frequent item-
sets on the basis of a set of transactions representing patterns. The formulation of
the extraction problem as the task of mining frequent itemsets is not only elegant,
but also speeds up the pattern induction step considerably with respect to previ-
ous implementations of the bootstrapping procedure. We evaluate our approach
in terms of standard measures with respect to seven datasetsof varying size and
complexity. In particular, by analyzing the extraction rate (extracted tuples per
time) we show that our approach reduces the pattern induction complexity from
quadratic to linear (in the size of the occurrences to be generalized), while man-
taining extraction quality at similar (or even marginally better) levels.

1 Introduction

A problem which has received much attention in the last yearsis the extraction of (bi-
nary) relations from the Web. Automatic extraction of relations is useful whenever the
amount of text to analyze is not manageable manually. As an example, a car manufac-
turer may want to monitor upcoming market developments by analyzing news and blogs
on the Web. Relation extraction can extract thepresentedAtrelation in order to compile
a list of upcoming car models and where they will be presented(e.gpresentedAt(Audi
Q7, Detroit Motor Show)). To address this problem, several supervised approaches have
been examined which induce a classifier from training data and then apply it to discover
new examples of the relation in question. These approaches typically work on a closed
corpus and rely on positive and (implicit) negative examples provided in the form of
annotations [18, 8] or a handful of positive and negative examples [5]. The obvious
drawback of such methods is that they can inherently not scale to the Web as they
would require the application of the classifier to the whole textual data on the Web, thus
being linear in its size.

Alternative approaches to address the problem of extracting relations from the Web
have been presented (we discuss a couple of systems below). These approaches rely on
the induction of patterns on the basis of occurrences of a fewexamples of the relation
in question. Such explicit textual patterns allow to take a shortcut to linearly scanning
the whole Web by relying on standard index structures to evaluate the string patterns

as standard search engine queries using off-the-shelf search engine APIs. This circum-
vents the need to linearly process the whole Web (see e.g. [3]). Some approaches per-
form pattern induction in an iterative fashion in a cyclic approach which uses the new
examples derived in one iteration for the induction of new patterns in the next iteration
[4, 1]. In this paper we follow this latter approach and in particular examine more in
detail the empirical complexity of the pattern induction step. As in these approaches
the induction of patterns proceeds in a bootstrapping-likefashion, the complexity of the
pattern induction step crucially determines the time complexity of the whole approach.
Earlier implementations of the approach have used greedy strategies for the pairwise
comparison of the occurrences of seed examples. In this paper we show how the Apri-
ori algorithm for discovering frequent itemsets can be usedto derive patterns with a
minimal support in linear time. Our empirical evaluation shows that with this approach
pattern induction can be reduced to linear time while maintaining extraction quality
comparable (and even marginally better) to earlier implementations of the algorithm.

The remainder of this paper is organized as follows. In the next section we de-
scribe the approach of pattern-based relation extraction using Web search engines in
more detail. In sectionPattern Induction as Frequent Itemset Mining, we give a brief
introduction to Frequent Itemset Mining before describinghow it is applied in order
to induce patterns for relation extraction. We describe ourexperimental results in sec-
tion Experimental Results, before discussing related work and giving some concluding
remarks.

2 Iterative Pattern Induction

The goal of pattern induction is, given a set of seed examples(pairs)S of a relationR
as well as occurrencesOcc(S) in the corpus (the Web in our case) of these seeds, to
induce a set of patternsP which are general enough to extract many more tuples stand-
ing in the relationR (thus having a good coverage) and which at the same time do not
overgenerate in the sense that they produce too many spurious examples. The challeng-
ing issues here are on the one hand that the hypothesis space is huge, corresponding to
the power set of the set of possible patternsP representing abstractions over the set of
occurrencesOcc(S). We will denote this hypothesis space as2P . On the other hand,
the complete extensionextR of the relationR is unknown (it is the goal of the whole
approach to approximate this extension as closely as possible at the end of the cycle),
such that we cannot use it to compute an objective function:o : 2P → R to determine
the patterns’ accuracy with respect to the extensionextR.

The general algorithm for iterative induction of patterns is presented in Figure 1.
It subsumes many of the approaches mentioned in the introduction which implement
similar bootstrapping-like procedures. The key idea is to co-evolveP (which at the
beginning is assumed to be empty) as well as a constantly growing set of examplesS
which at the beginning corresponds to the seed examples. Thecandidate patterns can be
generated in a greedy fashion by abstracting over the occurrencesOcc(S). Abstracting
requires finding common properties, which in principle is a quadratic task as it requires
pairwise comparison between the different occurrences.

ITERATIVE PATTERN INDUCTION(PatternsP ′, TuplesS′)
1 S ← S′

2 P ← P ′

3 while not DONE

4 do Occt ← MATCH-TUPLES(S)
5 P ← P ∪ LEARN-PATTERNS(Occt)
6 EVALUATE -PATTERNS(P)
7 P ← {p ∈ P | PATTERN-FILTER-CONDITION(p)}
8 Occp ← MATCH-PATTERNS(P)
9 S ← S + EXTRACT-TUPLES(Occp)

10 EVALUATE -TUPLES(S)
11 S ← {t ∈ S | TUPLE-FILTER-CONDITION(t)}

Fig. 1. Iterative pattern induction algorithm starting with initial tuplesS′ or (alternatively) pat-
ternsP ′.

The algorithm starts with a set of initial tuplesS′ of the relation in question –
so calledseeds– and loops over a procedure which starts by acquiring occurrences
of the tuples currently inS (e.g. by querying a search engine with"Stockholm"
"Sweden") for the relationlocatedIn. Further patterns are then learned by abstract-
ing over the text occurrences of the tuples. The new patternsare then evaluated and
filtered before they are matched. A resulting pattern could be “flights toARG1 , ARG2

from∗ airport” and thus may contain wildcards and argument place holders. From these
matches, new tuples are extracted, evaluated and filtered. The process is repeated un-
til a termination condition DONE is fulfilled. The learning is thus inductive in nature,
abstracting over individual positive examples in a bottom-up manner.

For our experiments we have used the implementation of the above algorithm as
described in [3]. They have shown in previous work that in absence of an objective
function to maximize, we can reasonably estimate the quality of the setP of patterns
by a heuristic function. Among the different functions examined in the above men-
tioned work, a simple function which assesses the quality ofa pattern on the basis of
its support, i.e. the different occurrences which it was generated from and therefore
covers, is shown to be a good choice compared to other more elaborate measures such
as the pointwise mutual information used in the Espresso [12] and other systems (e.g.
KnowItAll [9]). Therefore, a reasonable choice is to selectthose patterns which have a
minimal support and meet some heuristic syntactic criteriato prevent too general pat-
terns1. We describe in the following section how this problem can beformulated as the
one of determining frequent itemsets using the well-known apriori algorithm. With this
move, we also reduce the complexity of the pattern inductionstep from quadratic to
linear in the number of occurrences.

3 Pattern Induction as Frequent Itemset Mining

In our approach, we translate textual occurrences of a certain relation into set represen-
tations and use the Apriori algorithm to find patterns in these occurrences that exceed a
certain minimum support. This task is typically calledfrequent itemset mining(FIM).

1 In particular, we ensure that the patterns have a minimal number of token constraints (and not
only wildcards) as well as that they have been generated fromat least two different tuples.

The mining for frequent itemsets is a subtask of AssociationRule Mining. Associa-
tion rules are used to derive statements like “Clients who bought product X also bought
product Y” from transaction databases. A transactiont ∈ DB constitutes a process
with several itemsa from an alphabet of itemsA (e.g. products that have been jointly
purchased).DB is thus a (multi) set of subsets ofA.

In a databaseDB of transactions the frequent itemsetsF ⊂ 2A are defined as those
sets that occur at leastfreqmin times as subset of a transaction, i.e.F = {f ∈ 2A||{t ∈
DB|f ⊂ t}| ≥ freqmin}.

3.1 The Apriori Algorithm

Apriori [2] is an algorithm for finding all frequent itemsetsgiven a database and a
frequency threshold. It is based on the observation that an itemsetf of size |f | = n
can only be frequent inDB if all its subsets are also frequent inDB. Apriori thus
significantly reduces the amount of itemsets for which the frequency has to be counted
by first deriving all frequent itemsets of sizen = 1 and then progressively increasing
n so that the above subset condition can be checked when generating the candidates
for n + 1 as all subsets of sizen are known. The Apriori algorithm looks as follows in
pseudocode:

APRIORI(Alphabet A, Database DB ⊂ 2A, Threshold freqmin)
1 C ← {{a}|a ∈ A}
2 n← 1
3 while C 6= ∅
4 do
5 ∀c ∈ C : COUNTSUPPORT(c, DB)
6 Fn ← {c ∈ C|SUPPORT(c) >= freqmin}
7 C ← {f ∪ g|f, g ∈ Fn ∧ MERGABLE(f, g)}
8 C ← PRUNE(C, Fn)
9 n← n + 1

The algorithm stores all frequent itemsets of sizen in a setFn after verifying for
each itemset that it occurrs at leastfreqmin times inDB. The set of candidates for
the first iteration is given by all elements of the alphabet. For the following iterations
it is then generated by taking all elements ofFn and combining them if the condition
MERGABLE(f, g) is fulfilled, which makes sure thatf andg overlap inn− 1 elements.
PRUNE(C, Fn) removes all itemsetsc from C (which all have lengthn + 1) for which
one or more of all possible subsets ofc of sizen are not contained inFn which is the
above-mentioned necessary condition forc to be frequent.

The performance of the Apriori algorithm depends on the efficient implementation
of the operationsCOUNTSUPPORT(c, DB), MERGABLE(f, g) andPRUNE(C, Fn). It is
common to use a Trie data structure (also called Prefix Tree) for this purpose. Given
an arbitrary total order onA, one can represent the itemsets as ordered sequences with
respect to that sequence. Tries are trees that represent sequences as paths in the tree
along with their frequency counts. After constructing a Trie from theDB, one can find
and count non-continuous subsequences ofDB entries very efficiently, which is the
task of COUNTSUPPORT. Similarly, MERGABLE and PRUNE can be implemented as
traversal operations on the Trie (as described in [11]).

3.2 Mining for Text Patterns with Apriori

The general idea of applying frequent itemset mining for text pattern induction is that
a text pattern"flights to *, *" can be considered the frequent itemset of the
set of text occurrences it has been generated from (e.g.DB = {”We offer flights to
London, England.”,”I look for flights to Palo Alto, CA.”}). In order to ensure that, in
spite of the set character of itemsets, word order is preserved, a special encoding is used,
allowing at the same time to express additional constraintsover words. While sequence
mining algorithms such as the one used by Jindal and Liu [10] can be applied, it is
not straightforward to encode multiple constraints per token. Thus, in our approach we
exploit the more general model of unordered itemsets and encode word order and other
constraints as described below.

We use the notion of constraints for describing the textual occurrences and patterns.
Each constraint has a type, a position and a value. A constraint is fulfilled for a given
text segment if the value is present at the given position in away described by the
constraint type. The positions are the token numbers (aligned by the positions of the
arguments). Types can be for example surface string, capitalization and part-of-speech
with their obvious sets of possible values. The pattern"We offer flights to

*, *" may be represented as the following set of constraints:

surface1 = we,capitalization1 = true
surface2 = offer, capitalization2 = false

surface3 = flights,capitalization3 = false
surface4 = to, capitalization4 = false

surface6 = COMMA, capitalization6 = false

Note that no constraints are posed for positions 5 and 7 because those are the argument
positions (reflected by the∗ wildcard above). In our implementation we ensure that all
occurrences are aligned such that the position numbers are always the same relative to
the argument positions.

We encode each constraint as a positive integer value using abijective function
encode : Type × Position × V alue → N: encode(con, pos, value) = value ∗
maxCon ∗ maxPos + (pos + maxPos ∗ (con − 1)). wherecon is the number of
the constraint type,pos the position andvalue a numerical value reflecting frequency.
The remaining variables reflect the respective maximal values with respect to the given
database. One can think of this as the process of first “flattening” the structured infor-
mation contained in the constraints to items like:

{surface 1 we, capitalization 1 true,
surface 2 offer, capitalization 2 false,

surface 3 flights, capitalization 3 false,
surface 4 to, capitalization 4 false,

surface 6 COMMA, capitalization 6 false}

and subsequently translated to integer values:{987, 435, 656634, 4235, 234, 6453, 64,
242, 786, 89}. During the application of Apriori, only those subsets are retained that
reflect a frequently occurring textual pattern:{6453,64,242,786,89}= ”flights to *, *”.

Apriori generates all patterns that exceed a given frequency threshold. Inevitably,
this yields multiple patterns that are subsumed by each other (e.g. if" * was born

Relation Size Dataset Description Pmanual Pclassic ∆ PF IM ∆ PF IMtuned

albumBy 19852 Musicians and their musical works 80.8% 27.4% -11.6% -18%
bornInYear 172696persons and their year of birth 40.7% 19.5% +48.4% +17%
currencyOf 221 countries and their official currency 46.4% 22.8% -17.6% +10.9%
headquarteredIn 14762 companies and the country of their head-

quarter
3% 9.8% +2.2% -5.2%

locatedIn 34047 cities and their corresponding country 73% 56.5% -8.4% -0.5%
productOf 2650 product names and their manufacturers. 64.6% 42.2% -0.9% +12%
teamOf 8307 sportspersons and their team or country 30% 8.0% +1.4% +0.8%

average 48.3 26.6% +1.9% +4.7%

Table 1. Relations with precision scores obtained by the classic system (manual evaluation) and
differences (∆) measured with the two FIM conditions.

in * " is frequent, then" * was * in * " is frequent as well). In order to
avoid such too general patterns and at the same time avoidingtoo specific ones (e.g.
"Wolfgang Amadeus * was born in * "), we introduce the following rule
for removing more general patterns: if patterna has all constraints also present inb and
one more,b is removed unlessSUPPORT(b) is at least 20% higher thanSUPPORT(a).
This rule is applied starting with the smallest patterns. Weexperimentally determined
that the threshold of 20% leads to a generally rather appropriate set of patterns. The
remaining unwanted patterns are left to be eliminated by further filtering.

4 Experimental Evaluation

The goal of our experimental evaluation is to demonstrate the advantages of modeling
the pattern abstraction subtask of iterative pattern induction as a frequent itemset mining
(FIM) problem. We do so by comparing the performance achieved by our itemset-based
implementation with the abstraction algorithm used in previous implementations (com-
pare [3]). We do not intend to show the superiority of the approach based on Frequent
Itemset Mining to those from the literature as this would require a common benchmark
for large-scale Web Relation Extraction or at least a commonbasis of implementation.
Such a standard does not exist due to the diversity of applications and pattern represen-
tation formalisms in the literature. Yet, we evaluate our results on a fairly diverse set
of non-taxonomic relations to ensure generality. The datasets we use have already been
used in [3] and are provided for download by the authors. As inthese experiments, we
have also used the same 10 seeds selected by hand and the same automatic evaluation
procedure.

4.1 Experimental Setup

In our experiments, we rely on the widely used precision and recall measures to eval-
uate our system’s output with respect to the full extension of the relation2. To give an

2 Note that this is different from the evaluation of other similar systems which calculate these
measures with respect to a specific corpus, thus yielding higher scores. Also due to the abs-
cence of a closed corpus in our Web scenario, our notion of recall is is not comparable. We
use “relative recall” in the sense that it reflects extractions compared to the highest yield count
obtained over all experimental settings we applied.

Fig. 2. Precision, recall, F-measure and extraction rate for the individual configurations averaged
over all relations (left); Time (sec.) taken by a run of the classical induction algorithm (squares)
and the FIM-based algorithm (circles) over the numbers of sample occurrences. (right)

objective measure for temporal performance, we use theExtraction Rate, that is, the
number of correctly extracted tuplesTP over the durationD of the extraction process
in seconds (on a dual core machine with 4GB of RAM):Ex = TP

D

Figure 2 shows precision, recall and F-measure for three configurations of the sys-
tem: theclassicconfiguration, theFIM configuration which uses the proposed model-
ing of the learning problem with all parameters unchanged and FIM tuned for which
the parameters have been optimized for the new learning algorithm. In particular, as
FIM is more efficient than the classic merge procedure, we canprocess a higher num-
ber of tuples, such that we set the number of occurrences downloaded to 200 (versus
a decreasing number as used in [3]). All the other parametersof the algorithm have
been chosen as described there. Overall, there is a small superiority of FIM over the
classic version in terms of precision and recall (29% vs. 27%and 15% vs. 11%). Most
importantly, there is a clear superiority in terms of extraction rate (0.19 vs. 0.05 occur-
rences/second). This difference is statistically significant (two-sides paired Student’s
t-test with anα-Level of 0.05).

Table 1 shows the different relations together with the sizeof their extension, the
precision yielded by a manual evaluation of a sample of 100 tuples of each relation
(Pmanual), the precision yielded by the classic pattern induction algorithm Pclassic

as well as the relative improvements yielded by our formulation of the problem as a
frequent itemset mining (FIM) task relative to the precision Pclassic calculated auto-
matically with respect to the relation’s extension3. The best results for each relation are
highlighted. In general, we see that while the results vary for each relation, overall the
FIM version of the algorithm does not deteriorate the results, but even slightly improves
them on average (+1,9% for the FIM version and +4.7% for the tuned FIM version).

4.2 Discussion

In principle, there are no reasons for any of the abstractionalgorithms to show better
precision and recall because they both explore all possiblefrequently occurring patterns

3 Note here that the precisionPclassic calculated automatically with respect to the datasets is
much lower than the precision obtained through sampled manual evaluation (Pmanual). This
is due to the in some cases unavoidable in-completeness of the datasets and orthographic dif-
ferences in test data and extraction results.

in a breadth-first-search manner. Differences are due to minor modeling issues (see
below), the slightly different evaluation of patterns based directly on support counts
produced by apriori and, most importantly, the fact that learning is cut off after one hour
per iteration. Indeed the standard implementation frequently reached this time limit of
an hour, thus leading to better results for the FIM version ofthe algorithm which does
not suffer from this time limit.

One example of slight modeling differences which influencedperformance is the
treatment of multi-word instances. The learner has to decide whether to insert one wild-
card∗ in an argument position (nearly always matching exactly oneword) or two (al-
lowing for two or more words). The classic version heuristically takes the number of
words in the argument of the first occurrence used for patterncreation as sample for
the wildcard structure. The FIM version encodes the fact that an argument has more
than one word as an additional constraint. If this item is contained in a learned frequent
itemset, a double wildcard is inserted. The stronger performance with thebornInYear
(+48%),currencyOf (+10.9%) andproductOf (+12%) relations can be explained in
that way (compare Table 1). For example, the FIM version learns that person names
have typically length 2 and birth years always have length 1 while the classic induction
approach does not allow this additional constraint. This explains the decreased perfor-
mance of the classic approach for the relations mentioned above for which at least one
argument has a rather fixed length (e.g. years).

As indicated in Figure 2, the clear benefit of the FIM abstraction step lies in its run-
time behavior. The duration of a pattern generation processis plotted over the number
of sample instances to be generalized. To measure these times, both learning modules
were provided with the same sets of occurrences isolated from the rest of the induction
procedure. The FIM shows a close to linear increase of processing duration for the given
occurrence counts. Even though implemented with a number ofoptimizations (see [3]),
the classic induction approach clearly shows a quadratic increase in computation time
w.r.t. the number of input occurrences.

5 Related Work

The iterative induction of textual patterns is a method widely used in large-scale infor-
mation extraction. Sergey Brin pioneered the use of Web search indices for this purpose
[4]. Recent successful systems include KnowItAll which hasbeen extended to auto-
matic learning of patterns [9] and Espresso [12]. The precision of Espresso on various
relations ranges between 49% and 85%, which is comparable toour range of precisions
Pmanual. Concerning the standard restriction to binary relations,Xu et al. [17] have
shown how approaches used for extracting binary relations can be applied to n-ary rela-
tions in a rather generic manner by considering binary relations as projections of these.
These and the many other related systems vary considerably with respect to the rep-
resentation of patterns and in the learning algorithms usedfor pattern induction. The
methods used include Conditional Random Fields [16], vector space clustering [1], suf-
fix trees [14] and minimizing edit distance [13]. In this paper, we have proposed to
model different representational dimensions of a pattern such as word order, token at
a certain position, part-of-speech etc. as constraints. Our approach allows straightfor-

wardly to represent all these dimensions by an appropriate encoding. Given such an
encoding, we have shown how frequent itemset mining techniques can be used to effi-
ciently find patterns with a minimal support.
Apart from pattern-based approaches, a variety of supervised and semi-supervised clas-
sification algorithms have been applied to relation extraction. The methods include
kernel-based methods [18, 8] and graph-labeling techniques [6]. The advantage of such
methods is that abstraction and partial matches are inherent features of the learning al-
gorithm. In addition, kernels allow incorporating more complex structures like parse
trees which cannot be reflected in text patterns. However, such classifiers require test-
ing all possible relation instances while with text patterns extraction can be significantly
speeded up using search indices. From the point of view of execution performance, a
pattern-based approach is superior to a classifier which incorporates a learned model
which can not be straightforwardly used to query a large corpus such as the web. Clas-
sification thus requires linear-time processing of the corpus while search-patterns can
lead to faster extraction. Recently, the

A similar approach to ours is the one by Jindal and Liu [10]. They use Sequential
Pattern Mining – a modification of Frequent Itemet Mining – toderive textual patterns
for classifying comparative sentences in product descriptions. While, like our approach,
encoding sequence information, their model is not able to account for several constraints
per word. Additionally, the scalability aspect has not beenfocus of their study as mining
has only be performed on a corpus of 2684 sentences with a verylimited alphabet.
Another approach orthogonal to ours is presented by [7]. Each occurrence is abstracted
over in a bottom up manner which saves pairwise occurrence comparison at the expense
of evaluating the large amounts of pattern candidates with respect to the training set. The
algorithm seems thus more appropriate for fully supervisedsettings of limited size.

6 Conclusion

Our contribution in this paper lies in the formulation of thepattern induction step as a
well-known machine learning problem, i.e. the one of miningfrequent itemsets. On the
one hand, this formulation is elegant and advantageous as wecan import all the results
from the literature on association mining for further optimization (an overview of which
is given in and [15]). On the other hand, we have shown that this formulation leads to a
significant decrease in the running time of the extraction. In particular, we have shown
that the running time behavior decreases from quadratic to linear with the number of
occurrences to be generalized with respect to previous implementations. Further, we
have also shown that the quality of the generated tuples evenslightly increases in terms
of F-measure compared to the standard pattern induction algorithm. This increase is
mainly due to the modeling of argument length as an additional constraint which can
be straightforwardly encoded in our FIM framework. Overall, modeling the different
representational dimensions of a pattern as constraints iselegant as it allows to straight-
forwardly add more information. In future work we plan to consider taxonomic as well
as other linguistic knowledge.

Acknowledgements

This work was funded by Deutsche Forschungsgemeinschaft (MULTIPLA project, grant
Nr 38457858) and the X-Media project (www.x-media-project.org) sponsored by the
European Commission as part of the Information Society Technologies (IST) program
under EC grant number IST-FP6-026978.

References

1. E. Agichtein and L. Gravano. Snowball: extracting relations from large plain-text collections.
In Proceedings of the fifth ACM conference on Digital Libraries(DL), 2000.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94),
pages 487–499, 1994.

3. S. Blohm, P. Cimiano, and E. Stemle. Harvesting relationsfrom the web -quantifiying the
impact of filtering functions. InProceedings of AAAI’07, pages 1316–1323, 2007.

4. S. Brin. Extracting patterns and relations from the worldwide web. InProceedings of the
WebDB Workshop at the 6th International Conference on Extending Database Technology
(EDBT), 1998.

5. R. Bunescu and R. Mooney. Learning to extract relations from the web using minimal su-
pervision. InProceedings of ACL 2007, 2007.

6. J. Chen, D. Ji, C. L. Tan, and Z. Niu. Relation extraction using label propagation based
semi-supervised learning. InProceedings of COLING-ACL 2006, pages 129–136, 2006.

7. F. Ciravegna. Adaptive information extraction from textby rule induction and generalisation.
In Proceedings of IJCAI 2001, pages 1251–1256, 2001.

8. A. Culotta and J. Sorensen. Dependency tree kernels for relation extraction. InProceedings
of the 42nd ACL, pages 423–429, 2004.

9. D. Downey, O. Etzioni, S. Soderland, and D. Weld. Learningtext patterns for web infor-
mation extraction and assessment. InProceedings of the AAAI Workshop on Adaptive Text
Extraction and Mining, 2004.

10. N. Jindal and B. Liu. Mining comparative sentences and relations. In Proceedings of
AAAI’06. AAAI Press, 2006.

11. A. Mueller. Fast sequential and parallel algorithms forassociation rule mining: a comparison.
Technical report, College Park, MD, USA, 1995.

12. P. Pantel and M. Pennacchiotti. Espresso: Leveraging generic patterns for automatically
harvesting semantic relations. InProceedings of COLING-ACL’06, pages 113–120, 2006.

13. P. Pantel, D. Ravichandran, and E. H. Hovy. Towards terascale knowledge acquisition. In
Proceedings of COLING-04, pages 771–777, 2004.

14. D. Ravichandran and E. Hovy. Learning surface text patterns for a question answering sys-
tem. InProceedings of the 40th Annual Meeting of the ACL, pages 41–47, 2001.

15. L. Schmidt-Thieme.Assoziationsregel-Algorithmen für Daten mit komplexer Struktur. PhD
thesis, Universität Karlsruhe, 2007.

16. P. P. Talukdar, T. Brants, M. Liberman, and F. Pereira. A context pattern induction method
for named entity extraction. InProceedings of the 10th CoNLL, New York City, 2006.

17. F. Xu, H. Uszkoreit, and H. Li. A seed-driven bottom-up machine learning framework for
extracting relations of various complexity. InProceedings of the 45th ACL, pages 584–591,
2007.

18. D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction.Journal of
Machine Learning Research, 3:1083–1106, 2003.

