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Abstract. This paper briefly reports on an agent team doing ontology-based 
information extraction (OBIE, IE) for summarization in clinical Bone Marrow 
Transplantation (BMT). The SummIt-BMT agents contribute to OBIE through 
their  flexible use of  ontological knowledge.  They assess  input text  passages 
from web retrieval with respect to a user query.  They use an ontology that 
supports IE in particular with concepts, propositions, unifiers and paraphrases. 
Sentences with IE hits are annotated with the IDs of ontology propositions that 
recognize an instance of their content in the sentence. The agents are beginners, 
but they perform. Distributing ontology-based IE to agents has some promise: it 
enables parallel processing, it eases tracking of decisions and their explanation 
to users. 

1. An agent team for ontology-based information extraction
Imagine a team of agents who specialize in ontology-based information extraction for 
summarization (more detail in Endres-Niggemeyer et al. 2006, Endres-Niggemeyer 
1998). Figure 1 presents them in their communication environment. For ease of use, 
the agents answer to simple German forenames. Their family names are derived from 
their function, sometimes with some influence of their structure or history. Currently 
there are, in the order of appearance: 
Peter Question 
Kurt DummyIRBean 
Frieda TextToPropMini 
Heini DispatchProposition 
Hugo SpotOntoProps 
Rudi VerifyPropArguments 
Herta CheckPropRelation
Paula SumUpHits
The  agent  community  distributes  summarization  and  IE  tasks  as  observed  in 
competent humans: proceed step-by-step and apply all available resources at a time. 
Every agent roughly performs a strategy as seen in human summarizers.



The agents are Java classes that extend the jade.core.Agent1.  They run in a JADE 
container  and  use  standard  ACL  (Agent  Communication  Language)2 means  of 
interaction. All agents share a set of simple calls. Most calls consist of the name of the 
addressed agent and a simple German codeword: los (go), mehr (more), fertig (done). 
Only the tidy-up agent  Paula is also assigned a more sophisticated command when 
she has to reorganize results for presentation: sumup (sum up). When broadcasting the 
close-down message to all agents, Kurt says schluss (finish) to make the agents delete.

The system blackboards serve data communication. The  ScenarioBoard stores 
the query specification and the findings of the agents. While they interpret a sentence, 
the agents exchange data via the TextBlackBoard. External input comes from the text 
passage retrieval  result.  At the end of  a  session,  the retrieval  result  (organized in 
documents,  paragraphs  and  sentences)  is  augmented  with  the  agents’  relevance 
judgements. They mark the relevant text clips, which are presented to the user.

Fig. 2. The agents and their communication network. Dotted arcs represent data input/output

2. The Ontology
The agents and the system users share an ontology of the application domain Bone 
Marrow Transplantation (BMT). The ontology was developed by human experts from 
a  corpus  of  US BMT papers  and  user  queries  of  physicians  at  Hanover  Medical 
School. It is stored in a MySQL3 database. In the ontology the agents find the types of 
knowledge they need for IE (see Table 1):  concepts, propositions, proposition syntax 
records, unifiers, paraphrases, scenarios, and some technical help tables. 

We  use  a  Prolog  style  first  order  predicate  logic  representation.  Inside  the 
MySQL database,  all  knowledge  items  are  split  into  separate  tables.  Propositions 

1  See JADE at http://jade.tilab.com/
2  http://www.fipa.org/repository/aclspecs.html
3  http://www.mysql.de/



comprise  a  head  and  a  set  of  arguments  allocated  to  the  propositionhead  and 
propositionargument tables, respectively. Their proposition ID keeps them together. 
Every proposition obeys a syntax record that states its argument roles. Syntax tables 
are built like proposition tables. Unifiers are lists of concepts provided by domain 
experts.  They unify ontology propositions and text-based candidate propositions: a 
concept of the accredited unifier adapts the ontology proposition so that it matches a 
candidate  proposition  from  input.  This  expands  the  coverage  of  the  ontology 
propositions. Paraphrases map ontology propositions to possible surface formulations. 
They are macropropositions (Kintsch and van Dijk 1983): parsed surface phrases with 
argument roles as variables, so that one paraphrase can serve a class of proposition 
occurrences in text. The scenario representation stores the whole presentation on the 
JSP4-based user interface.

Table 1. Ontology database overview.

Knowledge unit Quantity Database tables
concept 4813 concept, conceptsynonym, hyperconcept
japanese concept 4683 multilanguage, japan
proposition 5054 propositionhead, propositionargument, signature
syntax 507 syntaxhead, syntaxargument, predicate, predsyn
unifier 680 unifier, unifcalc
paraphrase 11845 paraphrasehead, paratoken, parapropidlist
scenario 61 scenario, scenfamily_hr, scenarioblock, scenarioblocklist,  scenariofield, 

scenariofieldPI, scenariofieldPIlist, scenariofieldlist, scenarioquery, 
scenblockoption, scenqueryword, scenquestionargument

3. The agents’ jobs
The agents specialize in different IE subtasks. They produce a summarization effect 
by extracting only propositions that match the query and by throwing away doubles. 
All agents activate each other as often as needed. 

Scenario interpretation. Peter accepts a user query scenario and the user’s start 
signal. Into the scenario form, the user has entered what is known about the current 
situation  and  what  knowledge  is  missing.  The agent  parses  this  organized  query, 
deposits the resulting propositions on the ScenarioBoard and activates Kurt. 

Table 2. Ontology propositions’ hits for the demo sentence.

No. ID Wording (FOL)
1 17650 administer (, patient, ganciclovir, intravenous)
2 17652 administer (, patient, ganciclovir, intravenous, low dose, short-course)
3 17656 administer (, patient, ganciclovir)
4 17685 administer (, patient, methotrexate)
5 21054 haveRiskClass (patient, low risk, disease progression)
6 21055 haveRiskClass (patient, high risk, cytogenetic risk)
7 21056 haveRiskClass (patient, high risk, chromosome aberration)
8 21057 haveRiskClass (patient, high risk, age)
9 22097 prevent (patient, broad-spectrum antibiotic, , antimicrobial prophylaxis, posttransplantation)

Input. Kurt fetches the query and obtains results from outside web retrieval and text 
passage retrieval.  He submits  good input sentences  one by one to  the parser  (the 

4  Java Server Pages - http://java.sun.com/products/jsp/



Connexor5 FDG  parser)  and  feeds  wording  and  parser  output  into  the  agents’ 
production line by putting it onto the TextBlackBoard. He calls Frieda.

Let us assume for the sake of a demo that Kurt comes up with the sentence
“All patients at cmv risk were administered high-dose ganciclovir.“

It will be hit by 9 ontology propositions (see table 2). We follow proposition 17685.
Candidate propositions in a parsed sentence.  Frieda picks up the new input. 

She finds candidate propositions in a parsed sentence and annotates them (see table 3, 
columns 8 – 13).  She  distinguishes  verbal,  prepositional  and attributive candidate 
propositions. As soon as her annotation is done, Frieda activates the agent Heini.

Table 3. An example dependency parser  output  with 3 annotated propositions of  different 
types. Columns 1 - 7 display the parse, columns 8 – 13 the proposition candidates.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 all DET @DN> %>N det: *   
2 patient N NOM PL @SUBJ %NH subj: arg1 modhead2

3 at PREP @<NOM %N< mod: praep1 praep 2

4 cmv ABBR NOM SG @A> %>N attr: arg1 modarg 2 attr 3
5 risk N NOM SG @<P %NH pcomp: arg1 modarg 2 attrbase 3
6 be V PAST PL @+FAUXV %AUX v-ch: aux 

7 administer EN @-FMAINV %VP main: pred1   

8 high-dose A ABS @A> %>N attr: arg1   

9 ganciclovir N NOM SG @OBJ %NH obj: arg1

Sending  propositions  to  interpretation.  Heini is  the  proposition  dispatcher.  He 
selects  the  propositions  one  by  one  from the  current  sentence  and  initiates  their 
verification. As long as he has input, he submits it to Hugo. When all propositions of 
the current sentence are done, he calls Paula, the tidy-up agent.

Fig. 2. An ontology proposition equipped with a unifier for all drugs.

Finding ontology propositions. Hugo checks whether the current proposition shares 
at least two ontology concepts with any of the ontology propositions. As soon as he is 
done with a concept pair and has some results, Hugo passes the text-based proposition 
with the IDs of selected ontology propositions - and possibly some add-ons due to 
unifiers -  to the  TextBlackbord.   He activates  Rudi.  If  Hugo cannot find matching 
ontology propositions, he returns to Heini and asks for new supplies.
When Hugo begins to treat a new proposition, he puts the IDs of occurring ontology 

5  http://www.connexor.com/



concept IDs into its record. Using them he may find several concept pairs that call 
ontology propositions. Eventually he selects proposition 17685 (see figure 2): 

administer (, patient, methotrexate). 

His pick takes the direct  and the unifier pathway. According to the unifier  in the 
proposition, any drug of the ontology may be put in. As ganciclovir is needed, Hugo 
adds an ersatz argument that contains ganciclovir. He puts his results into the package 
for  Rudi.

Concept  subsumption.  Rudi tries  to  subsume  text-based  propositions  under 
ontology propositions with at least two concepts in agreement. If the subsumption 
works,  the  proposition  from text  may  be  a  legitimate  instance  of  the  subsuming 
ontology proposition, as far as ontology concepts are concerned. If so, Rudi passes it 
to Herta. She will inspect the verbal relation. 

When  Rudi fetches proposition 17685 that  Hugo proposed, he looks for ersatz 
arguments, finds one and puts it in. Now his version of proposition 17685 says: 

administer (, patient, ganciclovir). 

As figure  2  shows,  the  proposition  has  some open  slots.  Rudi tries  to  fill  them, 
subsuming concepts from the text-based proposition. He succeeds once: he subsumes 
high dose under concept 43174 (quantity qualifier) in position 5. Now his proposition 
reads: 

administer (, patient, ganciclovir, , high dose).

As all obligatory arguments are satisfied, Rudi passes his result (see table 4) to Herta.

Table 4. Concept-based IE result.

pos propid concept cid role hyper
-cid

unif required testable match

0 17685 administer 0 pred 0 0 false false false
1 17685 0 0 41884 0 false true false
2 17685 patient 38811 arg 38811 0 false true true
3 17685 ganciclovir 39204 arg 39375 1418 true true true
4 17685 0 0 42583 0 false false false
5 17685 high dose 43174 arg 39595 0 false false true

Verification of the verbal relation. Herta’s task is to check the verbal tie that keeps 
the ontology concepts together. She verifies the relation information against sets of 
paraphrases. If a paraphrase provides a relation wording that is compatible with the 
ontology proposition chosen by  Rudi and the relation wording of the text  surface, 
Herta has  found the  last  missing link.  She  states  the  recognition success  for  that 
proposition by assigning the ID of the subsuming ontology proposition to the text 
sentence.  She asks Rudi for fresh input.

In the test case, Herta receives Rudi’s reworked ontology proposition 17685. She 
writes the ontology concept’s IDs into the parse of proposition 1 (cf. table 3).

Herta procures her paraphrase set of proposition 17685. She will find the test 
paraphrase 14068437 (see table 5) that will fit. Herta seizes the concepts found in the 
text-based  proposition  via  their  hypercids  and  attaches  them  to  the  hypercids  / 
argument roles of the paraphrase. Then she checks in three passes: 
From satisfied roles she goes towards the root of the dependency tree and checks all 

items on her way to ok. 



She compares the verbal chain of the proposition and paraphrase. There should be a 
reasonable fit, depending on word classes. If so, Herta places her controls. 

At  the  end,  Herta starts  from the  ontology proposition arguments  without  fillers. 
Again she goes up the dependency hierarchy and sets all words on her way to 
optional. 

If Herta obtains all ticks as needed, she has verified the verbal relation. In the present 
case, she has found 

“patient is administered ganciclovir”. 

She writes the hit ID to the TextBB. Paula will reorganize all results.

Table 5. Paraphrase 14068437 of proposition 17685. The dependency relation is noted in word 
ID and dep-target. Relation type is declared in depend relation.

para-
phrase ID

no word
ID

token word class 
morphology

syntactic 
function

depend
relation

hyper-
cid

dep-
target

140684371 2 Xpatient N NOM SG @SUBJ %NH subj: 38811 3
140684372 3 be V PRES SG3 @+FAUX %AUX v-ch: 0 4
140684373 4 administer EN @-FMAINV %VP main: 0 1
140684374 5 Xmedication N NOM SG @OBJ %NH obj: 39375 4

Cleaning up.  Paula is the organizer. When processing of a sentence is finished and 
has brought some results, Paula stores the sentence with the recognition results to the 
ScenarioBoard. She tells  Kurt to provide new input. When all input is done,  Paula 
reorganizes the ScenarioBoard. She sorts the recognition IDs of individual sentences 
so that she obtains orderly recognition profiles. Based on the profiles and the wording 
of the sentences, Paula weeds out doubles. Surviving hits are added to their text clips 
in the retrieval result. Paula asks Kurt to close down the agent community.

4. Evaluation

Table 6. Final overall scores of the agents. R1 is the agents’ first run, R2 the second one.

Abstract number of 
sentences

R1 
sentence 

hits

R1 mean
raw 

score

R2 
sentence

hits

R2 
mean raw 

score

mean 
final 
rating

Bcr-abl1 13 9 2.05 11 1.37 3.7
Bcr-abl2 7 2 3.67 6 2.0 2.2
Bcr-abl3 10 2 4.23 5 1.75 2.2
Childhood ALL1 8 4 3.77 5 2.63 3.2
Childhood ALL2 10 3 4.0 2 1.78 1.5
Childhood ALL3 16 6 3.18 10 2.39 3.6
CMVganciclovir1 12 6 4.35 6 2.15 2.7
CMVganciclovir2 12 8 2.25 7 2.0 3.6
CMVganciclovir3 12 1 5.0 6 2.4 3.0

A biochemist and the author evaluated the agents’ performance in a testbed with a 
small  sample  of  Medline  abstracts.  Methods  were  adapted  from  qualitative  field 
research.  The agents  ran twice.  Between their  two runs,  the judges improved  the 
ontology, and results became much better. Ontology quality matters. Often the agents 
stumble over simple human errors, sloppy categorizations or into ontology gaps. In 



overcrowded areas,  they  are  obstructed  by  too  many chances  to  derive  the  same 
recognition result.

In their second run, the agents achieved fair scores. They are still beginners, but 
they come up with results. Table 6 shows their marks on a familiar 5-score scale. 

5. Sources and related approaches 
SummIt-BMT integrates  knowledge from many sources.  Ontology and  agents  are 
based on empirical observation of human summarizers (Endres-Niggemeyer 1998), 
following human task organization as much as possible. Humans summarize content. 
A domain terminology / an ontology is a natural start for their IE activities. For IE 
(Appelt  and Israel  1999) and summarization an extended ontology is  required,  so 
propositions, unifiers, paraphrases and scenarios were integrated. The agents’ IE is 
adaptive  (Turmo  et  al.  2006),  given  a  domain  ontology.  It  seemed  consistent  to 
distribute the human-like strategies to an agent community (JADE - Bellemine et al. 
2007)  and  to  give  the  agents  task-specific  blackboards  for  data  interchange  and 
storage (already in the SimSum system – Endres-Niggemeyer 1998). Implementing 
this at the state of the art led to OBIE, to agents using blackboards, to unifier use, to 
paraphrases incorporating parsed macropropositions. As mainstream evaluation does 
not work for the agents-and-ontology approach, a small-scale evaluation procedure 
was drawn from qualitative field research methods (Glaser and Strauss 1980).

6. Conclusion
Ontology-based IE (for summarization) can be distributed to an agent team. This has 
advantages: Agents’ decisions can be tracked more easily. The agents may explain 
them. New agents are easily integrated, so that the community “learns”. If running in 
parallel, agent teams may be fast and scale up well. 
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