
Ontology-based information extraction in agents’ hands

Brigitte Endres-Niggemeyer

University of Applied Sciences and Arts
Faculty III - Media, Information and Design
Expo Plaza 12, 30539 Hannover, Germany

phone +49 511 92 96 - 2641
fax +49 511 92 96 - 26 03

Brigitte.Endres-Niggemeyer@fh-hannover.de

Abstract. This paper briefly reports on an agent team doing ontology-based
information extraction (OBIE, IE) for summarization in clinical Bone Marrow
Transplantation (BMT). The SummIt-BMT agents contribute to OBIE through
their flexible use of ontological knowledge. They assess input text passages
from web retrieval with respect to a user query. They use an ontology that
supports IE in particular with concepts, propositions, unifiers and paraphrases.
Sentences with IE hits are annotated with the IDs of ontology propositions that
recognize an instance of their content in the sentence. The agents are beginners,
but they perform. Distributing ontology-based IE to agents has some promise: it
enables parallel processing, it eases tracking of decisions and their explanation
to users.

1. An agent team for ontology-based information extraction
Imagine a team of agents who specialize in ontology-based information extraction for
summarization (more detail in Endres-Niggemeyer et al. 2006, Endres-Niggemeyer
1998). Figure 1 presents them in their communication environment. For ease of use,
the agents answer to simple German forenames. Their family names are derived from
their function, sometimes with some influence of their structure or history. Currently
there are, in the order of appearance:
Peter Question
Kurt DummyIRBean
Frieda TextToPropMini
Heini DispatchProposition
Hugo SpotOntoProps
Rudi VerifyPropArguments
Herta CheckPropRelation
Paula SumUpHits
The agent community distributes summarization and IE tasks as observed in
competent humans: proceed step-by-step and apply all available resources at a time.
Every agent roughly performs a strategy as seen in human summarizers.

The agents are Java classes that extend the jade.core.Agent1. They run in a JADE
container and use standard ACL (Agent Communication Language)2 means of
interaction. All agents share a set of simple calls. Most calls consist of the name of the
addressed agent and a simple German codeword: los (go), mehr (more), fertig (done).
Only the tidy-up agent Paula is also assigned a more sophisticated command when
she has to reorganize results for presentation: sumup (sum up). When broadcasting the
close-down message to all agents, Kurt says schluss (finish) to make the agents delete.

The system blackboards serve data communication. The ScenarioBoard stores
the query specification and the findings of the agents. While they interpret a sentence,
the agents exchange data via the TextBlackBoard. External input comes from the text
passage retrieval result. At the end of a session, the retrieval result (organized in
documents, paragraphs and sentences) is augmented with the agents’ relevance
judgements. They mark the relevant text clips, which are presented to the user.

Fig. 2. The agents and their communication network. Dotted arcs represent data input/output

2. The Ontology
The agents and the system users share an ontology of the application domain Bone
Marrow Transplantation (BMT). The ontology was developed by human experts from
a corpus of US BMT papers and user queries of physicians at Hanover Medical
School. It is stored in a MySQL3 database. In the ontology the agents find the types of
knowledge they need for IE (see Table 1): concepts, propositions, proposition syntax
records, unifiers, paraphrases, scenarios, and some technical help tables.

We use a Prolog style first order predicate logic representation. Inside the
MySQL database, all knowledge items are split into separate tables. Propositions

1 See JADE at http://jade.tilab.com/
2 http://www.fipa.org/repository/aclspecs.html
3 http://www.mysql.de/

comprise a head and a set of arguments allocated to the propositionhead and
propositionargument tables, respectively. Their proposition ID keeps them together.
Every proposition obeys a syntax record that states its argument roles. Syntax tables
are built like proposition tables. Unifiers are lists of concepts provided by domain
experts. They unify ontology propositions and text-based candidate propositions: a
concept of the accredited unifier adapts the ontology proposition so that it matches a
candidate proposition from input. This expands the coverage of the ontology
propositions. Paraphrases map ontology propositions to possible surface formulations.
They are macropropositions (Kintsch and van Dijk 1983): parsed surface phrases with
argument roles as variables, so that one paraphrase can serve a class of proposition
occurrences in text. The scenario representation stores the whole presentation on the
JSP4-based user interface.

Table 1. Ontology database overview.

Knowledge unit Quantity Database tables
concept 4813 concept, conceptsynonym, hyperconcept
japanese concept 4683 multilanguage, japan
proposition 5054 propositionhead, propositionargument, signature
syntax 507 syntaxhead, syntaxargument, predicate, predsyn
unifier 680 unifier, unifcalc
paraphrase 11845 paraphrasehead, paratoken, parapropidlist
scenario 61 scenario, scenfamily_hr, scenarioblock, scenarioblocklist, scenariofield,

scenariofieldPI, scenariofieldPIlist, scenariofieldlist, scenarioquery,
scenblockoption, scenqueryword, scenquestionargument

3. The agents’ jobs
The agents specialize in different IE subtasks. They produce a summarization effect
by extracting only propositions that match the query and by throwing away doubles.
All agents activate each other as often as needed.

Scenario interpretation. Peter accepts a user query scenario and the user’s start
signal. Into the scenario form, the user has entered what is known about the current
situation and what knowledge is missing. The agent parses this organized query,
deposits the resulting propositions on the ScenarioBoard and activates Kurt.

Table 2. Ontology propositions’ hits for the demo sentence.

No. ID Wording (FOL)
1 17650 administer (, patient, ganciclovir, intravenous)
2 17652 administer (, patient, ganciclovir, intravenous, low dose, short-course)
3 17656 administer (, patient, ganciclovir)
4 17685 administer (, patient, methotrexate)
5 21054 haveRiskClass (patient, low risk, disease progression)
6 21055 haveRiskClass (patient, high risk, cytogenetic risk)
7 21056 haveRiskClass (patient, high risk, chromosome aberration)
8 21057 haveRiskClass (patient, high risk, age)
9 22097 prevent (patient, broad-spectrum antibiotic, , antimicrobial prophylaxis, posttransplantation)

Input. Kurt fetches the query and obtains results from outside web retrieval and text
passage retrieval. He submits good input sentences one by one to the parser (the

4 Java Server Pages - http://java.sun.com/products/jsp/

Connexor5 FDG parser) and feeds wording and parser output into the agents’
production line by putting it onto the TextBlackBoard. He calls Frieda.

Let us assume for the sake of a demo that Kurt comes up with the sentence
“All patients at cmv risk were administered high-dose ganciclovir.“

It will be hit by 9 ontology propositions (see table 2). We follow proposition 17685.
Candidate propositions in a parsed sentence. Frieda picks up the new input.

She finds candidate propositions in a parsed sentence and annotates them (see table 3,
columns 8 – 13). She distinguishes verbal, prepositional and attributive candidate
propositions. As soon as her annotation is done, Frieda activates the agent Heini.

Table 3. An example dependency parser output with 3 annotated propositions of different
types. Columns 1 - 7 display the parse, columns 8 – 13 the proposition candidates.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 all DET @DN> %>N det: *
2 patient N NOM PL @SUBJ %NH subj: arg1 modhead2

3 at PREP @<NOM %N< mod: praep1 praep 2

4 cmv ABBR NOM SG @A> %>N attr: arg1 modarg 2 attr 3
5 risk N NOM SG @<P %NH pcomp: arg1 modarg 2 attrbase 3
6 be V PAST PL @+FAUXV %AUX v-ch: aux

7 administer EN @-FMAINV %VP main: pred1

8 high-dose A ABS @A> %>N attr: arg1

9 ganciclovir N NOM SG @OBJ %NH obj: arg1

Sending propositions to interpretation. Heini is the proposition dispatcher. He
selects the propositions one by one from the current sentence and initiates their
verification. As long as he has input, he submits it to Hugo. When all propositions of
the current sentence are done, he calls Paula, the tidy-up agent.

Fig. 2. An ontology proposition equipped with a unifier for all drugs.

Finding ontology propositions. Hugo checks whether the current proposition shares
at least two ontology concepts with any of the ontology propositions. As soon as he is
done with a concept pair and has some results, Hugo passes the text-based proposition
with the IDs of selected ontology propositions - and possibly some add-ons due to
unifiers - to the TextBlackbord. He activates Rudi. If Hugo cannot find matching
ontology propositions, he returns to Heini and asks for new supplies.
When Hugo begins to treat a new proposition, he puts the IDs of occurring ontology

5 http://www.connexor.com/

concept IDs into its record. Using them he may find several concept pairs that call
ontology propositions. Eventually he selects proposition 17685 (see figure 2):

administer (, patient, methotrexate).

His pick takes the direct and the unifier pathway. According to the unifier in the
proposition, any drug of the ontology may be put in. As ganciclovir is needed, Hugo
adds an ersatz argument that contains ganciclovir. He puts his results into the package
for Rudi.

Concept subsumption. Rudi tries to subsume text-based propositions under
ontology propositions with at least two concepts in agreement. If the subsumption
works, the proposition from text may be a legitimate instance of the subsuming
ontology proposition, as far as ontology concepts are concerned. If so, Rudi passes it
to Herta. She will inspect the verbal relation.

When Rudi fetches proposition 17685 that Hugo proposed, he looks for ersatz
arguments, finds one and puts it in. Now his version of proposition 17685 says:

administer (, patient, ganciclovir).

As figure 2 shows, the proposition has some open slots. Rudi tries to fill them,
subsuming concepts from the text-based proposition. He succeeds once: he subsumes
high dose under concept 43174 (quantity qualifier) in position 5. Now his proposition
reads:

administer (, patient, ganciclovir, , high dose).

As all obligatory arguments are satisfied, Rudi passes his result (see table 4) to Herta.

Table 4. Concept-based IE result.

pos propid concept cid role hyper
-cid

unif required testable match

0 17685 administer 0 pred 0 0 false false false
1 17685 0 0 41884 0 false true false
2 17685 patient 38811 arg 38811 0 false true true
3 17685 ganciclovir 39204 arg 39375 1418 true true true
4 17685 0 0 42583 0 false false false
5 17685 high dose 43174 arg 39595 0 false false true

Verification of the verbal relation. Herta’s task is to check the verbal tie that keeps
the ontology concepts together. She verifies the relation information against sets of
paraphrases. If a paraphrase provides a relation wording that is compatible with the
ontology proposition chosen by Rudi and the relation wording of the text surface,
Herta has found the last missing link. She states the recognition success for that
proposition by assigning the ID of the subsuming ontology proposition to the text
sentence. She asks Rudi for fresh input.

In the test case, Herta receives Rudi’s reworked ontology proposition 17685. She
writes the ontology concept’s IDs into the parse of proposition 1 (cf. table 3).

Herta procures her paraphrase set of proposition 17685. She will find the test
paraphrase 14068437 (see table 5) that will fit. Herta seizes the concepts found in the
text-based proposition via their hypercids and attaches them to the hypercids /
argument roles of the paraphrase. Then she checks in three passes:
From satisfied roles she goes towards the root of the dependency tree and checks all

items on her way to ok.

She compares the verbal chain of the proposition and paraphrase. There should be a
reasonable fit, depending on word classes. If so, Herta places her controls.

At the end, Herta starts from the ontology proposition arguments without fillers.
Again she goes up the dependency hierarchy and sets all words on her way to
optional.

If Herta obtains all ticks as needed, she has verified the verbal relation. In the present
case, she has found

“patient is administered ganciclovir”.

She writes the hit ID to the TextBB. Paula will reorganize all results.

Table 5. Paraphrase 14068437 of proposition 17685. The dependency relation is noted in word
ID and dep-target. Relation type is declared in depend relation.

para-
phrase ID

no word
ID

token word class
morphology

syntactic
function

depend
relation

hyper-
cid

dep-
target

140684371 2 Xpatient N NOM SG @SUBJ %NH subj: 38811 3
140684372 3 be V PRES SG3 @+FAUX %AUX v-ch: 0 4
140684373 4 administer EN @-FMAINV %VP main: 0 1
140684374 5 Xmedication N NOM SG @OBJ %NH obj: 39375 4

Cleaning up. Paula is the organizer. When processing of a sentence is finished and
has brought some results, Paula stores the sentence with the recognition results to the
ScenarioBoard. She tells Kurt to provide new input. When all input is done, Paula
reorganizes the ScenarioBoard. She sorts the recognition IDs of individual sentences
so that she obtains orderly recognition profiles. Based on the profiles and the wording
of the sentences, Paula weeds out doubles. Surviving hits are added to their text clips
in the retrieval result. Paula asks Kurt to close down the agent community.

4. Evaluation

Table 6. Final overall scores of the agents. R1 is the agents’ first run, R2 the second one.

Abstract number of
sentences

R1
sentence

hits

R1 mean
raw

score

R2
sentence

hits

R2
mean raw

score

mean
final
rating

Bcr-abl1 13 9 2.05 11 1.37 3.7
Bcr-abl2 7 2 3.67 6 2.0 2.2
Bcr-abl3 10 2 4.23 5 1.75 2.2
Childhood ALL1 8 4 3.77 5 2.63 3.2
Childhood ALL2 10 3 4.0 2 1.78 1.5
Childhood ALL3 16 6 3.18 10 2.39 3.6
CMVganciclovir1 12 6 4.35 6 2.15 2.7
CMVganciclovir2 12 8 2.25 7 2.0 3.6
CMVganciclovir3 12 1 5.0 6 2.4 3.0

A biochemist and the author evaluated the agents’ performance in a testbed with a
small sample of Medline abstracts. Methods were adapted from qualitative field
research. The agents ran twice. Between their two runs, the judges improved the
ontology, and results became much better. Ontology quality matters. Often the agents
stumble over simple human errors, sloppy categorizations or into ontology gaps. In

overcrowded areas, they are obstructed by too many chances to derive the same
recognition result.

In their second run, the agents achieved fair scores. They are still beginners, but
they come up with results. Table 6 shows their marks on a familiar 5-score scale.

5. Sources and related approaches
SummIt-BMT integrates knowledge from many sources. Ontology and agents are
based on empirical observation of human summarizers (Endres-Niggemeyer 1998),
following human task organization as much as possible. Humans summarize content.
A domain terminology / an ontology is a natural start for their IE activities. For IE
(Appelt and Israel 1999) and summarization an extended ontology is required, so
propositions, unifiers, paraphrases and scenarios were integrated. The agents’ IE is
adaptive (Turmo et al. 2006), given a domain ontology. It seemed consistent to
distribute the human-like strategies to an agent community (JADE - Bellemine et al.
2007) and to give the agents task-specific blackboards for data interchange and
storage (already in the SimSum system – Endres-Niggemeyer 1998). Implementing
this at the state of the art led to OBIE, to agents using blackboards, to unifier use, to
paraphrases incorporating parsed macropropositions. As mainstream evaluation does
not work for the agents-and-ontology approach, a small-scale evaluation procedure
was drawn from qualitative field research methods (Glaser and Strauss 1980).

6. Conclusion
Ontology-based IE (for summarization) can be distributed to an agent team. This has
advantages: Agents’ decisions can be tracked more easily. The agents may explain
them. New agents are easily integrated, so that the community “learns”. If running in
parallel, agent teams may be fast and scale up well.

References
 Appelt, D., Israel, D.: Introduction to Information Extraction Technology. Tutorial at the

International Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm (1999),
http://www.dfki.de/~neumann/esslli04/reader/overview/IJCAI99.pdf

Bellifemine, F. L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
Wiley (2007)

Endres-Niggemeyer, B.; Jauris-Heipke, S; Pinsky, M.; Ulbricht, U.: Wissen gewinnen durch
Wissen: Ontologiebasierte Informationsextraktion. Information - Wissenschaft & Praxis,
301-308 (2006), http://endres-niggemeyer.fh-hannover.de/OntologiebasierteIE.pdf

Endres-Niggemeyer, B.: Summarizing information. Springer, Berlin (1998)
Glaser, B.G., Strauss, A.L.: The discovery of grounded theory: Strategies for qualitative

research. 11th ed. Aldine Atherton, New York (1980)
Kintsch, W., van Dijk, T. A.: Strategies of discourse comprehension. Academic Press, New

York (1983)
Turmo, J., Ageno, A., Català, N.: Adaptive information extraction. ACM Computing Surveys

38, 2, Article 4 (2006), http://www.lsi.upc.es/~ncatala/home-angles.html

http://www.dfki.de/~neumann/esslli04/reader/overview/IJCAI99.pdf
http://endres-niggemeyer.fh-hannover.de/OntologiebasierteIE.pdf
http://endres-niggemeyer.fh-hannover.de/OntologiebasierteIE.pdf

