
SUITS4RDF: Incremental Query Construction
for the Semantic Web

Enrico Minack Wolf Siberski Gideon Zenz
L3S Research Centre

Leibniz University Hanover
Appelstr. 9a, Hanover 30167, Germany

{minack,siberski,zenz}@L3S.de

Xuan Zhou
CSIRO ICT Centre

GPO Box 664
Canberra ACT 2601, Australia

xuan.zhou@csiro.au

ABSTRACT
With the advance of the Semantic Web technology, increasing
data will be annotated with computer understandable structures
(i.e. RDF and OWL), which allow us to use more expressive
queries to improve our ability in information seeking. However,
constructing a structured query is a laborious process, as a user
has to master the query language as well as the underlying schema
of the queried data. In this demo, we introduce SUITS4RDF, a
novel interface for constructing structured queries for the
Semantic Web. It allows users to start with arbitrary keyword
queries and to enrich them incrementally with an arbitrary but
valid structure, using computer suggested queries or query
components. This interface allows querying the Semantic Web
conveniently and efficiently, while enabling users to express their
intent precisely.

1.INTRODUCTION
The vision of the Semantic Web is to equip the web with
machine-processable and machine-understandable semantics, so
that the Web can become a universal medium of information and
knowledge exchange for both computer and human being. It can
be foreseen that in the near future a lot of information on the Web
will be described or annotated using these semantics, resulting in
a huge knowledge base. How to utilize such rich semantics to
improve the information seeking on the Web is becoming
increasingly important.

Today's web search engines, such as Google, rely on a keyword
search interface and a variety of statistical methods to catch users’
information needs. This approach has been highly successful, as it
is proven to be very intuitive and easy even for naïve web users.
However, keyword search lacks the expressiveness to make use of
the rich semantics in the Semantic Web. In contrast, structural
query languages such as SPARQL possess sufficient
expressiveness for exploiting the Semantic Web. However, its
usability for end users is low. In order to construct a valid
SPARQL query to retrieve desired information, a user has to not
only grasp the query language, but also understand the ontology
thoroughly so as to find the right concepts and structures to form
the query. Such a query construction process is complex and
laborious.

In [1], we have proposed SUITS, a query interface for relational
database that smoothly integrates the intuitiveness of keyword
search and the expressiveness of database queries. In this paper,
we present SUITS4RDF, a query interface that applies the
approach of SUITS to the Semantic Web. The interface of
SUITS4RDF is as intuitive as keyword search, while it also allows

users to utilize the available semantics to express their intent
precisely. In addition, it is highly flexible, as users can choose to
construct either completely or partially structured queries
depending on the degree to which they want or are able to clarify
their intent.

SUITS4RDF does not require users to master the SPARQL
language or to know the ontology of the semantic data a priori.
Instead, a user can issue arbitrary keyword queries in the way he
uses a web search engine. Based on the keyword query, the
system suggests some concepts or structures that the user can
compose into more complex queries. Afterwards the system can
suggest more complex concepts or structures, allowing the user to
iteratively articulate the intent to the extend the user needs.

In Section 2, we describe the basic architecture of SUITS4RDF.
In Section 3, we show how a structured query can be
incrementally constructed through SUITS4RDF. Finally, in
Section 4, we discuss the related work and summarize our
contributions.

2.THE ARCHITECTURE
We have implemented the SUITS4RDF interface on a Sesame
Native Store, which is enhanced with a LuceneSail layer [4]. The
architecture of the system is shown in Figure 2, where processing
steps can be split into an offline pre-computing phase and an
online query phase. In the pre-computing phase, the RDF graph is
indexed using the LuceneSail which will subsequently be used in
both query generation and query execution. At the same time,
SUITS4RDF generates query templates that can potentially be
employed by users when forming SPARQL like queries.

The online query phase consists of three steps. In Step 1, the
system receives the user’s keyword query and passes it to the
LuceneSail to check for occurrences of the query terms in all
properties and concepts. In Step 2, it combines these term
occurrences with the pre-computed query templates to generate
meaningful SPARQL queries. In Step 3, the system ranks the
SPARQL queries according to their likelihood of matching the
user’s intent (c.f. [1] for details), and returns the top-k queries
with non-empty result-sets. When generating SPARQL queries in
Step 2, the system also generates query construction options that
the user can use later for incrementally constructing queries.
These options are also ranked in Step 3 and returned to the user. If
the desired query is not in the top-k queries, the user can select
some of the query construction options, to iteratively refine the
top-k queries (Step 2). This process can be repeated until the user
finds the desired structured query.

The efficiency of the architecture is determined by the following
two constructs: (1) the mechanism for inferring SPARQL queries
from keywords and query construction options, (2) the algorithm
for ranking queries and query construction options so that users
can obtain desired queries as fast as possible.

3.QUERY CONSTRUCTION & RANKING
A structured query for the Semantic Web is composed of multiple
concepts, properties and literals. The construction process of the
structured query can be modeled as a hierarchy of query
components, as illustrated in Figure 2. At the bottom of the
hierarchy are the smallest components, where each is comprised
of a single concept, a single property and a single keyword. The
higher in the hierarchy the more complex the query components
become. SUITS4RDF lets users start with the smallest query
components, and gradually evolve them into larger query
components by climbing up the query hierarchy.

For example, to search for the movie “Random Hearts”, a user
might issue a keyword query “random crash alcee”. For each of
the terms, SUITS4RDF provides a list of term-property
combinations. For example, the user can specify whether “alcee”
should appear in the actor name, character name or movie title.
After the user specifies some basic query components, the system
offers larger components that contain the selected smaller ones.
For instance, after the user specifies the character name “alcee”
and movie title “random”, the system can suggest the query
component that connects these two term-property combination
using the actsin property, as shown in the middle left of Figure 6.
Afterwards, the user specifies that “crash” should appear in the
plot-text, and the system can suggest the query component at the
top, which is already the complete structured query required by

the user. Usually, a user does not need to go through the complete
construction process, as she can find the desired query among the
top-k queries before he reaches the top of the hierarchy.

To accelerate query construction, it necessary to rank the possible
queries and query components based on their likelihood of
matching the user’s intent. In SUITS4RDF, we use the following
ranking function:

(5)

SEL(Q) denotes the selectivity of a query or a query component
Q, which measures how many percent of data instances matching
Q’s template can be selected by Q. Normally, the more selective a
query or query component is, the more likely it is chosen by users,
as typical users intend their queries to be sufficiently concise and
descriptive. PC(Q) denotes the property completeness of Q, which
measures how completely each literal property of Q is covered by
terms of the keyword query. The intuition behind this factor is if a
user describes a property entirely it is more probably meant (i.e.
full actor name). Additionally, longer properties are weighted
lower as they are generally more likely to match keywords. ps and
pa are two tuning parameters. Our experiments showed this
formula is highly effective in ranking queries and query
components.

4.RELATED WORK AND CONCLUSION
Keyword search on structured data has been extensively
investigated in recent years. In [2] and [3], the authors proposed
mechanisms for conducting keyword search on the Semantic Web.
Their approaches aim to predict structured queries that best match
users’ intents behind their keyword queries. However, as the
number of possible structured queries grows exponentially with
the size of RDF schema and the size of keyword queries, their
approaches are only applicable to small datasets. SUITS4RDF go
beyond the state of the art, by using an incremental query
construction process, so that it can be used on much larger data
sources. In SUITS4RDF, we also devised efficient scheme for
query optimization, so that query construction and query
processing can be performed in reasonable response time.

5.REFERENCES
[1] X. Zhou, G. Zenz, E. Demidova, W. Nejdl: SUITS –

Constructing Structured Data from Keywords. Technical
report, L3S Research Center, 2007

[2] T. Tran, P. Cimiano, S. Rudolph, R. Studer: Ontology-Based
Interpretation of Keywords for Semantic Search. ISWC-2007

[3] Q. Zhou, C. Wang, M. Xiong, H. Wang, Y. Yu: SPARK:
Adapting Keyword Query to Semantic Search.
ISWC/ASWC, 2007

[4] E. Minack , L. Sauermann , G. Grimnes , C. Fluit ,
J. Broekstra: The Sesame LuceneSail: RDF Queries with
Full-text Search. NEPOMUK Technical Report 2008-1, Feb.
2008

pa ps Q PC Q SEL Q Score)()()(⋅=

Figure 1: Architecture of SUITS4RDF

Figure 2: Hierarchy of Query Components

