
Smushing RDF instances: are Alice and
Bob the same open source developer?

Lian Shi1, Diego Berrueta1, Sergio Fernández1,
Luis Polo1, and Silvino Fernández2

1 Fundación CTIC
Gijón, Asturias, Spain

{firstname.lastname}@fundacionctic.org
http://www.fundacionctic.org/

2 R&D Technological Centre (CDT)
ArcelorMittal Asturias
Avilés, Asturias, Spain

silvino.fernandez@arcelormittal.com

http://www.arcelormittal.com/

Abstract. Analysing RDF data gathered from heterogeneous Semantic
Web sources requires a previous step of consolidation in order to remove
redundant instances (data smushing). Our aim is to explore and integrate
smushing techniques to improve recall, i.e., to find as many redundant
instances as possible. Two approaches to spot resources with the same
identity are described: the first one is based on Logics, exploiting OWL
inverse functional properties (IFP); the second one is based on traditional
IR techniques, e.g., resource label comparison. We evaluate experimental
results in the context of open source communities.

1 Introduction

The increasing amount of machine processable data in the Semantic Web facili-
tates processes such as social network analysis and data mining. Innovative ap-
plications, like expert finding on the (Semantic) Web, are enabled by the ability
of executing these processes at a World-Wide Web scale. Although the RDF data
model is well suited to seamlessly merge data (triples) from arbitrary sources,
a data integration problem still remains. Unconnected descriptions of the same
thing can be obtained from different sources. For instance, a single individual can
participate in several web communities with different virtual identities. When
they are summed together, the descriptions of her virtual identities (such as e-
mail accounts) will be different RDF resources weakly connected to each other.
If these identities were to be taken as different persons, data analysis would be
crippled, as it would lead to imprecise conclusions and a widespread flooding of
phantom virtual identities.

Social communities, their networks and their collaborative forums, are one
particular focus of interest for analysis, as they provide large amounts of data



that can be used for several purposes. People in these communities share com-
mon interests, exchange information and interact with each other. FOAF [3]
(short for Friend-Of-A-Friend) and SIOC [2] (Semantically-Interlinked Online
Communities) offer vocabularies for publishing machine readable descriptions of
people, making it possible to link from one site, person, company, etc. to related
ones. With their popularity and wide acceptance as a de facto standard vocabu-
laries for representing social networks, there is a dynamic increase in the amount
of social profiles available in these formats produced by many large social net-
working websites. This fact can be verified by the number of documents that use
these namespaces in the Semantic Web [6].

We use data mined from open source communities to evaluate two smushing
techniques in order to merge the virtual identities of the members of these com-
munities. That is, we aim to identify the co-occurrence of the same person in
different communities3. The first approach exploits the semantics of inverse func-
tional properties, which solely and definitely determines whether two entities are
the same considering their property values. The second approach is not based
on Logics, but on heuristics, more precisely, on the comparison of entity labels.
Both techniques are applied to a dataset that contains thousands of instances of
foaf:Person.

The paper is structured as follows: next, we briefly introduce the most im-
portant related work. We detail two complementary smushing strategies in Sec-
tion 3. Section 4 describes how a corpus of RDF data was collected from some
communities that focus on open source software development. Experimental re-
sults are exposed in Section 5, and their interpretation in the context of open
source communities is discussed in Section 6. Finally, Section 7 closes the paper
with conclusions on the smushing process and some insights into future work.

2 Related Work

Social networks have opened up a new sight because people provide informa-
tion about themselves and their social connections in publicly accessible forums.
The main topics and subjects of a vast literature of previous works about social
networks include examinations of online social networks such as [10], which rec-
ommends a survey-based approach for extracting social information about users.
Their growth and activity patterns, design and behaviour in online communities
has also been studied [11, 20].

In [14], the authors show how large isolated data graphs from disparate struc-
tured data sources can be combined to form one, large, well-lined RDF graph.
Their work provides a large corpus that can act as a benchmark dataset for
evaluating expert finding algorithms, and it also simulates the availability of
real-world data used in various research scenarios.

Ding et al. [5] present a novel perspective of the Semantic Web of FOAF
documents, and proposed a heuristic approach to identify and discover FOAF
3 In this sense our research relates to matching frameworks, see http://esw.w3.org/

topic/TaskForces/CommunityProjects/LinkingOpenData/EquivalenceMining



documents from the Web and to extract information about people from these
documents. Their work can be used to discover existing and emerging online
communities.

The application of machine learning technologies to FOAF has also been
explored, highlighting the challenges posed by the characteristics of such data.
The authors of [12] experiment with profiles and generate a set of rules for
adding properties to users found to be in a set of clusters, and also for learning
descriptions of these groups. They argue these descriptions can be used later for
on-the-fly personalisation tasks.

3 RDF data smushing

We call smushing to the process of normalising an RDF dataset in order to
unify a priori different RDF resources which actually represent the same thing4.
The application which executes a data smushing process is called a smusher.
The process comprises two stages: first, redundant resources are identified; then,
the dataset is updated to reflect the recently acquired knowledge. The latter
is usually achieved by adding new triples to the model to relate the pairs of
redundant resources. The owl:sameAs is often used for this purpose, although
other properties without built-in logic interpretations can be used as well (e.g.:
ex:hasSimilarName). We will expand on this at the end of this section.

Redundant resources can be spotted using a number of techniques. In this
paper, we explore two of them: (1) using logic inference and (2) comparing labels.
We note that other approaches are possible as well, including custom rule-based
systems, human computation and user-contributed interlinking (UCI) [13].

3.1 Inverse Functional Properties

OWL [18] introduces a kind of object properties called Inverse Functional Prop-
erties (owl:InverseFunctionalProperty, IFPs for short). An IFP is a property
which behaves as an injective association, hence its values uniquely identify the
subject instance:

∀p/p ∈ IFP ⇒ (∀s1, s2 / p(s1) = p(s2) ⇒ s1 = s2) (1)

This inference rule is built-in in the OWL-DL reasoners, therefore, this kind
of smushing can be easily achieved just by reasoning the model. However, it is
advisable to avoid the reasoner and to implement the IFP semantics by means
of an ad hoc rule. These are the reasons:

– Executing a simple, light-weight rule is often more efficient than the reasoner,
which usually performs many other tasks. Moreover, it can be used regardless
of the expressivity level of the dataset, while reasoners have unpredictable
behaviour for OWL-Full datasets.

4 This use of the expression data smushing in this context can be traced back
to Dan Brickley: http://lists.w3.org/Archives/Public/www-rdf-interest/

2000Dec/0191.html



CONSTRUCT {

?person1 owl:sameAs ?person2

}

WHERE {

?person1 rdf:type foaf:Person .

?person2 rdf:type foaf:Person .

?person1 foaf:mbox_sha1sum ?email .

?person2 foaf:mbox_sha1sum ?email .

FILTER (?person1 != ?person2)

}

Fig. 1: IFP smushing rule implemented as a SPARQL CONSTRUCT sentence. The
usual namespace prefixes are assumed.

– A custom rule can generalise IFPs to any kind of properties, including
datatype properties. There are some scenarios in which such generalisation
is useful. For instance, while the object property foaf:mbox is declared as an
IFP, whose value is often unavailable due to privacy concerns. On the other
hand, values of the property foaf:mbox sha1sum are widely available (or
can be easily calculated from the former), but as it is a datatype property,
it cannot be declared an IFP in OWL.

This rule can be written as a SPARQL CONSTRUCT sentence, according
to the idiom described by [19], see Figure 1. Note that this rule only takes into
account the foaf:mbox sha1sum property, but its generalisation to any property
declared as owl:InverseFunctionalProperty is straightforward.

When smushing resources that describe people, some FOAF properties can
be used as IFPs. The FOAF specification defines mbox, jabberID, mbox sha1sum,
homepage, weblog, openid as IFP, among others. However, a quick analysis of a
set of FOAF files collected from the web shows that some of these properties are
barely used, while others are often (mis-)used in a way that makes them useless
as IFP. Notably, some users point their homepage to their company/university
homepage, and weblog to a collective blog. Therefore, we restrict our smusher
to the mbox sha1sum property.

3.2 Label similarity

The concept of similarity is extensively studied in Computer Science, Psychol-
ogy, Artificial Intelligence, and Linguistics literature. String similarity plays a
major role in Information Retrieval. When smushing people’s descriptions, labels
are personal names (foaf:name). Nevertheless, personal names follow particular
rules which make them intractable. Personal names, as any other word, can be
miss-spelled, however, the probability of such error is very low if the names are
entered by their owners. Therefore, traditional similarity comparison functions,



such as Levenshtein distance, are not really useful. In [4] the authors describe ad-
vanced techniques for personal name comparison, and in [17] study their impact
on the precision. We just use a much simpler strict string equality comparision,
ignoring common invalid names often found in email headers.

Smushing based on label similarity deals with imprecise knowledge, i.e., even
a perfect label equality does not guarantee that two resources are the same. Using
a softer comparison function will produce even more uncertain knowledge.

A label-based smusher can be implemented as a rule. Unfortunately, SPARQL
does not have rich built-in string comparison functions. There is a proposed
extension call iSPARQL [16] that can be used with this purpose. Our experience
reveals that iSPARQL implementation is far from being efficient enough to deal
with large datasets. This fact suggests that other approaches to implement label-
based smushing should be considered.

3.3 Smushing, correctness and consistence

The pairs of redundant resources identified using the techniques described above
can be used to enrich the dataset. OWL provides a special property to “merge”
identical resources, owl:sameAs. When two resources are related by owl:sameAs,
they effectively behave as a single resource for all the OWL-aware applications.
Note, however, that plain SPARQL queries operate at the RDF level, and there-
fore they are unaware of the owl:sameAs semantics.

Anyway, the semantics of owl:sameAs may be too strong for some cases.
On the one hand, some applications may still want to access the resources in-
dividually. On the other hand, several factors can influence on the reliability
of the findings made by the smusher. Notably, the data smushing based on la-
bel comparison is obviously imperfect, and can lead to incorrect results. For
instance, different people can have the same name, or they can fake their iden-
tities. Even the logically-sound smushing based on IFPs is prone to error, due
to the low-quality of the input data (fake e-mail addresses, identity theft). Al-
though improbable, it is also possible that different e-mail addresses clash when
they are hashed using SHA1 [7].

To tackle these issues, a custom property can be used instead, such as
ex:similarNameTo. Applications interested in the strong semantics of owl:sameAs
can still use a rule to re-create the links.

Another kind of OWL properties, Functional Properties (FP) are also useful
for smushing. They can help to check the consistency of the smusher’s conclu-
sions. A resource cannot have multiple different values for a FP. Therefore, if
two resources that are to be smushed are found to have irreconcilable values for
foaf:birthday, an issue with the smushing rules (or the quality of the input
data) must be flagged.

4 Data recollection

A corpus of RDF data with many foaf:Person instances was assembled by
crawling and scrapping five online communities. There is a shared topic in these



communities, namely open source development, hence we expect them to have
a significative number of people in common.

We continue the work started in [1] to mine online discussion communities,
and we extend it to new information sources. We use the following sources:

– GNOME Desktop mailings lists: all the authors of messages in four mail-
ing lists (evolution-hackers, gnome-accessibility-devel, gtk-devel and xml)
within the date range July 1998 to June 2008 were exported to RDF us-
ing SWAML [9].

– Debian mailing lists: all the authors of messages in four mailing lists (debian-
devel, debian-gtk-gnome, debian-java and debian-user) during years 2005 and
2006 were scrapped from the HTML versions of the archives with a set of
XSLT style sheets to produce RDF triples.

– Advogato: this community exports its data as FOAF files. We used an RDF
crawler starting at Miguel de Icaza’s profile. Although Advogato claims to
have +13,000 registered users, only +4,000 were found by the crawler.

– Ohloh: the RDFohloh project [8] exposes the information from this directory
of open source projects and developers as Linked Data. Due to API usage
restrictions, we could only get data about the +12,000 oldest user accounts.

– Debian packages: descriptions of Debian packages maintainers were extracted
from APT database of Debian packages in the main section of the unstable
distribution5.

Instances generated from these data sources were assigned a URI in a different
namespace for each source. Some of these data sources do not directly produce in-
stances of foaf:Person, but just instances of sioc:User.An assumption is made
that there is a foaf:Person instance for each sioc:User, with the same e-mail
address and name. These instances were automatically created when missing.
This assumption obviously leads to redundant instances of foaf:Person which
will be later detected by the smusher.

5 Experimental Results

The ultimate goal of our experiments is to exercise the smushing processes de-
scribed in Section 3 against a realistic dataset. Two million RDF triples were
extracted from the sources described above, and put into OpenLink Virtuoso
server6 which provides not only an effective triple store, but also a SPARQL
end-point that was used to execute queries using scripts. Table 1a summarises
the number of instances of foaf:Person initially obtained from each source.

We evaluated two smushers: the first one smushed foaf:Person instances
assuming that foaf:mbox sha1sum is an IFP; the second one smushed the same
instances comparing their foaf:name labels for string strict equality, without any

5 Retrieved August 3rd, 2008.
6 http://virtuoso.openlinksw.com/



Source foaf:Person instances

DebianPkgs 1, 845
Advogato 4, 168
GnomeML 5, 797
Ohloh 12, 613
DebianML 12, 705

(a)

Num. of people

In 5 communities 1
In 4 communities 37
In 3 communities 273
In 2 communities 1, 669

(b)

Table 1: Size of the studied communities before smushing (1a), and people accounting
by the number of communities they are present in, after smushing (1b).

normalisation. Both smushers were implemented using SPARQL CONSTRUCT
rules. The newly created owl:sameAs triples were put in different named graphs.

These links were analysed to find co-occurrences of people in different com-
munities. The absolute co-occurrence figures are presented in Tables 2 and 3,
respectively. Later, the two named graphs were aggregated. Table 4 contains
the absolute co-occurrence considering the combined results of both smushers.
Note that some redundancies are detected by both smushers, therefore figures in
Table 4 are not the sum of two previous ones. These matrices are symmetrical,
hence we skip the lower triangle.

The degree of overlap between communities is better observed in Tables 5, 6
and 7, which present the ratio of overlap relative to the size of each community.

Tables 1b and 8 study the number of communities each person is present
in. Interestingly enough, an individual was found to have presence in all five
communities.

6 Discussion

The elements of the main diagonal of Tables 2, 3, 4 show the overlap within each
community, i.e., the number of people that have registered more than once in
each community. Some communities use the e-mail address as the primary key
to identify their users, therefore, the smushing process using the e-mail as IFP
(Table 2) has zeros in the main diagonal for these communities. However, other
communities use a different primary key, thus allowing users to repeat their
e-mail addresses. For instnace, a small number of users have registered more
than one account in Advogato with the same e-mail (these account have been
manually reviewed, and they seem to be accounts created for testing purposes).

Our data acquisition process introduces a key difference between how user
accounts are interpreted in Debian mailing lists and GNOME mailing lists. The
former considers e-mail address as globally unique, i.e., the same e-mail address
posting in different Debian mailing lists is assumed to belong to the same user.
On the other hand, a more strict interpretation of how Mailman works is made
with respect to the GNOME mailing lists, where identical e-mail address posting
in different mailing lists are assumed to belong to a priori different users. In the



Source DebianPkgs Advogato GnomeML Ohloh DebianML

DebianPkgs 0 81 37 74 762
Advogato 19 270 106 141
GnomeML 364 112 161
Ohloh 0 115
DebianML 0

Table 2: Number of smushed instances of foaf:Person using foaf:mbox sha1sum as
IFP.

Source DebianPkgs Advogato GnomeML Ohloh DebianML

DebianPkgs 98 170 101 58 1319
Advogato 49 592 95 305
GnomeML 1716 148 432
Ohloh 13 208
DebianML 2909

Table 3: Number of smushed instances of foaf:Person with exactly the same
foaf:name.

Source DebianPkgs Advogato GnomeML Ohloh DebianML

DebianPkgs 98 188 113 104 1418
Advogato 55 669 167 342
GnomeML 1765 227 462
Ohloh 13 287
DebianML 2909

Table 4: Number of smushed instances of foaf:Person combining the two smushing
techniques.

Source DebianPkgs Advogato GnomeML Ohloh DebianML

DebianPkgs 0.00% 4.39% 2.01% 4.01% 41.30%
Advogato 1.94% 0.46% 6.48% 2.54% 3.38%
GnomeML 0.64% 4.66% 6.28% 1.93% 2.78%
Ohloh 0.59% 0.84% 0.89% 0.00% 0.91%
DebianML 6.00% 1.11% 1.27% 0.91% 0.00%

Table 5: Ratio of smushed instances of foaf:Person using IFP, relative to the size of
the community of the row.

Source DebianPkgs Advogato GnomeML Ohloh DebianML

DebianPkgs 5.31% 9.21% 5.47% 3.14% 71.49%
Advogato 4.08% 1.18% 14.20% 2.28% 7.32%
GnomeML 1.74% 10.21% 29.60% 2.55% 7.45%
Ohloh 0.46% 0.75% 1.17% 0.10% 1.65%
DebianML 10.38% 2.40% 3.40% 1.64% 22.90%

Table 6: Ratio of smushed instances of foaf:Person with exactly the same foaf:name,
relative to the size of the community of the row.



Source DebianPkgs Advogato GnomeML Ohloh DebianML

DebianPkgs 5.31% 10.19% 6.12% 5.64% 76.86%
Advogato 4.51% 1.32% 16.05% 4.01% 8.21%
GnomeML 1.95% 11.54% 30.45% 3.92% 7.97%
Ohloh 0.82% 1.32% 1.80% 0.10% 2.28%
DebianML 11.16% 2.69% 3.64% 2.26% 22.90%

Table 7: Ratio of smushed instances of foaf:Person combining both techniques, rela-
tive to the size of the community of the row.

Number of Presence in
Name Name vars. E-mail acc. DebianPkgs Advogato GnomeML Ohloh DebianML

Frederic P. 1 3 � � � � �

Dan K. 2 3 � � � � �

Jerome W. 2 1 � � � � �

Raphael H. 2 3 � � � � �

Person #01 1 1 � � � � �

Person #02 1 1 � � � � �

Person #03 2 4 � � � � �

Julien D. 1 4 � � � � �

Rob B. 1 2 � � � � �

Daniel R. 2 1 � � � � �

Gürkan S. 5 2 � � � � �

Ricardo M. 2 3 � � � � �

Ray D. 3 2 � � � � �

Person #04 1 3 � � � � �

Person #05 1 3 � � � � �

Person #06 2 5 � � � � �

Person #07 1 3 � � � � �

Person #08 2 2 � � � � �

Person #09 1 2 � � � � �

Person #10 2 3 � � � � �

Federico Di G. 1 2 � � � � �

Ross B. 1 2 � � � � �

Person #11 1 5 � � � � �

Person #12 1 2 � � � � �

Person #13 1 3 � � � � �

Person #14 1 2 � � � � �

Person #15 1 2 � � � � �

Person #16 1 2 � � � � �

Person #17 1 2 � � � � �

Person #18 1 1 � � � � �

Person #19 1 3 � � � � �

Francis T. 2 3 � � � � �

Table 8: Details of the top people by the number of communities they are present in. A
filled dot (�) denotes presence in the community. In order to protect privacy, we only
print real names of people who have given us explicit permission to do so.



second case, we rely on the smushing process to merge the identities of these
users. The number of smushed instances in Table 2 evidence the fact that people
post messages to different mailing lists using the same e-mail address.

Although they must be handled with extreme care due to the issues afore-
mentioned, the combined results of the two smushing processes are consistent
with the expected ones. For instance, there is a very high overlap between the
Debian developers (maintainers of Debian packages) and the Debian mailing
lists. Obviously, Debian developers are a relatively small group at the core of
the Debian community, thus they are very active in its mailing lists. Another
example is the overlap between Advogato and GNOME mailing lists. Advogato
is a reputation-based social web site that blossomed at the same time that the
GNOME project was gaining momentum. Advogato was passionately embraced
by the GNOME developers, who used Advogato to rate each others’ development
abilities.

We also studied whether there are some people that are present in many of
the communities at the same time. We chose communities which are closely re-
lated to each other, consequently, we expected a high number of cross-community
subscribers. Table 1b evidences that there are several people who are present in
many communities. From Table 8 we conclude that almost all the most active
open source developers in our dataset are core members of the Debian commu-
nity. Another interesting fact is that only a few people among the top members
of the communities consistently use a single e-mail address and just one variant
of their names. This fact proves the difficulty of the smushing process, but also
its usefulness.

7 Conclusions and Future Work

In this paper, we explored smushing techniques to spot redundant RDF in-
stances in large datasets. We have tested these techniques with more than 36,000
instances of foaf:Person in a dataset automatically extracted from different
online open source communities. We have used only public data sources, conse-
quently, these instances lack detailed personal information.

Comparing the figures in Tables 5 and 6, it is clear that the label-based
smusher draws more conclusions than the IFP-based one. The number of re-
dundant resources detected by the former is almost always higher than the one
detected by the latter. Moreover, when compared to the aggregated figures in
Table 7, we observe that the conclusions of the IFP-based smusher are largely
contained in the conclusions of the label-based one. This fact can be explained
because users with the same e-mail address often happen to have the same name.
The difference between figures in Table 6 and 5 are explained by two facts:
(a) there are people who have more than one e-mail account, and (b) there are
different people with the same name (namesake). Unfortunately, it is not clear
which is the influence of each factor. This is an issue, as smushing conclusions
derived from (b) are obviously incorrect.



We are aware of the extreme simplicity of our experimentation using label
comparison. In our opinion, however, it contributes to show the potential of this
smushing technique. We note that it is possible to have more usages for it, for in-
stance, smushing not just by people’s names, but also by their publications, their
organisations, etc. Surprisingly, the named-based smushing finds a high number
of redundant resources even if the comparison strategy for labels (names) is very
simplistic (in this case, case-sensitive string equality comparison). More intelli-
gent comparison functions should lead to a higher recall. In this direction, we
are evaluating some normalisation functions for names. We have also evaluated
classical IR comparison functions that take into account the similarity of the
strings (e.g., Levenshtein); nevertheless, their applicability to compare people’s
names is open to discussion. In general, a smusher algorithm has a natural max-
imum complexity of O(n2) due to the need to compare every possible pair of
resources. This complexity raises some doubts about their applicability for very
large dataset. Generalisation of these techniques to a web-scale will require to
find ways to cut down the complexity.

We believe that the ratio of smushing can be further improved if the dataset
is enriched with more detailed descriptions about people. Experiments are being
carried out to retrieve additional RDF data from semantic web search engines
such as SWSE [15] and Sindice [21] as a previous step to smushing. However, this
work is still ongoing and we expect to present it in an upcoming publication. We
aim to repeat our experiments in other communities apart from the open source
one, for instance the Semantic Web community. The ExpertFinder Corpus [14]
and the Semantic Web Conference Corpus7 can be used for this purpose.

We intend to use our smusher to further investigate the potential for optimi-
sations of the smushing process. The way in which these techniques are imple-
mented is critical to achieve a promising performance of the smushing process,
specially for very large datasets. In parallel, increasing the precision of smushing
will require to study how to enable different smushing strategies to interrelate
and reciprocally collaborate. We have started contacts with people from Table 8
asking them to confirm the communities they participate in; we will use their
feedback to to measure the recall and the precision of the smushing process.

We acknowledge that any work on data mining, and in particular, identity
smushing, raises some important privacy issues and ethical questions, even when
the data used is publicly available on the Web. Actually we got very negative
feedback from one the top members of open source communities, tagging this
research topic as “immoral”. Obviously we do not share this point of view, but
we understand the privacy issues behind this opinion and we have tried to be
extremely careful with the personal information that we manage and print.

References

1. D. Berrueta, S. Fernández, and L. Shi. Bootstrapping the Semantic Web of Social
Online Communities. In Proceedings of workshop on Social Web Search and Mining

7 http://data.semanticweb.org/



(SWSM2008), co-located with WWW2008, Beijing, China, April 2008.
2. J. Breslin, S. Decker, A. Harth, and U. Bojars. SIOC: an approach to connect

web-based communities. International Journal of Web Based Communities, 2006.
3. D. Brickley and L. Miller. FOAF: Friend-of-a-Friend. http://xmlns.com/foaf/

0.1/, November 2007.
4. W. W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of String Distance

Metrics for Name-Matching Tasks. In Proceedings of the workshop on Information
Integration on the Web, pages 73–78, 2003.

5. L. Ding, T. Finin, and A. Joshi. Analyzing social networks on the semantic web.
IEEE Intelligent Systems, 9, 2005.

6. L. Ding, L. Zhou, T. Finin, and A. Joshi. How the semantic web is being used: An
analysis of FOAF documents. In 38th Annual Hawaii International Conference on
System Sciences (HICSS’05), Track 4. IEEE Computer Society, 2005.

7. D. Eastlake and P. Jones. RFC 3174: US Secure Hash Algorithm 1 (SHA1). Tech-
nical report, IETF, 2001.

8. S. Fernández. RDFohloh, a RDF wrapper of Ohloh. In 1st workshop on Social
Data on the Web (SDoW2008), co-located with ISWC2008, Karlsruhe, Germany,
October 2008.

9. S. Fernández, D. Berrueta, and J. E. Labra. Mailing lists meet the Semantic Web.
In Proceedings of 1st workshop on Social Aspects of the Web (SAW2007), co-located
with BIS2007, Poznan, Poland, April 2007.

10. L. Garton, C. Haythornthwaite, and B. Wellman. Studying online social networks.
Journal of Computer Mediated Communication, 3, 1997.

11. J. Golbeck and M. Rothstein. Linking Social Networks on the Web with
FOAF. In Proceedings of the 17th international conference on World Wide Web
(WWW2008), 2008.

12. G. A. Grimnes, P. Edwards, and A. Preece. Learning meta-descriptions of the
FOAF network. In 3rd International Semantic Web Conference (ISWC2004), 2004.

13. M. Hausenblas, W. Halb, and Y. Raimond. Scripting User Contributed Inter-
linking. In Proceedings of the 4th workshop on Scripting for the Semantic Web
(SFSW2008), co-located with ESWC2008, Tenerife, Spain, June 2008.

14. A. Hogan and A. Harth. The ExpertFinder Corpus 2007 for the Benchmarking
and Development of Expert-Finding Systems. In Proceedings of 1st International
ExpertFinder Workshop, 2007.

15. A. Hogan, A. Harth, J. Umrich, and S. Decker. Towards a Scalable Search and
Query Engine for the Web. In Proceedings of the 16th international conference on
World Wide Web (WWW2007), pages 1301–1302, New York, NY, USA, 2007.

16. C. Kiefer. Imprecise SPARQL: Towards a Unified Framework for Similarity-Based
Semantic Web Tasks. In 2nd Knowledge Web PhD Symposium (KWEPSY) co-
located with the 4th European Semantic Web Conference (ESWC2007), 2007.

17. A. Lait and B. Randell. An Assessment of Name Matching Algorithms. Technical
report, Dept. of Computing Science, University of Newcastle upon Tyne, 1996.

18. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language:
Semantics and Abstract Syntax. Recommendation, W3C, February 2004.

19. A. Polleres. From SPARQL to rules (and back). In Proceedings of the 16th World
Wide Web Conference (WWW2007), pages 787–796, Banff, Canada, May 2007.

20. J. Preece. Designing Usability and Supporting Sociability. John Wiley & Sons, Inc,
2000.

21. G. Tummarello, R. Delbru, and E. Oren. Sindice.com: Weaving the Open
Linked Data. In Proceedings of the International Semantic Web Conference 2007
(ISWC2007), volume 4825/2008, pages 552–565, Busan, Korea, November 2007.


