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Abstract

This article discusses a design pattern for
building belief networks for application do-
mains in which causal models are hard to
construct. In this approach we pursue a
modular belief network structure that is
easily extended by the users themselves,
while remaining reliable for decision sup-
port. The Hypothesis Management Frame-
work proposed here is a pragmatic attempt to
enable analysts and domain experts to con-
struct and maintain a belief network that can
be used to support decision making, with-
out requiring advanced knowledge engineer-
ing skills.

1 INTRODUCTION

Since their introduction by Kim and Pearl [10] belief
networks have become a popular framework for deci-
sion support and automated reasoning. Also at TNO,
the Netherlands Organisation for Applied Scientific
Research, Bayesian reasoning is used in an increasing
number of projects and application domains. One of
these application domains is decision support for crim-
inal investigations. The typical application in this field
is to perform a quick scan on available evidence to se-
lect the most likely hypothesis, and to prioritize un-
available evidence to aid further investigations. The
need for sound probabilistic reasoning is quite large
in this area, and belief networks are becoming an ac-
cepted tool for modeling reasoning.

Well-known examples of belief networks such as the
Alarm [2] and Hailfinder [1] networks are quite com-
plex and their development requires the co-operation
between both Bayesian specialists and domain ex-
perts. Also, currently available software packages

(e.g. HUGIN, Netica and GeNie)1 for modeling and
analysing belief networks require expertise and skill in
belief networks. Whereas in the field of criminal in-
vestigations, the typical user of such decision support
software is usually not a Bayesian specialist but either
an analyst or an expert on the area being analyzed,
a so-called domain expert. To get belief networks ac-
cepted as a standard tool in criminal investigations,
we should improve the usability to such a degree that
a domain expert is able to produce useful models with-
out the assistance of a Bayesian specialist. Obviously,
analysts should find it beneficial for performing their
analyses as well.

Besides offering criminal investigators a method to use
belief networks, also some effort should be focused on
preventing bias arising in analyses. Where much at-
tention goes into getting unbiased and accurate prior
probabilities, in this paper we are more concerned with
any bias within the topology; the choice of variables
included in the model. When an analyst looks for sup-
port for a certain hypothesis, it is easy to get into a
so-called tunnel view in which contradicting evidence
and alternate hypotheses are neglected. When a plau-
sible alternative perspective is missing in the model,
a potential bias is present yet invisible. It seems im-
possible to always exclude such a bias, but applying
certain strategies in the design of a belief network may
lead to more balanced and less biased models. Among
others, the following strategies might be considered.
Firstly, different domain experts can add an alterna-
tive point of view to the same model. Secondly, each
domain expert can work independently on a different
hypothesis or counter-hypothesis. And finally, domain
experts can design reusable templates that are not tai-
lored for a specific case, but for generic classes of cases.
Whatever combination of strategies may work best to
avoid a bias, the case for a flexible and modular way

1The software packages HUGIN Expert, Netica and
GeNie are respectively found at: http://www.hugin.
com, http://www.norsys.com/netica.html and http://
genie.sis.pitt.edu/



to design belief networks to aid better decision making
should be apparent.

Various systematic techniques are available to guide
the modeling of a belief network in a systematic man-
ner. Many of these generate a belief network by trans-
lation of another type of model, e.g. ontologies [19],
rule-based systems [11], causal maps [16], or by merg-
ing quantitative and qualitative statements in a canon-
ical form [5]. However, all these techniques rely on a
sound understanding of the application domain to es-
tablish the qualitative aspect of a belief network: the
topology of the graph. When a domain is modeled
that is dynamic in nature and of which causality is
not fully known, the technique used to construct a
belief network must above all be modular and easily
extendible as new insights constantly change the per-
spective of what variables matter to the hypotheses of
interest.

This led to the development of the hypothesis manage-
ment framework (HMF) at TNO. This design pattern
enables a domain expert to independently create and
maintain a belief network, and an analyst to evalu-
ate evidence in a criminal investigation. The HMF
is a modular belief network structure that is easily
expandable by the users themselves, while remaining
reliable for decision support. The HMF adds a layer
of abstraction to the belief network, so the belief net-
work can be kept hidden from the user. Multiple users
can independently modify or extend the model based
on his or her domain knowledge. The HMF ensures
that all parts of the model remain a coherent whole,
suitable for consistent reasoning.

2 THE PURPOSE OF HMF

While devising the HMF design pattern we had one
particular goal in mind: to enable the design of modu-
lar and extendible Bayesian models for users that are
no Bayesian specialist. Once a first version of a model
has been developed, it should be easily extended and
maintained later-on. It is likely that the set of vari-
ables as well as the subjective priors for conditional
probability tables require regular revisions as the field
of investigation changes over time. Therefore it should
be possible to reconsider the set of variables, without
having to elicit all of the priors on each change of the
model. The need for multiple revisions of a develop-
ing model was addressed by the AI group at the Uni-
versity of Kentucky in [14]. A design pattern should
preferably be such that it enables the use of templates,
generalized submodels within the belief network, that
can be maintained independently by a group of domain
experts. Such templates should be applicable within
multiple belief networks.

To maximize its applicability in real world applications
the following two requirements should be met:

1 Reliability (or consistency) The belief network
should capture the knowledge of domain experts.
Given the same set of evidence, the domain ex-
perts should agree on the same most likely hy-
potheses and the results of the model should in-
tuitively make sense.

2 Usability The number of priors to be elicited
should be kept to a practical minimum. We pre-
fer to have a limited set of well founded priors,
rather than a larger set of priors of which the do-
main expert is less confident. Conditional prob-
ability tables with a small set of priors are eas-
ier to maintain and validate, especially when the
number of conditioning parent variables is lim-
ited. Furthermore, it should be unambiguous to
domain experts (as well as the analysts) what the
variables and their priors stand for.

These requirements are indeed very common, and gen-
erally accepted as basic requirements in the context of
system development. We think, however, that they are
hard to comply with without the use of a generalized
framework.

3 AN OVERVIEW OF HMF

The HMF places each variable of interest within a pre-
defined structure, as visualized in Figure 4(c). Fur-
thermore it prescribes which variables may be instanti-
ated with evidence, and for some variables the content
of conditional probability tables. All variables must
be categorized by the user in hypotheses, indicators or
information sources. Each type has its own place and
role within the topology of the belief network:

1 Hypotheses are statements of which we would like
to get a posterior probability distribution. In gen-
eral, hypotheses are unobserved. The user can
specify unconditional priors for each hypothesis,
or use a uniform nondiscriminative distribution
instead. As an option, one can add alternative
hypotheses to represent known facts that explain
observed indicators in an other way than existing
hypotheses.

2 Indicators are statements related to hypotheses.
Knowledge of an indicator helps to reveal the
states of related hypotheses. Indicators describe
events that are dependent on the occurrence of
one or more hypotheses. Causal relations between
hypotheses and indicators are not always obvious,
or present at all. Indicators are assumed to be



‘caused’ by hypotheses, not the other way around.
For each relation between an indicator and a hy-
pothesis, a domain expert should specify condi-
tional probabilities for that specific relation.

3 Information Sources are used to express the re-
liability of sources related to an indicator, when
the user does not want to enter ’hard evidence’.
For instance, an information source may be a re-
port, a sensor or a person. An indicator can be
associated to multiple information sources.

Although common, it is not necessary for an arc in a
belief network to imply causality. The HMF makes use
of this freedom by taking a more abstract perspective
on the relations between variables of interest. The
structure is based on the relatively simple notion of
hypotheses and indicators. Indicators may all support
or contradict any of the hypotheses, but the indicators
themselves are assumed independent of one another.
Hypotheses are independent (root nodes) and typically
have many children. Quite similar, so-called ’naive
Bayes’ structures [6], have been effective in other areas
where causality is unknown or too dynamic in nature
(e.g. e-mail spam filtering [15]).

If more structure is desired, this modeling style may
be applied in a recursive fashion in which a hypothe-
sis may have sub-hypotheses, who are modeled in an
similar way. This is not demonstrated in this article.

It is good practice to use a causal model whenever
possible [17], and it should be stressed that HMF does
not aim to substitute such models. The HMF design
pattern is specifically designed for domains in which
causal dependencies are debated or not fully known.
As pointed out by Biedermann and Taroni [3], in foren-
sic science the availability of hard numerical data is
not a necessary requirement for quantifying belief net-
works and Bayesian inference could therefore be used
nonetheless. By using HMF, a Bayesian model can
be constructed even when the qualitative aspects of a
belief network are hard to obtain.

Figure 1: Indicators are substituted by multiple inter-
mediate variables and one combining variable.

There are various options to elicit priors for such large
CPTs. One could apply linear interpolation over a
subset of elicited priors [20], but this requires more
elicited priors and is less flexible than the solution
found for HMF. Rather than connecting indicators di-
rectly to hypotheses, the HMF uses intermediate vari-
ables. In this article all variables are booleans. This
is not a strict requirement, but a general recommen-
dation when it simplifies the elicitation of prior prob-
abilities. Elicited priors will be stored in the interme-
diate variable between the indicator and the hypoth-
esis. This reduces the number of prior probabilities
to elicit, and conditions to consider for each prior. In
fact, the HMF splits up each indicator in multiple vari-
ables (Figure 1): one or more intermediate variables
(ih1, ih2) and a variable that combines them (i′). For
three hypotheses i would require 16 priors, instead of
12 priors for the three intermediate variables together.

When evidence is available for an indicator, we in-
stantiate all associated intermediate variables. Alter-
natively, one can use information sources. An infor-
mation source for an indicator (s in Figure 1) may
exist as multiple variables with identical priors in the
HMF belief network (sh1, sh2). The priors of an in-
formation source variable represent the reliability of
the source in regard the associated indicator. Infor-
mation source variables are children of intermediate
variables, and have only one parent and no children.
Either all information sources of an indicator are in-
stantiated for evidence, or all associated information
source variables. Instantiating intermediate variables
of an indicator d-separates information sources from
hypotheses, rendering all information sources for that
indicator obsolete.

When there is no evidence for an indicator, the com-
bining indicator variable (i′) will resemble the poste-
rior probability of the original indicator (i) by taking
the average probability of all intermediate variables.
This information is useful to predict the likelihood of
unobserved indicators or for selecting the most influ-
ential unobserved indicator. Equation 1 is used to con-
struct the conditional probability table of the combin-
ing indicator variable. Note, that the HMF does not
use a logical function (e.g. OR/MAX, AND/MIN or
XOR). Logical functions that assume independence of
causal influence, in a discrete or noisy variant, have
been long in use [8] as a solution for variables with
many parents. An extensive overview of such methods
are described by Diez and Drudzel in [4]. Although
many alternatives may be considered, our preference
goes to an averaging method to avoid scalability prob-
lems. The scalability problem will be further discussed
in Section 5, while the results of using the averaging
method in Equation 1 are discussed in Section 6.



P (X|parents(X)) = 1.0−maxV alueOf(parents(X))
valueOf(parents(X))

(1)

This article focuses on how HMF can aid the construc-
tion of belief networks. It does not elaborate on how
a software tool might facilitate this process. Nonethe-
less, we would like to discuss briefly how we envision
such a tool and how the HMF might be presented to
the user. We differentiate two types of roles for users:
domain experts and analysts. A user may have both
roles in practice. By using the HMF, the GUI can ef-
fectively hide the underlying belief network from the
user. Both types of users need a different user inter-
face.

Figure 2: The GUI for an analyst.

Figure 3: The GUI for a domain expert.

An analyst processes information sources and selects
evidence for indicators to support or contradict hy-
potheses. For analysts the GUI (Figure 2) shows indi-
cators in a foldable tree-like structure. The indicators
are organized in categories and sub-categories. For
each indicator the analyst can choose a state (e.g. true
or false) based on observed evidence. If the analyst is
uncertain about an observation, the analyst is given
the ability the express the reliability of each informa-
tion source for that specific indicator. This requires
a prior probability for both positive observations and
false positives, given that the indicator is a boolean.

Domain experts evaluate the conditional probabilities
of an indicator given an hypothesis, and choose prior
probabilities for hypotheses. The GUI should enable a
domain expert to construct and maintain a list of in-
dicators and hypotheses. A domain expert is respon-
sible for relating indicators to hypotheses in a sensible

manner, and assign conditional probabilities to each
relation. Figure 3 shows how this may be presented to
the domain expert. There is a column for each hypoth-
esis. Assuming only booleans are used, the respective
column requires only two elicited priors: one prior for
the likelihood of observing the indicator given the hy-
pothesis is true, and another for when the hypothesis
is false. Qualitative descriptions or frequencies can be
more effective than probabilities [7]. Such notations
can be used instead of probabilities, as long these de-
scriptions are consistently translated into conditional
probability tables.

4 HMF WALKTHROUGH BY AN
EXAMPLE

To explain how the HMF may be used and why we
have chosen this specific topology, we will now dis-
cuss three different models based on a civil case con-
cerning a car accident. The first is a logical causal
model by Prakken and Renooij [18]. The second
is a Bayesian belief network by Huygen [9], directly
based on Prakken’s logical model. Third and finally, a
Bayesian belief network that follows the HMF is con-
structed for the same case. 2

The legal case concerns a nightly car accident involving
a driver and a passenger, after a party which both per-
sons attended. The police that arrived at the scene af-
ter the accident observed that the car crashed just be-
yond an S-curve and the handbrake was in a pulled po-
sition. The police did observe tire marks (skid marks
and jaw marks), but did not observe any obstacles.
The driver claims that the passenger was drunk and
pulled the handbrake. The passenger claims that the
driver speeded through the S-curve. The judge had
to decide whether it is plausible that the passenger
caused the accident, rather than the driver.

The logical model about this case by Prakken and
Renooij is aimed at reconstructing the reasoning be-
hind the court decision on this case. Figure 4(a) shows
the causal structure for the case. Nodes within the
structure visualize causal concepts (propositions), and
arcs represent causal rules between them. Each arc is
annotated to show whether the proposition at the head
supports (+) or contradicts (-) the proposition at the
tail of the arc. By using abductive-logical reasoning
on the structure given evidence for some concepts, one
can determine whether other concepts are plausible.
Although such a model, a causal map, like the one in
Figure 4a may resemble a belief network, it lacks the
quantitative information required for Bayesian infer-
ence. Nadkarni and Shenoy [16] discussed how a causal

2the belief networks discussed in this article are avail-
able for download at: http://www.science.uva.nl/~spg



(a) A logical causal model by Prakken and Renooij. (b) The belief network by Huygen.

(c) A variant that uses the HMF design pattern.

Figure 4: Three different models of the same case. The colour red is used to highlight the proposed extensions.

map, can be used as a foundation for constructing be-
lief networks when supplemented with casual values
that express the strength of a causal connection.

There is evidence for the following facts: ¬obstacles,
tire marks present, observed nature of tire marks after
S-curve, handbrake in pulled position, driver’s testi-
mony and drunk passenger. The hypotheses speeding
in S-curve and loss of control over vehicle explain two
facts but contradicts three others. Whereas the hy-
pothesis passenger pulled handbrake of moving vehi-
cle explains three rules and contradicts nothing. This
makes the drivers point of view more convincing.

Huygen used the causal model of Prakken to construct
a belief network for the same case (Figure 4b). The
topology was slightly changed: the node for obstacles
has been removed and the propositions for speeding
and slowing down in S-curve have been replaced by
a single boolean that represents both. Furthermore,
each node is accompanied with a conditional probabil-
ity table or prior probability distribution (not visible

in Figure 4(b)). This effectively replaces the annota-
tions along arcs in the causal map. Huygen decided
not to use evidence for variables on tire marks, be-
cause in the sentence of the court it was not explicitly
stated that the nature of the tire marks were proof for
not speeding, but gave insufficient support for the sug-
gestion that the driver had speeded. Huygens suggests
to change the priors, when one would like to use this
evidence.

Given evidence for: pulled position, driver’s testimony,
passenger drunk and crash, it is highly likely that the
passenger pulled the handbrake (≈ 100%). Since the
evidence against the passenger explains away the car
crash, it is unlikely that the crash was caused by lost
control of the vehicle after speeding through the S-
curve (0.1%). The bayesian belief network comes to
the same conclusion as the causal map of Prakken and
Renooij.

When we model the same case using the HMF, we get
a radically different topology (Figure 4(c)) that does



not resemble the causal map of Prakken and the belief
network of Huygen. Both claims are modeled as hy-
potheses in the HMF model: accident caused by speed-
ing and passenger pulled handbrake of moving vehicle.
These hypotheses correspond to similarly named pred-
icates in Figure 4a and probability variables in Figure
4b. Uniform probability distributions were used as pri-
ors for these hypotheses. We use indicators to support
our beliefs in the hypotheses, these are: driver’s tes-
timony directly after incident, handbrake in pulled po-
sition after incident, passenger had drunk alcohol, ob-
served yawmarks of sliding vehicle and observed skid-
marks beyond the curve.

By choosing different priors, the evidence for tire
marks is now usable. Some intermediate variables that
relate facts with the two hypotheses are no longer in
use. These are locking of wheels and loss of control
over vehicle. The information source of passenger had
drunk alcohol is undisclosed. Suppose the source was
a guest at the party, than the reliability of this testi-
mony is represented by an information source variable
(Figure 4(c)).

Given the available evidence, we get a high likelihood
for the passenger pulling the handbrake of the mov-
ing vehicle (≈ 100%). The propability for speeding is
much lower (≈ 27%), and therefore far less convincing.

All three approaches can adequately model the case
and derive equally sensible conclusions. Abductive-
logical reasoning over a causal map explains the logi-
cal correctness and contradictions of propositions. The
advantage of a Bayesian approach is that by quanti-
fying influence, it is able to give insight in what hy-
pothesis is most credible as well as the relevance of
evidence. The models of Prakken, Renooij and Huy-
gen are based on a causal map. Although HMF follows
a different approach to the construction of belief net-
works, and therefore uses a rather different topology,
it does derive the same conclusions.

5 ISSUES REGARDING
EXTENDIBILITY

Extendibility as well as modularity are important re-
quirements. The models by Prakken and Huygen are
’static’ models in the sense that they were designed to
model one single case with a fixed set of evidence and
hypotheses. This is feasible when consensus has been
developed on all aspects of the case. However, sup-
porting decision making at an earlier stage requires a
high level of flexibility. The HMF was developed to
facilitate decision making when the set of evidence (or
indicators) and hypotheses is still evolving and a con-
stant topic of discussion. Models designed with the

HMF are flexible, meaning that a model is decompos-
able into independent modules. So that each module
can be maintained or extended by a different domain
expert. This section will discuss issues that concern
the extendibility of models developed with the HMF.
These issues will be illustrated by extending the exist-
ing models from the previous section.

We have pursued extendibility by modular indepen-
dence of the elicited priors. When an indicator is
added to the model, the only priors to elicit are those
for the intermediate nodes of that specific indicator.
Priors that were elicited before do not have to be
reconsidered. The same holds for adding hypothe-
ses. We will illustrate this by considering an addi-
tional hypothesis for the car accident case. Suppose
the driver pulled the handbrake of the moving vehi-
cle. If the driver was under influence of alcohol, that
would have also influenced the driving behavior and
therefore the likelihood of speeding as well as the pos-
sibility of pulling the handbrake of the moving vehicle.
In all three models we would have to add and update
existing prior knowledge.

To add the alternative hypothesis to the logical model
of Prakken and Renooij a proposition is needed for the
new hypothesis, and another to represent the possibil-
ity that the driver was under the influence of alcohol.
These additional causal relations are highlighted in red
in Figure 4(a). Together, these additions extend the
existing set of 12 rules with 6 more.

Figure 5: How extending the model affects the number
of priors to elicit.



Table 1: Extending the models.

priors Prakken Huygen elicited HMF

in original model 12 44 36
after extension 18 64 58
unchanged 12 30 36
updated and added 6 34 22
relative workload 50% 77% 61%

When we add similar variables and relations to the
belief network of Huygen, we need to specify new con-
ditional probability tables for locking of wheels, hand-
brake in pulled position and driver’s testimony. Fur-
thermore, we would have to replace the prior proba-
bility distributions of speeding through S-curve with a
new conditional probability table. These changes com-
prise the elicitation of 34 new priors that substitute 14
previously elicited priors.

To add to the HMF model the hypothesis driver pulled
the handbrake of the moving vehicle, requires a new col-
umn in the model in Figure 4. The possibility of the
driver being under the influence of alcohol is modeled
as an indicator, which adds a new row to the model.
Table I shows how many elicited priors are required
for extending the models. The extensions of the HMF
model comprise only 22 elicited priors, all 36 existing
priors remain unchanged. This makes HMF consid-
erably cheaper to extend than the belief network of
Huygen. The original causal model of Prakken is even
simpler to extend. That model, however, lacks quan-
titative support for probabilistic inference.

As the car accident case shows, the HMF is tolerant to
extensions. Figure 5 shows the general effect of adding
hypotheses and indicators to a model by outlining the
maximum number of elicited priors. While the to-
tal number of parameters grows exponentially when
more hypotheses are added, the amount of elicited
priors grows in a linear fashion. The figure assumes
the worst case in which each indicator is associated to
all hypotheses. Although the model assumes boolean
variables and two priors for each intermediate variable
would suffice, it is assumed that all priors for inter-
mediate variables are elicited as well as a prior prob-
ability distribution for each hypothesis. Note that we
have excluded all other parameters that require elici-
tation such as variable names and state definitions. As
a reference Figure 5 includes the number of priors of
Hailfinder (3741), Alarm (752), the original belief net-
work of Huygen (44) and the HMF model from Section
4 (36). The extensions proposed in this Section were
excluded from the HMF model.

As mentioned in Section 3 indicators are modeled
by intermediate variables and one combining variable.
The more hypotheses are associated to an indicator,
the more probabilities of intermediate variables will

have to be combined. On each extension the combin-
ing variable gets an extra parent, and as a consequence
its conditional probability table (CPT) doubles in size.
In the HMF an averaging function has been chosen as
the preferred option for these CPTs. By default, the
CPT of a combining variable effectively takes the aver-
age posterior distribution of all intermediate variables
(Equation 1).

Arguably, one might find a logical OR-function [8]
more intuitive. However, we have chosen not to use an
OR or AND function for these CPTs since a method-
ical bias may arise in the model if it is extended. A
practical drawback of using OR-tables in this situation
arises when more than (approximately) five alternative
hypotheses are connected to an indicator. By adding
more parents to a deterministic OR-table the proba-
bility for the child variable quickly converges to unity,
or alternatively a pre-defined upper bound. This is
shown in Figure 6(a). It is likely that this will lead
to unintentional overestimation of the occurrence of
unobserved indicators. This can be illustrated by ex-
tending the belief network of Huygen, where the vari-
able locking of wheels is modeled as an OR-table with
an upper bound of 0.80. Suppose the case would be
extended to include one or two additional drunk back-
seat passengers who may have pulled the handbrake
of the moving vehicle. The extra backseat passengers
are modeled in the same way as the passenger in front,
using the original priors P (locking|pulled) = 80% and
P (locking|¬pulled) = 0% (where pulled is true when
any of the persons in the vehicle pulled the handbrake).
Given that the driver is sober and all passengers are
drunk, the probability of locking the wheels increases
rapidly (one drunk passenger: 2.4%, two drunk pas-
sengers: 4.7%, three drunk passengers: 7.0%). Even
when we have not instantiated any other variables
(e.g. crash or driver’s testimony). After these exten-
sions, one might like to reconsider the original priors of
P (pull|drunk) to prevent overestimating the probabil-
ity of locked wheels. This potential problem is avoided
when the method in Equation 1 is used.

Another potential problem that is associated with OR-
tables is the asymmetric influence of an indicator: pos-
itive observations have less impact than a negative
observation. This is shown in Figure 6(b)). Where
observed indicators will only have marginal impact
on hypotheses when observed true, the impact on in-
termediate variables of an indicator observed as false
is deterministic and therefore usually stronger. It is
likely that the user will be unaware of these effects.
This makes the model relatively vulnerable to errors
in the priors. Therefore, we advice to use Equation 1
as the default method. Other methods for construct-
ing CPTs of combining variables may hinder extending



(a) The likelihood of an indicator. (b) The impact of evidence for an indicator.

Figure 6: Extending the model affects the probabilities.

the model.

6 ISSUES REGARDING
RELIABILITY

To evaluate the outcomes of HMF belief networks we
have translated the Asia belief network, as introduced
by Lauritzen and Spiegelhalter in [12], into the HMF
format.

We will use abbreviations that correspond to the first
character of each variable. The original model is shown
in Figure 7 (left), the HMF version of Asia is shown on
the right. In the HMF model of Asia we distinguish hy-
potheses: {b, l, t}, indicators: {s, v, x, d} and interme-
diate nodes: {sb, sl, vt, xb, xl, xt, db, dl, dt}. The vari-
able TbOrCa is missing from the HMF model, which
in the original belief network combines the probabili-
ties of tuberculosis and lung cancer with a logical OR
function has become obsolete.

In the HMF model of Asia, the prior information for
the indicators is specified separately for each associ-
ated hypothesis. This assumes that the influence of
e.g. lung cancer on dyspnea is unaffected by bron-
chitis. The following probabilities will have to be
elicited from a domain expert, when using HMF on
Asia. Unconditional priors for each hypothesis: P (b),
P (l), P (t) and conditional priors for all intermedi-
ate nodes: P (sb|b), P (sl|l), P (vt|t), P (xb|b), P (xl|l),
P (xt|t), P (db|b), P (dl|l), P (dt|t).

The Asia model uses only boolean variables and there-

fore only one probability for each hypothesis has to be
elicited and two for each association of an indicator
with a hypothesis. For Asia this gives a total of 21
probabilities. In this case the priors for the hypothe-
ses and intermediate nodes were derived from the joint
probability table of the original Asia belief network.

We computed the posteriors of the hypotheses for all
possible scenario’s of evidence for the indicators. In
each of these scenarios each indicator was either ob-
served or not. Note that we instantiate the interme-
diate nodes for evidence, rather than the combining
variables. As mentioned in Section 3 an indicator is
represented by both intermediate variables and a com-
bining variable. The conditional probability table of
the combining variable is implemented by Equation
1, whereas the elicited priors are stored in the inter-
mediate variables. Instantiating only the combining
variable would undervalue those elicited priors.

The results are shown in Table II. For each indica-
tor and hypothesis, the table shows the average and
maximum absolute difference in posteriors, as well as
the Jensen-Shannon divergence [13]. The bottom row
shows the percentage of scenario’s in which the out-
comes (i.e. the most likely state) for the variables
were equal. Especially this last criterion is important
for decision making, as the ’real’ priors and posteriors
will always be open to debate when a causal model
is hard to obtain. The table shows that while poste-
rior distributions may vary between both versions, on
average the difference is relatively small (< 4 percent-
age points). For almost all scenario’s the outcomes



Figure 7: Left: the original Asia belief network. Right: HMF version of Asia. Both with evidence for Smoking.

Table 2: Divergence between HMF verion of Asia and
the original.

vertice d v x b t c s
max dif 0,162 0,004 0,071 0,308 0,193 0,209 0,095
av. dif 0,023 0,000 0,009 0,036 0,020 0,017 0,014
max J-S 0,021 0,000 0,006 0,074 0,029 0,035 0,008
av. J-S 0,002 0,000 0,001 0,006 0,002 0,002 0,001
match(%) 91,4 100,0 100,0 97,5 98,8 98,8 97,5

are identical. The few exceptions are caused by the
synergistic effect between an abnormal X-Ray and the
presence of dyspnea. This synergistic affect is absent
in the HMF version, and in those situations we get
the relatively large differences in the posterior distri-
butions of bronchitis and long cancer.

7 CONCLUSIONS

The current HMF design pattern is extendible and
modular. In our opinion the HMF succeeds in its pur-
pose. We have confidence that HMF comes as a relief
to those application domains that so far have been
relatively underequipped with practical decision sup-
port tools, due to the lack of ’hard and solid’ domain
knowledge that can be used as a basis for probabilistic
models.

The arrangement of the HMF supports a working
method which deals with tunnel-view in a well con-
sidered manner. The HMF will not explicitly reduce
or prevent bias occurring within the topology of a
model. However, it offers the possibility to use certain
strategies during the design of a model which lead to
more balanced and thus less biased models. Using such
strategies will enlarge the awareness about tunnel-view
(and bias) and as such may partly prevent it.

Although the requirements of reliability and usabil-
ity are not validated by domain experts and analysts,
several issues concerning these requirements have been

discussed in this paper. The Asia example shows that
posteriors via a HMF model can be quite similar to
those derived via a belief network based on causality.
The issues that we have encountered so far in applying
belief networks for criminal investigations have been
addressed in this paper. However, it is a continuous
effort to further improve the HMF.

8 FUTURE RESEARCH

One of the complementary wishes of the authors in-
volves a bias measurement combined with automated
commentary that highlights useful missing evidence.
By calculating how discriminative the indicators and
the evidence is to each hypothesis and counterhypoth-
esis, we can evaluate whether tunnel vision may be
present. It can also be used to investigate the added
value of collecting evidence for unobserved indicators.
One way of getting this information is by simulating
evidence and evaluate the posteriors of all hypotheses.
Since the maximum potential impact of an indicator
may only occur at a certain combination of evidence
for other indicators, the simulation should consider all
possible combinations of evidence for all unobserved
indicators. This may be a costly operation. Alter-
natively one may derive the maximum impact directly
from the conditional probability tables of the variables,
and use message passing to investigate the maximum
potential impact of each indicator.

The naive structure of a HMF belief network may in
some occasions not capture the targeted effects. In
those cases we would like to extend the HMF model
with constraining variables that model the synergistic
effect between indicators (or in between hypotheses).
We have not been able to test such mechanisms in real-
istic cases so far. Therefore these need further investi-
gation to test the feasibility of adding constraints, and
whether the implications of such mechanisms violate
the extendibility and modularity.



The HMF has been applied on several study cases
based on real data by the authors. In the foreseeable
future it is expected that domain experts will work
with this framework. Their experience will be very
useful for validating the usability and reliability of this
method, and for finding ways to further improve it.
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