

Designing Usable Applications based on Web Services
Fabio Paternò, Carmen Santoro, Lucio Davide Spano

HIIS Laboratory – ISTI-CNR
Via Moruzzi 1

56126 Pisa, Italy
{fabio.paterno, carmen.santoro, lucio.davide.spano}@isti.cnr.it

ABSTRACT
One trend in software development is to implement application
functionalities through Web services. This eases the possibility of
developing interactive applications exploiting functionalities
implemented by others. In this paper we discuss the issues raised
when designing user interfaces for these types of applications. In
particular, we describe a possible approach to address them based
on the use of model-based user interface descriptions with the
possibility of obtaining versions adapted to different types of
interactive devices. The development of the final user interface is
supported by a semi-automatic process in which at first the
designers take benefit of an authoring tool able to automatically
generate the first version of the user interface and then, after an
evaluation phase of of the resulting user interface, they can
manually make further modifications and refinements in order to
obtain highly usable user interfaces.

Categories and Subject Descriptors

H5.m. Information interfaces and presentation (e.g., HCI).

General Terms
Design,

Keywords
Model/based design. Usability, Web services.

1. INTRODUCTION
One current trend in software development is the use of Web
services. They have been introduced to better support
software−to−software communication. This is achieved through
the WSDL (Web Service Description Language) description
associated with each service, an XML-based description of the
possible operations, and input/output parameters. The basic idea is
to ease the development of applications based on the SOA
(Service−Oriented Architecture) approach in which often
applications developers have to design access to services and their
compositions developed by others.

Meanwhile, recent years have also assisted to a renewed interest

in model-based user interface design and development because
logical descriptions allow designers to better manage the
complexity of multi-device environments (see for example [1],
[4]). This is usually obtained by exploiting XML logical
descriptions and associated transformations for the target devices
and implementation languages. Having the possibility of
specifying a user interface at different levels has several
advantages: it helps designers because the separation in different
abstraction levels provides different “views” of the same user
interface, and the selection of the most appropriate view is
performed by the designers depending on the specific aspects they
are currently interested in, and/or on their specific skills. In
addition, it is worth pointing out how not only designers can be
involved in the approach, but also other stakeholders can play a
relevant role in the process. Indeed, as the method is supposed to
be iterative and refinement-based with a semi-automatic approach
there is enough room for even an early intervention of evaluation
in the process, to the aim of identifying usability problems and
include the design of their solutions as soon as possible in the user
interface software lifecycle.

In addition, the information contained in the models can be

exploited both at design and at run time. Therefore, the use of
models does not pose any particular constraints to when and how
the models should be used. Maintaining links among the elements
in the various abstraction levels enables e.g. linking semantic
information (such as the activity that users intend to do) with more
concrete levels, up to the implementation levels, and this can be
exploited in many ways. For instance, such links can be
automatically supported by suitable transformations, which are
useful for obtaining a description in a specific abstraction level,
once a description in a different level is available, not forcing
designers to build all the different descriptions or to use any
specific model.

If we consider the abstract level, it is generally recognised that the
main benefits in using an abstract description of a user interface is
for the designers of multi-device interfaces, because they do not
have to learn all the details of the many possible implementation
languages supported by the various devices. Thus, one advantage
of using the abstract levels of a user interface is that designers can
reason in abstract terms without being tied to a particular
platform/modality/implementation language. In this way, they
have the possibility to focus on the 'essence' of the interaction
(e.g.: what is the intended effect the interaction wants to
achieve/support?), regardless of the details and specificities of the
particular environment considered. In addition, considering the
abstract level of the user interface appears to be particularly useful
when the user interfaces are aimed at handling Web Services.
Indeed, WSDL files provide a description of the operations
supported by the Web Services. The relationships of such
descriptions of the operations (contained in WSDL files) with the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy

abstract user interface objects expected to support them in the
resulting user interface (contained in the abstract user interfaces)
is an interesting issue to investigate, and appears to be promising
in helping to solve the problem of generating user interfaces for
Web Services.
This is a novel problem. Indeed, most model-based approaches
have not addressed the specific issues related to Web-service
based applications. Work on generating user interfaces for Web
services but without using model-based approaches has been
carried out at Dresden [6] and Yonsei [5] universities. The
limitation is that such works usually consider direct mappings
between Web services functional interface and an implementation
language for user interface, which cannot be exploited when
devices supporting different implementation languages are
considered.

Work by Vermeulen et al. [7] aimed to solve such issues by
extending Web services with OWL-S combined with task and
layout model. This approach requires a lot of manual work by the
designers.

In general, the type of issue that we have to solve is how to
associate information regarding the data types and information on
the user interface. Indeed, while the semantic Web has mainly
focused on the data semantics through the use of ontologies and
languages that allow for more intelligent processing, user interface
models allow designers to consider the semantics of interaction,
which is related to the tasks to support in order to reach the users’
goals. Thus, we need to link these two types of information.

In this paper we discuss how to address the issues introduced by
proposing a specific approach and a language and the associated
environment, which builds on our previous experiences but aims
to provide better support when designing interactive applications
based on Web-services, we also report on how the approach can
be applied in an application in the home domain and how it
supports the interplay between software development and
usability evaluation.

2. METHODOLOGICAL APPROACH
A traditional top-down approach going through the various
abstraction layers that have been considered useful in HCI (task,
abstract interface, concrete interface, implementation) does not
seem particularly effective in this context for various reasons. One

is that designers and developers have to create interactive
applications accessing application functionalities developed by
others. Thus, they have to focus their effort on how to take into
account the specific requirements that the application interface of
the existing Web services pose. In addition, they also have to
indicate how to compose functionalities implemented in different
Web services.

Our approach (see Figure 1) is to have first a bottom-up step in
order to analyse the Web services providing functionalities useful
for the new application to develop. In this phase an analysis of the
operations (OP1, .. OP4 in Figure 1) and the data types (DT1, ..,
DT4 in Figure 4) associated with input and output parameters is
carried out in order to associate them with abstract interaction
objects suitable to support presentation of their values and their
modification.

For example, a Boolean can be represented by a button, an
enumeration type by a list or a radio button depending on its
cardinality. Thus, for each Web services we can have a
corresponding abstract description of the user interface.

Then, we can use the task model expressed in ConcurTaskTrees
(CTT) [3] for describing the interactive application and how it
assumes that tasks are performed. This notation is a standard de
facto in the area of task model representations, and it also under
consideration for standardization in the W3C consortium. CTT
provides a first classification of tasks depending on the agent
performing them: the user (in case of only internal cognitive
activity, such as making a decision about how to carry on a
session), the system (completely automatic task) or interaction
(involving both the user and the system). Web services are
application functionalities, thus they are associated with system
tasks. Another issue is what level of granularity to reach in the
task decomposition. There are mainly two possibilities:
associating the system basic tasks to the web services or reach a
further detail in order to associate each system basic task with the
operations of the web services. Thus, if a Web Service supports
three operations, then there would be three basic system tasks.
The latter solution allows for a more detailed and flexible
specification.

The next step is to obtain first an abstract, and then a concrete,
platform-dependent, user interface description of the user
interface. To this end we have to consider information derived

Figure 1. The Proposed Approach.

from the task models and the various pieces of abstract interface
associated with the various Web Services. The information
coming from the task model is useful in order to identify how to
structure the presentations of the interactive applications and
define the navigation model through them. The information
coming from the abstract interface excerpts are mainly useful to
identify the interface elements to include in each presentation and
their type. Defining the structure of a presentation mainly means
to identify the logical groups of elements inside it, and whether
there are particular relations among some of such groups The
structure of the Web services can be useful for this purpose
because we can think of ‘groupings’ associated with each
operation (indicating how to represent their input and output
parameters), and higher level groupings associated with the Web
services.
The use of an automatic tool and, consequently, automatic
transformations, has several advantages: it allows for generating
usable and consistent user interfaces by incorporating already in
the transformation rules some design guidelines/rules for
obtaining usable interfaces. In addition, it also allows for ensuring
that some minimal consistency overall the pages is automatically
kept (eg: ensuring the consistency of the title label or the style of
the presentations overall an entire user interface application).
However, very often the results of fully automatic authoring tools
for user interfaces are not very satisfactory from a usability point
of view, even when some good design rule have been incorporated
in the transformations.

To this aim in our approach a semi-automatic process has been
proposed. Such a process provides also space for (a manual)
intervention, an evaluation phase carried out on an initial version
of the user interface that has been automatically generated.
Therefore, in order to improve the usability of the final results, an
evaluation feedback from a HCI expert can be envisaged so that a
consequent manual refinement and modification of the user
interface which has been automatically obtained with the
authoring tool can be carried out accordingly.

3. MARIA
In order to obtain a more powerful description language able also
to satisfy the new requirements posed by service/oriented
architectures, and modelling the new forms of human-computer
interaction, we are developing a new UI specification language,
which will take also into account the new technical requirements
raised by the issue of generating usable interfaces for Web
Services. The new language name is MARIA (Model-bAsed
descRiption of Interactive Applications) XML and it can be used
for the abstract and concrete user interface definition. Its
development takes into account our previous experiences with a
previous language (and the associated tool) for designing multi-
device user interfaces, TERESA XML [4].

There are many differences between TERESA XML and MARIA
XML. For example, MARIA supports also an abstract description
of the underlying data model of the application. The interactors
(namely, the elements of the abstract or concrete user interface)
which compose an abstract (resp.:concrete) user interface, can be
bound to a type or an element of a type defined in the abstract
model. In this way, a change of application status is modelled as a
change of one or more values in the abstract data, which will be
reflected on the interface (abstract or concrete) status. This is a
powerful feature that can be used to express in a natural manner

aspects such as correlation between the value of interface
elements, conditional presentation connections, conditional layout
of interface parts, etc.

The data model is described using the XSD type definition
language. In MARIA there is the possibility to define the data
manipulated by the user interface both at the abstract level
(through an abstract data model) and at the concrete level (a
concrete data model, which is a refinement of the abstract one).
The introduction of a data model at the abstract level also allows
for having more control on the operations that will be done on the
different data types. In addition, the data model is also useful for
specifying the format for values: the format specification for a
value can be expressed in MARIA by bounding the concrete data
model with the editing interactor used for getting the input value
from the user: if the editing object is bound with a date, the
underlying implementation will have the needed information for
validating the value that will be provided by the user. The
MARIA data model can be the same as the types part of the
WSDL description of the service, or it can be mapped on a more
UI oriented description using an XSLT style sheet. The new
authoring environment for MARIA XML is currently being
developed to support this operation. The problem of mapping
fields to services parameters is also supported by the MARIA
environment: the mapping is obtained by performing the inverse
operation of the process described before: another XSLT style
sheet performs the mapping from the AUI data model to the
WSDL one.

Figure 2 shows a graphical representation of an abstract interactor
of type only_output in MARIA XML abstract user interface
description (the description has been unfolded only for the higher
levels).

Figure 2. The specification of the only_output element

The only_output interactor models the possibility for the user to
receive information from the application, and, depending on the
type of information received (text, object, description, feedback,
alarm), suitable interactors should be used.

In the same way, within MARIA XML an abstract interactor
allowing the user to interact with the underlying application is
refined into different objects depending on the type of activity
which is supported: selection (select an object within a set of
objects), edit (modifying an object), control (activating a
functionality), and interactive description (a combination of both
only_output and interaction objects).

Figure 3 presents a graphical representation of an abstract
interactor of type interaction in MARIA XML abstract user
interface description (the description has been unfolded only for
the higher levels).

Figure 3. The specification of the interaction element

The corresponding excerpt of MARIA XML Schema for the
abstract user interface description of the abovementioned
interaction object (only for the first level) is visualised, together
with the specification of the two possible types an interactor can
assume (interaction and only_output):

<xs:complexType name="interaction_type">
 <xs:choice>
 <xs:element name="selection" type="selection_type"/>
 <xs:element name="edit" type="edit_type"/>
 <xs:element name="control" type="control_type"/>
 <xs:element name="interactive_description"
type="interactive_description_type"/>
 </xs:choice>
 <xs:attribute name="mode" type="mode_type" fixed="input"/>
</xs:complexType>

<xs:complexType name="interactor_type">
 <xs:choice>
 <xs:element name="interaction" type="interaction_type"/>
 <xs:element name="only_output" type="only_output_type"/>
 </xs:choice>

…

</xs:complexType>

Figure 4 shows how it is possible, with MARIA XML, modelling
a concrete user interface object (for the desktop platform)
allowing for editing a textual value. More in detail, in the figure it
is visualised the hierarchy of concrete interactors unfolded only
for the branch of textfield objects, which allow editing text-based
values. Textfields have a number of attributes, label (the label of
the interactor), length (the length of the field), and the information
about whether the field is aimed at accepting passwords (therefore
the object should have a special behaviour in the feedback -eg: in
a graphical platform it will not visualise the inserted value).

Figure 4. The specification of the textfield element

In Figure 4 below the objects derived from refining the interactor
object down to the textfield object have been highlighted with a
different colour, in order to make clearer to the reader such
decomposition.

Below there is the corresponding MARIA XML specification
excerpt for the textfield object

<xs:complexType name="textfield_type">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="label" type="xs:string" use="required" />

<xs:attribute name="length" type="xs:NMTOKEN"
use="required" />

<xs:attribute name="password" type="option_type"
use="required" />

</xs:extension>

 </xs:simpleContent>

</xs:complexType>

4. AN EXAMPLE APPLICATION
We have applied our approach to the design of a home
application. This is an application domain that is raising an
increasing interest because our houses are becoming more and
more populated with interactive, intelligent devices. In this case
we have used a home server able to support interoperability
among home devices supporting various communication protocol
(X10, UpnP, Konnex, …). The functionalities of the domestic
appliances are made available through a standardised set of Web
services exposed by a home server [2]

This case study has also provided us with the possibility to define
an algorithm for generating a default user interface for accessing a
Web service operation. The idea is that the generated UI can then
be refined by a designer with an authoring environment, but we
want to create heuristics to minimize the need of human
intervention.

For the sake of simplicity, in order to illustrate the algorithm we
take into account a single service with a finite set of operations
and data types.

The algorithm has a first step that aims to extract an object
oriented model of the operations: each operation is associated to a
data type (the type “owner” of the operation) defined in the types
part of the WSDL file, checking the operation parameters.

After that the constructed model is reviewed for identifying the
input and output operations that read or write the same properties.
For instance we can take into account a Sensor data type that
contains an element status. The WSDL has two operations :

• SetSensorStatus(Sensor s, boolean status)

• Boolean GetSensorStatus(Sensor s)

These two operations are bound to the Sensor data type, the first
one is an input operation that writes a value in the status field and
it is marked as input, while the second is a read operation and it is
marked as output (it delivers as a result a Boolean data, as you can
see from its specification). When the parameter that represents
the value of the input operation matches with the read value of an
output operation, their names are checked using the following
heuristic: if the names are similar enough, they are merged into a

single input/output operation: as a consequence, the same
interactor will be used for supporting the input and output
operations. Otherwise the two operations will remain distinct and
different interactors will be used for accessing the two operations.

As an explanatory example of the above concept, we could
consider a mobile user interface in which screen space is limited,
and therefore it may be useful to have a single interactive element
able to cover both aspects (possibility of changing the state and
show actual state). In order to identify such cases, we have
developed a heuristic indicating that when in the WSDL we find
two methods having complementary structures (such as
set<value> and get<value>, like e.g. setSensorStatus and
getSensorStatus before) associated to one device, then they are
mapped onto one element able to support both methods instead of
two separate interface elements.

Enumeration data type, with high cardinality

Abstract User
Interface

<selection>
 <single_choice
cardinality="high"/>
</selection>

Concrete
Desktop

<selection>
 <single
 cardinality="high">
 <list_box
 alignment="…">
 <choice_element
 label="[elementName]">
 elementName
 </choice_element>
 [Other elements]
 </ list_box >
 </single>
</selection>

Concrete
Mobile

<selection>
 <single
 cardinality="high">
 <drop_down_list
 alignment="…">
 <choice_element
 label="[elementName]">
 elementName
 </choice_element>
 [Other elements]
 </drop_down_list>
 </single>
</drop_down_list>

Concrete
Vocal

<selection>
 <single
 cardinality="high">
 <message_menu
 message="…"
 nomatch_event="[nomatchmsg]"
 noinput_event="[noinputmsg]"
 help_event="[helpmsg]" >
 <message>
 [elementName]
 </message>
 [Other elements]
 </message_menu>
 </single>
</selection>

Figure 5. Examples of mappings

The next step is the creation of the abstract user interface using
the collected operation information. The table shown in Figure 5
describes an example of the main mapping rules in the case of an
enumeration data type with high cardinality, by showing an
abstract single_choice element and the corresponding concrete
elements for the desktop, mobile, and vocal platforms.

In this way it is possible to obtain an application able to support
access through multiple types of devices. For example, it is
possible to generate versions for a PDA and a desktop system, but
other device types can be considered as well. In the case of the
PDA access, we consider the possibility of generating an
application in C#, even able to support libraries for vocal and
multimodal access. This application has to be downloaded and
installed in the mobile device. In the case of a desktop access, we
consider the generation of a Web application able to support
access, through some servlets, to the web services associated with
the domestic appliances. Whatever interaction device is actually
used, then the user can freely choose one domestic device and
perform the desired information, usually check the state of some
parameters (such as temperatures or alarms) or change some of
their values.

Figure 6. The Desktop User Interface.

The different screen space implies substantial differences in the
generated user interfaces. In the desktop interface (see Figure 6)
it is possible to show the various rooms, select a device and access
the associated controls in one single presentation.

Figure 7. The PDA User Interface.

All these possibilities are still available in the PDA interface (see
Figure 7) but they require multiple presentations and the addition
of navigation capabilities among them.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed a method for the model-based
design of interactive applications based on the use of Web
services. We have also briefly reported on the development of a
new XML specification language, and the associated authoring
environment, to better support the method, and, more generally,
to provide more flexible support to UI designers. We have also
illustrated the approach with a specific example in the home
domain.

In addition, we pointed out how our approach leverages an easy
coupling between on the one hand software design and
development and, on the other hand, usability evaluation. Indeed,
the approach is supported by a semi-automatic process in which
an initial version of the user interface is expected to be obtained
through the use of automatic tools in which some guidelines for
good UI design are already incorporated (eg within the
transformation rules). Therefore, the initial results automatically
obtained should already be compliant with principles of good
design if they have been incorporated in suitable transformations
(which, if not hard coded in the automatic tool can be even subject
of an usability evaluation as well). Afterwards, the preliminary
versions of the user interfaces so obtained are supposed to be
analysed and evaluated by HCI experts: the feedback of such an
evaluation can be included through a manual refinement which
can affect (and, hopefully improve) the result not only at the final
UI level but also at more abstract UI levels, depending on their
skills.

Future work has been planned for applying the presented approach
to more complex case studies, in order to test the generality and
the flexibility of the method.

6. ACKNOWLEDGMENTS
This work is partly supported by the ServFace EU ICT project.

7. REFERENCES
[1] Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S.,

Shuster, J. UIML: An Appliance-Independent XML User
Interface Language, Proceedings of the 8th WWW
conference, 1999.

[2] Miori V., Tarrini L., Manca M., Tolomei G. - An open
standard solution for domotic interoperability. In: IEEE
Transactions on Consumer Electronics, vol. 52 (1) pp. 97-
103. IEEE, 2006.

[3] Paternò F., Model-based Design and Evaluation of
Interactive Applications, Springer Verlag, November 1999,
ISBN 1-85233-155-0.

[4] Paternò F., Santoro C., Mantyjarvi J., Mori G., Sansone S.,
Authoring Pervasive MultiModal User Interfaces,
International Journal of Web Engineering and Technology,
N.2, 2008

[5] Song, K., Lee, K.-H., 2007. An automated generation of
xforms interfaces for web services, Proceedings of the
International Conference on Web Services, 856-863.

[6] Spillner, J., Braun, I., Schill, A., 2007. Flexible Human
Service Interfaces, Proceedings of the 9th International
Conference on Enterprise Information Systems, 79-85.

[7] Vermeulen J., Vandriessche Y., Clerckx T., Luyten K. and
Coninx K., Service-interaction Descriptions: Augmenting

Services with User Interface Models, Proceedings
Engineering Interactive Systems 2007, Salamanca, Springer
Verlag.

