
Proceedings of the International Workshop on:

http://cost294.org/

Interplay between Usability Evaluation
and Software Development
(I-USED 2008)
24th September 2008, ISTI- CNR, Pisa, Italy
co-located with the 2nd Conference on Human-Centred Software Engineering (HCSE 2008), September
25-26, 2008

Silvia Abrahão

Effie Lai-Chong Law
Jan Stage

Kasper Hornbæk
Natalia Juristo

(Editors)

Title: Proceedings of the International Workshop on Interplay between Usability
Evaluation and Software Development (I-USED 2008)

Editors: Silvia Abrahão, Effie L-C Law, Jan Stage, Kasper Hornbæk, and Natalia Juristo

ISSN: 1613-0073
The CEUR Workshop Proceedings Series
(http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/)

Printed by: Audio Visual Services (AVS), University of Leicester, UK

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/

ACKNOWLEDGEMENTS

First of all, we are very grateful to the local organizers – ISTI (Institute of Information Science and
Technologies), CNR (Consiglio Nazionale delle Ricerche [the National Research Council]), Pisa, Italy, especially
Carmen Santoro and Fabio Paternò, who have strongly supported us to hold our 6th COST294-MAUSE Open
Workshop “Interplay between Usability Evaluation and Software Development (I-USED 2008)”
(http://www.dsic.upv.es/workshops/i-used/). Thanks must also go to the authors of the workshop’s papers, whose
contributions serve as rich sources of stimulation and inspiration to explore the issues of interest from multiple
perspectives. The quality of the contributions could further be ensured and improved with the generous help of the
program committee members and additional reviewers. Their effective and efficient review works are highly
appreciated.

Last but not least, we express gratitude to our sponsor – COST (European Cooperation in the field of Scientific
and Technical Research; http://cost.cordis.lu/src/home.cfm). The COST Office operated by the European Science
Foundation (ESF) provides scientific, financial and administrative support to COST Actions. Specifically, the
COST Action 294 (http://www.cost294.org), which is also known as MAUSE, was officially launched in January
2005. The ultimate goal of COST294-MAUSE is to bring more science to bear on Usability Evaluation Methods
(UEM) development, evaluation, and comparison, aiming for results that can be transferred to industry and
educators, thus leading to increased competitiveness of European industry and benefit to the public. The current
Workshop is the second open workshop implemented under the auspices of COST294-MAUSE. As with other
past and forthcoming events of COST294-MAUSE, we aim to provide the participants with enlightening
environments to further deepen and broaden their expertise and experiences in the area of usability.

 i

http://cost.cordis.lu/src/home.cfm
http://www.cost294.org/

PREFACE

International Workshop on Usability Evaluation and Software Development (I-USED 2008)
24 September 2008, Pisa, Italy

MOTIVATION

Software development is highly challenging. Despite many significant successes, several software
development projects fail completely or produce software with serious limitations, including (1) lack of
usefulness, i.e. the system does not adequately support the core tasks of the user, (2) unsuitable designs of
user interactions and interfaces, (3) lack of productivity gains or even reduced productivity despite heavy
investments in information.

Broadly speaking, two approaches have been taken to address these limitations. The first approach is to
employ evaluation activities in a software development project in order to determine and improve the
usability of the software, i.e. the effectiveness, efficiency and satisfaction with which users achieve their
goals. To help software developers’ work with usability within this approach, more than 20 years of
research in Human-Computer Interaction (HCI) has created and compared techniques for evaluating
usability. The second approach is based on the significant advances in techniques and methodologies for
user interface design, which have been achieved in the last decades. In particular, researchers in user
interface design have worked on improving the usefulness of information technology by focusing on a
deeper understanding on how to extract and understand user needs. Their results today constitute the areas
of participatory design and user-centered design.

In addition, the Software Engineering (SE) community has recognized that usability does not only affect
the design of user interfaces but the software system development as a whole. In particular, efforts are
focused on explaining the implications of usability for requirements gathering, software architecture
design, and the selection of software components.

However, the interplay between these two fields and between the activities they advocate to be
undertaken in software development, have been limited. Integrating usability evaluation at relevant points
in software development (and in particular to the user interface design) with successful and to-the-point
results has proved difficult. In addition, research in Human-Computer Interaction (HCI) and Software
Engineering (SE) has been done mainly independently of each other with no in substantial exchange of
results and sparse efforts to combine the techniques of the two approaches. Larry Constantine, a
prominent software development researcher, and his colleagues express it this way: “Integrating usability
into the software development process is not easy or obvious” (Juristo et al. 2001, p. 21).

THEME AND GOALS

The goal of this workshop is to bring together researchers and practitioners from the HCI and SE fields to
determine the state-of-the-art in the interplay between usability evaluation and software development and
to generate ideas for new and improved relations between these activities. The aim is to base the
determination of the current state on empirical studies. Presentations of new ideas on how to improve the
interplay between HCI & SE to the design of usable software systems should also be based on empirical
studies. Within this focus, topics of discussion include, but are not limited to:

 ii

• Which artifacts of software development are useful as the basis for usability evaluations?
• How do the specific artifacts obtained during software development influence the techniques that

are relevant for the usability evaluation?
• In which forms are the results of usability evaluations supplied back into software development

(including the UI design)?
• What are the characteristics of usability evaluation results that are needed in software development?
• Do existing usability evaluation methods deliver the results that are needed in user interface design?
• How can usability evaluation be integrated more directly in user interface design?
• How can usability evaluation methods be applied in emerging techniques for user interface design?
• How can usability evaluation methods be integrated to novel approaches for software development

(e.g., model-driven development, agile development).

RELEVANCE TO THE FIELD

The main contribution is the determination of state-of-the-art and the identification of areas for
improvement and further research. The HCI field includes a rich variety of techniques for either usability
evaluation or user interface design. But there are very few methodological guidelines for the interplay
between these key activities; and more important, there are few guidelines on how to properly integrate
these two activities in a software development process.

PARTICIPANTS

The authors of 15 accepted papers come from eight European countries (Denmark, Finland, Germany,
Italy, Norway, Spain, Sweden, and UK) as well as from India and the USA. The workshop brings
together these authors with diverse cultural and academic backgrounds and research interests to explore a
very relevant topic in HCI from different perspectives. Discussions in the workshop will be very
stimulating. Emerging issues thus identified will be addressed in the future work.

WORKSHOP WEBSITE
http://www.dsic.upv.es/workshops/i-used
Webmaster: Adrián Fernández, Universidad Politécnica de Valencia, Spain.

WORKSHOP CO-CHAIRS

Silvia Abrahao, Universidad Politécnica de Valencia, Spain
Jan Stage, Aalborg University, Denmark
Kasper Hornbæk, University of Copenhagen, Denmark
Natalia Juristo, Universidad Politécnica de Madrid, Spain
Effie L-C Law, ETH Zürich, Switzerland & University of Leicester, UK

 iii

http://www.dsic.upv.es/workshops/i-used

PROGRAM COMMITTEE

• Scott Ambler, IBM Rational
• Nigel Bevan, Professional Usability Services, UK
• Cristina Cachero, Universidad de Alicante, Spain
• Tiziana Catarci, Università degli Studi di Roma ‘La Sapienza’, Italy
• Xavier Ferre, Universidad Politecnica de Madrid, Spain
• Maria Francesca Costabile, Universita' degli Studi di Bari, Italy
• Morten Hertzum, Roskilde University, Denmark
• Emilio Insfran, Universidad Politécnica de Valencia, Spain
• Nuno Jardim Nunes, University of Madeira, Portugal
• Maristella Matera, Politecnico di Milano, Italy
• Emilia Mendes, University of Auckland, New Zealand
• Philippe Palanque, IRIT, France
• Fabio Paternò, ISTI-CNR, Italy
• Isidro Ramos, Universidad Politécnica de Valencia, Spain
• Ahmed Seffah, Université Concordia, Montreal, Canada
• Jean Vanderdonckt, Université catolique de Louvain, Belgium

ADDITIONAL REVIEWERS

• Marianella Aveledo, Universidad Politécnica de Madrid, Spain
• Laura Carvajal, Universidad Politécnica de Madrid, Spain
• Rosa Lanzilotti, Universita' degli Studi di Bari, Italy
• Tobias Uldall-Espersen, University of Copenhagen, Denmark

SPONSORS

The workshop is mainly sponsored by the European COST Action n°294 MAUSE (Towards the
Maturation of IT Usability Evaluation – www.cost294.org). Several members of this COST action are
members of the workshop Program Committee and guarantee a large geographical and topical coverage
of the workshop.

 iv

http://www.cost294.org/

TABLE OF CONTENTS

Theme and Variation: Usability in a Post-Waterfall World
Larry Constantine

1

The Effect of Severity Ratings on Software Developers’ Priority of Usability Inspection
Results
Asbjørn Følstad

2-4

Usability Promotion in a Technical Project with Sparse Resources – a Case Study
Kaarina Karppinen & Marja Liinasuo

5-6

Preparing Usability Supporting Architectural Patterns for Industrial Use
Pia Stoll, Bonnie E. John, Len Bass, Elspeth Golden

7-12

Enriching Requirements Analysis with the Personas Technique
John W. Castro, Silvia T. Acuña & Natalia Juristo

13-18

Towards the Industrial-Strength Usability Evaluation
Martin Schmettow

19-21

Controlling User Experience through Policing in the Software Development Process
Mats Hellman & Kari Rönkkö

22-28

Problems of Consolidating Usability Problems
Effie Lai-Chong Law & Ebba Thora Hvannberg

29-32

User Experience Metric and Index of Integration: Measuring Impact of HCI Activities
on User Experience
Anirudha Joshi & Sanjay Tripathi

33-40

Eclipse Plug-in to Manage User Centered Design
Yael Dubinsky, Shah Rukh Humayoun & Tiziana Catarci

41-46

Integrating Software and Usability Engineering through Jointly-constructed, Event-
based Stories
John Teofil Paul Nosek

47-49

Reducing Risk through Human Centred Design
Nigel Bevan

50-56

Users’ Practices and Software Qualities: a Dialectical Stance
Alessandro Pollini

57-63

Fostering Remote User Participation and Integration of User Feedback into Software
Development
Steffen Lohmann & Asarnusch Rashid

64-66

Designing Usable Applications based on Web Services
Fabio Paternò, Carmen Santoro, Lucio Davide Spano

67-73

Direct Integration: Training Software Developers and Designers to Conduct Usability
Evaluations
Mikael B. Skov and Jan Stage

74-81

 v

Theme and Variation: Usability in a Post-Waterfall World

Larry Constantine
Department of Mathematics and Engineering

University of Madeira
Campus Universitário da Penteada

9000-390 Funchal, Portugal
Phone: +351 291705281

Fax: +351 291705199
 lconstantine@uma.pt

ABSTRACT

The shortening of product life cycles, the advent of rapid iterative techniques, and the rise of agile methods all strain conventional
approaches to usability evaluation and interaction design. To function effectively in this changing context, professionals must go beyond
time-and-resource intensive conventional methods, such as elaborate ethnographic inquiry, full upfront design, and in-depth user testing to
broaden their perspective and practices. This keynote will challenge conventional thinking about usability evaluation and design and
consider the role of a range of streamlined approaches that might better fit modern design and development processes. These include
model-driven inquiry, small-N and single-subject user testing, design metrics and predictive measures, and usability inspections and peer
reviews.

BIOGRAPHY

Larry Constantine, IDSA, is a Professor in the Department of Mathematics and Engineering and Director of the Laboratory for Usage-
centered Software Engineering at the University of Madeira, Portugal. An ACM Fellow recognized for his contributions to software
design, he is regarded as one of the pioneers of modern software engineering theory and practice. An award-winning designer specializing
in interaction design and techniques for enhancing user performance in safety-critical applications, he is a persistent innovator with a
number of patents in human-machine interaction to his credit. His publications include more than 175 articles and papers and 17 books in
both the human sciences and computer sciences. His papers have been widely reprinted, and his books have been translated into nine
languages. He has taught in 20 countries and his clients have included leading technology companies throughout the world.

1

The Effect of Severity Ratings on Software Developers’
Priority of Usability Inspection Results
 Asbjørn Følstad

SINTEF ICT
Forskningsveien 1

0314, Oslo, Norway
+47 22067515

asf@sintef.no

ABSTRACT
Knowledge of the factors that affect developers’ priority of
usability evaluation results is important in order to improve the
interplay between usability evaluation and software development.
In the presented study, the effect of usability inspection severity
ratings on the developers’ priority of evaluation results was
investigated. The usability inspection results with higher severity
ratings were associated with higher developer priority. This result
contradicts Sawyer et al. [7], but is in line with Law’s [5, 6]
finding related to the impact of user test results. The findings
serve as a reminder for HCI professionals to focus on high
severity issues.

Categories and Subject Descriptors
H5.m.Information interfaces and presentation (e.g., HCI):
Miscellaneous.

Keywords
Usability evaluation, usability inspection, developers’ priority,
impact, severity ratings.

1. INTRODUCTION
One important indicator of successful interplay between usability
evaluation and software development is the extent to which
evaluation results are associated with subsequent changes in the
system under development. This indicator, termed the “impact”
[7] or “persuasive power” [4] of usability evaluation results, may
reflect whether or not a usability evaluation has generated results
that are needed in the development process.
Problem severity is a characteristic of usability evaluation results
that has been suggested to affect the impact of usability
evaluation results. There is, however, divergence in the literature
regarding the actual effect of severity ratings on developers’
prioritizing of usability evaluation results. Sawyer et al.’s [7]
study of the impact of usability inspection results indicated that

usability inspectors’ severity ratings had no effect on the impact
of the evaluation results; reported impact ratios were 72% (low
severity issues), 71% (medium severity issues), 72% (high
severity issues). In contrast to this finding Law [5, 6], in a study
of the impact of user tests, reported a tendency towards higher
severity results having higher impact; reported impact ratios were
26% (minor problems), 42% (moderate problems), 47% (severe
problems). Law’s findings, however, were not statistically
significant [5]. Hertzum [3] suggested that the effect of severity
classifications may change across the development process, e.g.
high severity evaluation results may have relatively higher impact
in later phases of development. Law’s study was conducted
relatively late in the development process, on the running
prototype of a digital library. Sawyer et al. did not report in which
development phases their usability inspections were conducted.
In order to complement the existing research on the effect of
severity ratings on the impact of evaluation results, an empirical
study of the impact of usability inspection results is presented.
The data of the present study was collected as part of a larger
study reported by Følstad [2], but the results discussed below
have not previously been presented.

2. RESEARCH PROBLEM AND
HYPOTHESIS

The research problem of the present study was formulated as:
What is the effect of usability inspectors’ severity ratings on
developers’ priority of usability inspection results?
The null hypothesis of the study (no effect of severity ratings)
followed the findings of Sawyer et al., and the alternative
hypothesis (H1) was formulated in line with the findings
presented by Law:
H1: High severity issues will tend to be prioritized higher by
developers than low severity issues.

3. METHOD
Usability inspections were conducted as group-based expert
walkthroughs [1]. The objects of evaluation were three mobile
work-support systems for medical personnel at hospitals,
politicians and political advisors, and parking wardens
respectively. All systems were in late phases of development,
running prototypes close to market. The usability inspectors were
13 HCI professionals, all with >1 year work experience (Mdn=5

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy

2

years)1. Each inspector participated in one of three evaluation
groups, one group for each object of evaluation. The
walkthroughs were conducted as two-stage processes where (1)
the individual evaluators noted down usability issues (usability
problems and change suggestions) and (2) a common set of
usability issues were agreed on in the group. All usability issues
were to be classified as either Critical (will probably stop typical
users in using the application to solve the task), Serious (will
probably cause serious delay for typical users …), or Cosmetic
(will probably cause minor delay …). The output of the usability
inspections was one report for each object of evaluation, delivered
to each of the three development teams respectively.
Three months after the evaluation reports had been delivered
individual interviews were conducted with development team
representatives. The representatives were requested to prioritize
all usability issues according to the following: High (change has
already been done, or will be done no later than six months after
receiving the evaluation report), Medium (change is relevant but
will not be prioritized the first six months), Low (change will not
be prioritized), Wrong (the item is perceived by the developer to
be a misjudgment). In order to align the resulting developers’
priorities with the impact ratio definitions of Law and Sawyer et
al., the priority High was recoded as ”Change”, and the priorities
Medium, Low and Wrong were recoded as “No change”.

4. RESULTS
The evaluation groups generated totally 167 usability issues. The
three objects of evaluation were associated with 44, 61, and 62
usability issues respectively. The total impact ratio (number of
issues associated with change/total number of issues [following 7
and 6]) was 27%, which is relatively low. The relationship
between the developers’ priorities and the usability inspectors’
severity ratings is presented in Table 1.

Table 1. Usability issues distributed across developers’
priorities and usability inspectors’ severity ratings

 Not
Classified Cosmetic Serious Critical

Change 6 9 18 12

No
change 46 31 26 16

Impact
ratio 12% 23% 41% 43%

Visual inspection of Table 1 shows a tendency towards higher
priority given to usability issues with severity ratings serious and
critical. A Pearson Chi-Square test showed statistically significant
differences in priority between severity rating groups; X2=14.446,
df=3, p(one-sided)=.001.

5. DISCUSSION
The presented results indicate that severity ratings may have
significant impact on developers’ priority of results from usability

1 The study reported by Følstad also included separate evaluation

groups with work-domain experts. The results of these groups
were not included in the current study, in order to make a clear-
cut comparison with the findings of Law and Sawyer et al.

inspections. This finding contributes to our understanding of
severity ratings as a characteristic of usability evaluation results
that may help to identify which usability evaluation results that
are needed in software development.
The finding is particularly interesting since it contradicts the
conclusions of Sawyer et al. and therefore may provoke necessary
rethinking regarding usability inspectors ability to provide
severity assessments that are useful to software engineers.
It is also interesting to note that the results are fully in line with
Law’s findings related to severity ratings of user test results. The
present study may thus serve to strengthen Law’s conclusions.
Curiously, the impact ratios of the different severity levels in
Law’s study and the present study are close to being identical.
Why, then, do the present study indicate that the severity ratings
of usability inspection results may have an effect on the
developers’ priority, when Sawyer et al. did not find a similar
effect? One reason may be the relatively high impact ratios
reported by Sawyer et al., something that may well result in a
greater proportion of low severity issues being prioritized.
Another reason may be that the present study, as the study of
Law, favored high severity evaluation results since the usability
evaluations were conducted relatively late in the development
process [cf. 3]. Sawyer et al. do not state which development
phases their usability inspections were associated with, but their
relatively high impact ratios suggest that their inspections
possibly may have been conducted in earlier project phases.
The present study, as the study of Law, indicates that the
identification of a low severity usability issue typically is of less
value to software developers than the identification of a high
severity issue. This should serve as a reminder for HCI
professionals to spend evaluation resources on identification and
communication of higher severity usability issues.

6. ACKNOWLEDGMENTS
This paper has been written as part of the RECORD project,
supported by the VERDIKT program of the Norwegian Research
Council.

7. REFERENCES
[1] Følstad, A. 2007. Group-based Expert Walkthrough. In: D.

Scapin, and E.L.-C. Law, Eds. R3UEMs: Review, Report and
Refine Usability Evaluation Methods. Proceedings of the 3rd.
COST294-MAUSE International Workshop, 58-60.

[2] Følstad, A. 2007. Work-Domain Experts as Evaluators:
Usability Inspection of Domain-Specific Work-Support
Systems. International Journal of Human-Computer
Interaction 22(3), 217-245.

[3] Hertzum, M. 2007. Problem Prioritization in Usability
Evaluation: From Severity Assessments Toward Impact on
Design. International Journal of Human-Computer
Interaction, 21(2), 125–146.

[4] John, B.E., and Marks, S.J. 1997. Tracking the effectiveness
of usability evaluation methods. Behaviour & Information
Technology, 16, 188–202.

[5] Law, E. L.-C. 2004. A Multi-Perspective Approach to
Tracking the Effectiveness of User Tests: A Case Study. In
Proceedings of the NordiCHI Workshop on Improving the

3

Interplay Between Usability Evaluation and User Interface
Design, K. Hornbæk, and J. Stage, Eds. University of
Aalborg, HCI Lab Report no. 2004/2, 36-40.

[6] Law, E. L.-C. 2006. Evaluating the Downstream Utility of
User Tests and Examining the Developer Effect: A Case

Study. International Journal of Human-Computer Interaction,
21(2), 147-172.

[7] Sawyer, P., Flanders, A., Wixon, D. 1996. Making a
Difference - The Impact of Inspections. In Proceedings of the
CHI’96 Conference on Human Factors in Computing
Systems, 376–382.

4

Usability Promotion in a Technical Project
with Sparse Resources – a Case Study

Kaarina Karppinen Marja Liinasuo
VTT Technical Research Centre of Finland

Kaitoväylä 1, PO Box 1100
FI-90571 Oulu, Finland

+358 40 5487 058

VTT Technical Research Centre of Finland
Vuorimiehentie 3, Espoo, P.O. Box 1000

FI-02044 VTT, Finland
+358 400 912711

kaarina.karppinen@vtt.fi marja.liinasuo@vtt.fi

ABSTRACT
In this paper, we describe how the usability of software
functionalities are promoted and evaluated during the design phase
of a software project developing security-related functionalities in a
middleware. The paper describes our work-in-progress in GEMOM
project, challenges faced in the beginning of the project, and our plan
to overcome those challenges with a clearly defined usability
implementation plan.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Software quality
assurance (SQA).

General Terms
Design, Human Factors

Keywords
software design, usability, scenarios, acceptability

1. INTRODUCTION
The usability of a software product is becoming a widely recognised
quality attribute in software development [1]. However, the
conception of usability realised in projects is often quite narrow and,
pertaining software design, restricted to attributes that are conceived
as becoming topical to produce only in the later phases of software
development. Anyhow, no effective product can be designed without
taking into account also the “soft” human and context-related
complexities, broadly speaking human factors, already in the
beginning of the system development.

Furthermore, in the Human-Computer Interaction (HCI) community,
software usability has primarily been concerned with the
presentation of information, more precisely with user interface [2].
User interface can denote the visible part of the system and, less
frequently, the interaction part of the system, i.e., the coordination of
the information exchange between the end user and the system in

both directions [3]. Either way, the easily neglected fact is that
the usability of the tool is not only about the interface but also
depends on other attributes rooted deeper in the character of the
tool, e.g. the tasks it performs.

Middleware is a specific type of computer software that
connects various software components or applications together.
Typically other applications are conceived as users of a
middleware, and it has no direct human users, except for
systems specialists or the like who usually install and maintain
complex IT systems. Hence, usability in a middleware system
development is harder to promote than of applications which
have a direct interface towards a human user. As a consequence,
the lack of “proper” users and the tradition of software
development methodologies, which may see a user only as a
means to elicit requirements, easily results in software
development without any usability perspective. In the ongoing
GEMOM project these obstacles are planned to be prevailed and
one of the project’s aims is better usability of the end product
without risking the security of it; a task that is proved to be hard
to perform [4].

2. OVERCOMING THE CHALLENGES
FOR USABILITY

GEMOM (Genetic Message Oriented Secure Middleware) is a
recently launched research project, lasting for 2½ years, that is
co-funded by the European Commission and involves ten
industry and research partners across Europe [5]. GEMOM is
developing a prototype of a secure, self-organizing and resilient
messaging platform, which enables reliable message sourcing
and delivery in applications.

In GEMOM, five case studies, where the new PS-MOM
(Publish-Subscribe variant of Message Oriented Middleware)
will be used, are defined. Each case study represents a different
application area with diverse demands on security and usability;
hence, no common definitions can be produced.

2.1 Defining the Challenges

The challenges concerning usability promotion within the
project included several issues: usability was to be promoted in
a deeply technical project and among technically oriented
project members; the task for usability was not clearly defined;
the focus of the work, which is the development of a
middleware, lacked direct end users; and additionally, a very
limited amount of person months were allocated for human
factor studies, thus excluding the possibility of a usability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy

5

specialist to e.g. interview or lead workshops in various countries by
herself.

This working context resulted in two practical questions, involving
also some matters of principle, with no direct answer for the usability
expert participating in a pre-defined project. Firstly, how to motivate
usability studies in a project without direct end users? Secondly, how
to perform usability studies with sparse resources?

2.2 Creating Motivation
The first problem to be solved was the motivation for usability
studies, related with the problem of having no direct end users for a
middleware. Hence, the eventual end users as well as the outline of a
plan for usability promotion had to be defined.

In order to clarify the definition of a user in our project, we started
by creating a more detailed picture about the various users. The
preliminary version of users was based on the usage distance
between the user and the middleware. Three levels of users were
found: (1) users that were provided some IT-related service, being
the furthest away from the middleware; (2) users that provided the
service in question; and finally (3) users that maintained the software
providing the service, including the middleware, and thus being
situated closest to the system.

The predefined project plan stated that user acceptance shall be
obtained with the help of scenarios; the new technical solutions
would be interpreted into scenarios of usage, which would then be
evaluated with the users. This way user acceptance, i.e. the worth of
the technical solutions planned to be realised, as experienced by the
future users, could be found out. With no user interface to evaluate, a
reasonable choice was to concentrate on the functionalities of the
middleware as seen by the human user. This choice was also
meaningful regarding the method chosen, as it is easier to describe
verbally the chain of events than the attributes of a user interface.

2.3 Overcoming the Lack of Resources
The other problem, sparse resources for usability studies, could be
compensated by harnessing technical experts to assist in usability
evaluation. Consequently, usability study had to be planned
extremely carefully as no prior knowledge of usability could be
expected from other project members. In this project, case studies
provide the human users for usability studies. The usability expert
acts as a supervisor who plans and analyses the usability
implementation and its results. For instance, she instructs the case
study leaders to reflect with the user representatives what aspects
regarding usability and security are important from the viewpoint of
the user in their case study.

3. USABILITY IMPLEMENTATION
The theme throughout the usability plan is to realise it mainly by
non-usability experts. Hence, a stepwise approach was chosen. The
main idea is to perform usability studies as early in the project as
possible so that the studies could have an actual effect on the
middleware functionalities perceivable by human users. The process
steps described below are accompanied by practical instructions
produced by the usability expert so that the tasks in question can be
performed.

1. Case study representatives are to define and describe who
the users affected by the functioning of the middleware in
their case study are.

2. Technical experts are to describe the technical solutions
from the perspective of the users, i.e. the effect of the
solution as can be perceived by the human users.

3. Leader of each case study is to produce the scenarios with
the users. For that purpose, a description about the
functionalities from the human point of view is provided.

4. The case study leaders are to send the scenarios to the
usability expert who will check their meaningfulness and
return the checked and possibly corrected scenarios with
focused questions related with each scenario.

5. Users in each case study are to answer the questions, and
the answers will be sent to the usability expert who will
analyse them and produce a report about user acceptance.

So far, after having finished the first step of the process,
challenges have mainly been related with the understanding of
terms that have different meanings in HCI and SE (Software
Engineering) approaches. Hence, special care has been taken
when discussing about users or scenarios in this project. “User”
means human users for HCI but may mean applications for SE.
“Scenario” in turn denotes short stories describing relatively
freely working process from the human user’s viewpoint in HCI
[e.g. 6], compared with the system description that is more
technically oriented in SE [e.g. 7].
This paper describes a work-in-progress, and more will be
learned when the project is progressing.

4. REFERENCES
[1] Abran, A., Khelifi, A., Suryn, W., and Seffah, A. 2003.

Usability meanings and interpretations in ISO standards.
Journal of Software Quality 11, 325-338.. DOI=
http://dx.doi.org/10.1023/A:1025869312943

[2] Rafla, T., Robillard, P.N., and Desmarais, M. 2007. A
method to elicit architecturally sensitive usability
requirements: its integration in to a software development
process. Software Quality Journal, 15(2), 117-133. DOI=
http://dx.doi.org/10.1007/s11219-006-9009-9

[3] Ferré, X., Juristo, N., Windl, H., and Constantine, L. 2001.
Usability basics for software developers. IEEE Software
18(1), 22-29. DOI= http://dx.doi.org/10.1109/52.903160

[4] Cranor, L., and Garfinkel, S. 2005. Security and Usability.
O’Reilly Media, Inc.

[5] GEMOM website (July 10, 2008): http://www.gemom.eu
[6] Go, K., Carroll, J.M., 2004. The Blind Men and the

Elephant. Views of Scenario-Based System Design.
Interactions 11(6), 44-53. DOI=
http://dx.doi.org/10.1145/1029036.1029037

[7] Uchitel, S., Kramer, and J. Magee, J. 2003. Synthesis of
Behavioral Models from Scenarios. IEEE Transactions on
Software Engineering, 29(2), 99-115. DOI=
http://dx.doi.org/10.1109/TSE.2003.1178048

6

http://dx.doi.org/10.1023/A:1025869312943
http://dx.doi.org/10.1109/52.903160
http://www.gemom.eu/
http://dx.doi.org/10.1109/TSE.2003.1178048

Preparing Usability Supporting Architectural Patterns for
Industrial Use

Pia Stoll Bonnie E. John, Len Bass, Elspeth Golden
ABB Corporate Research

Forskargränd 6
SE 72178 Västerås, Sweden

Tel: +46 21 32 30 00

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA, USA 15213
Tel: 1+412 268 2000

pia.stoll@se.abb.com bej@cs.cmu.edu, ljb@sei.cmu.edu,
egolden@cmu.edu

ABSTRACT 1. INTRODUCTION Usability supporting architectural patterns (USAPs) have been
shown to provide developers with useful guidance for producing a
software architecture design that supports usability in a laboratory
setting [7]. In close collaboration between researchers and
software developers in the real world, the concepts were proven
useful [2]. However, this process does not scale to industrial
development efforts. In particular, development teams need to be
able to use USAPs while being distributed world-wide. USAPs
also must support legacy or already partially-designed
architectures, and when using multiple USAPs there could be a
potentially overwhelming amount of information given to the
software architects. In this paper, we describe the restructuring of
USAPs using a pattern language to simplify the development and
use of multiple USAPs. We also describe a delivery mechanism
that is suitable for industrial-scale adoption of USAPs. The
delivery mechanism involves organizing responsibilities into a
hierarchy, utilizing a checklist to ensure responsibilities have
been considered, and grouping responsibilities in a fashion that
both supports use of multiple USAPs simultaneously and also
points out reuse possibilities to the architect.

The Software Engineering community has recognized that
usability affects not only the design of user interfaces but
software system development as a whole. In particular, efforts are
focused on explaining the implications of usability on software
architecture design [3, 4, 5, 6, 10].

One effort in this area is to produce artifacts that communicate
usability requirements in a form that can be effectively used for
software architecture evaluation and design. These usability
supporting architectural patterns (USAPS) have been shown to
improve the ability of software architects to design higher quality
architectures to support usability features such as the ability to
cancel a long-running command [7, 8]. Other uses of USAPs in
industrial settings have been productive [2] but have revealed
some problems that prevent scaling USAPs to widespread
industrial use. These problems include:

2. Prior efforts have involved personal contact with USAP
researchers, either face to face or in telephone conversations.
This process does not scale to widespread industrial use.

3. The original USAPs included UML diagrams modifying the
MVC architectural pattern to better support the usability
concern. Although intended to be illustrative, not
prescriptive, software architects using other overarching
patterns (e.g., legacy systems, SOA) viewed these UML
diagrams as either unrelated to their work or as an unwanted
recommendation to totally redesign their architecture.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques] User interfaces; D.2.11
[Software Architectures]: Patterns; H.5.2 [User Interfaces]
Theory and Methods

General Terms
4. The original use of USAPs was as a collection of individual

patterns. Even using one pattern involved processing a large
amount of detailed information. Applying multiple USAPs
simultaneously is likely to overwhelm software architects
with information.

Design, Human Factors.

Keywords
Software Architecture, Usability, Human-Computer Interaction,
HCI

In this paper, we introduce a pattern language [1] for USAPs that
reduces the information that architects must absorb and produces
information at a level that applies to all architectures. We also
discuss the design of a delivery mechanism suitable for industrial-
scale adoption of USAPs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 2. BACKGROUND

A USAP has six types of information. We illustrate the types with
information from the cancellation USAP [9]

I-USED’08, September 24, 2008, Pisa, Italy
 1. A brief scenario that describes the situation that the USAP is

intended to solve. For example, “The user issues a command

7

mailto:pia.stoll@se.abb.com
mailto:bej@cs.cmu.edu
mailto:ljb@sei.cmu.edu
mailto:egolden@cmu.edu

then changes his or her mind, wanting to stop the operation
and return the software to its pre-operation state.”

2. A description of the conditions under which the USAP is
relevant. For example, “A user is working in a system where
the software has long-running commands, i.e., more than one
second.”

3. A characterization of the user benefits from implementing
the USAP. For example, “Cancel reduces the impact of
routine user errors (slips) by allowing users to revoke
accidental commands and return to their task faster than
waiting for the erroneous command to complete.”

4. A description of the forces that impact the solution. For
example, “No one can predict when the users will want to
cancel commands”

5. An implementation-independent description of the solution,
i.e., responsibilities of the software. For example, one
implication of the force given above is the responsibility that
“The software must always listen for the cancel command.”

6. A sample solution using UML diagrams. These diagrams
were intended to be illustrative, not prescriptive, and are, by
necessity, in terms of an overarching architectural pattern
(e.g., MVC).

It is useful to distinguish USAPs from other patterns for software
design and implementation. USAPs are not user interface patterns,
that is, they do not represent an organization or look-and-feel of a
user interface [e.g., 11]; they are software architecture patterns
that support UI concerns. Nor are USAPs structural software
architecture patterns like MVC; they are patterns of software
responsibilities that can be applied to any structure. As such, they
can be applied to any legacy architecture and can support the
functionality called for in UI patterns.

3. A PATTERN LANGUAGE FOR USAPs
Through collaboration among academic and industrial researchers
and usability engineers, we are constructing three USAPs for
process control and robotics applications. The first author and her
colleagues in the industry research team drafted an “Alarms,
Events and Alerts” USAP while, independently, the last three
authors drafted a “User Profile” USAP and an “Environment
Configuration” USAP. When these three USAPs were considered
together, it was clear that there was an enormous amount of
redundancy in the responsibilities necessary for a good solution.
In addition, in preliminary discussions, industry software
architects reacted negatively to the large amount of information
required to implement any one of the USAPs.
Our early work [4] recognized the possibility of reusing such
software tactics as separating authoring from execution and
recording (logging), but our subsequent work had not
incorporated that notion, treating each USAP as a separate
pattern. A consequence of focusing on industrial use is that reuse
in constructing and using USAPs was no longer an academic
thought experiment, but a necessity if industrial users are to
construct and use USAPs themselves.
We observed that both the industry research team and the
academic research team independently grouped their
responsibilities into very similar categories. This led us to
construct a pattern language [2] that defines relationships between
USAPs with potentially reusable sets of responsibilities that can
lead to potentially reusable code. Our pattern language relating

“Alarms, Events and Alerts”, “User Profile” and “Environment
Configuration” is shown in Figure 1.

Figure 1 USAP Pattern Language for “User Profile”,
“Alarms, Events and Alerts”, and “Environment
Configuration”
The pattern language has two types of USAPs. “End-User
USAPs” follow the structure given in Section 2. Their purpose
from a user’s point of view can be expressed in a small scenario,
they have conditions under which they are relevant, benefits for
the user can be expressed and they require the fulfillment of
software responsibilities in the architecture design. End-User
USAPs are used by the requirements team to determine which are
applicable to the system being developed. In this example, they
are “User Profile”, “Alarms, Events and Alerts”, and
“Environment Configuration”.
The pattern language also contains what we are calling
“Foundational USAPs”. These do not have the same six portions
as the End-User USAPS. For example, there is no scenario, no
description of conditions, and no benefits to the user for the
Foundational USAPs. Rather, they act as a framework to support
the construction of the End-User USAPs that make direct contact
to user scenarios and usability benefits. For example, all of the
End-User USAPs that we present have an authoring portion and
an execution portion, that is, they are specializations of the
Authoring Foundational USAP and the Execution with Authored
Parameters Foundational USAP. These foundational USAPs make
use of other foundational USAPs, Authorization and Logging. We
abstracted the commonalities of the End-User USAPs to derive
the responsibilities of the Foundational USAPs. The
responsibilities in the Foundational USAPs are parameterized,
where the parameters reflect those aspects of the End-User
USAPs that differ.
An example of the parameterization is that the Authoring
Foundational USAP and the Execution with Authored Parameters
Foundational USAP each have a parameter called
SPECIFICATION. The value of SPECIFICATION is “Conditions
for Alarm, Event and Alerts”, “User profile”, and “Configuration
description” for the three End-User USAPs, respectively.
In addition to parameterization, End-User USAPs explicitly list
assumptions about decisions the development team must make
prior to implementing the responsibilities. For example, in the
“Alarms, Events and Alerts” End-User USAP, the development
team must define the syntax and semantics for the conditions that
will trigger alarms, events or alerts. End-User USAPs may also

8

have additional responsibilities beyond those of the Foundational
USAPs they use. For example, the “Alarms, Events and Alerts”
End-User USAP has an additional responsibility that the system
must have the ability to translate the names/ids of externally
generated signals (e.g., from a sensor) into the defined concepts.
Both the assumptions and additional responsibilities will differ for
the different End-User USAPs.
There are three types of relationships among the Foundational
USAPs and these are shown in Figure 1 as different color arrows.
The Generalization relationship (turquoise) says that the
Foundational USAP is a generalization of part of the End-User
USAP. The End-User USAP passes parameters to that
Foundational USAP and, if there are any conditionals in the
responsibilities of the Foundational USAP, the End-User USAP
may define the values of those conditionals. The Uses relationship
(black) also passes parameters, but the USAPs are at the same
level of abstraction (the foundational level). The Depends-On
relationship (red) implies a temporal relationship. For example,
the system cannot execute with authored parameters unless those
parameters have first been authored. The double headed arrow
between authoring and logging reflects the possibility that the
items being logged may be authored and the possibility that the
identity of the author of some items may be logged.
Foundational USAPs each have a manageable set of
responsibilities (Authorization has 11; Authoring, 12; Execution
with authored parameters, 9; and Logging 5), as opposed to the 21
responsibilities of the Cancel USAP that seemed to be too much
for our experiment participants to absorb in one sitting [7]. These
responsibilities are further divided into groups for ease of
understanding, e.g., Authoring is separated into Create, Save,
Modify, Delete and Exit the authoring system. This division into
manageable Foundational USAPs simplifies the creation of future
USAPs that use them. For example, the User Profile End-User
USAP requires only the definition of parameters and the values
for one conditional, and pointers to the Authoring and Execution
Foundational USAPs.

4. DELIVERING A SINGLE USAP TO
SOFTWARE ARCHITECTS

The roadblocks to widespread use of USAPs in industry identified
in the introduction were (1) the need for contact with USAP
researchers in the development process, (2) reactions to examples
using a particular overarching architectural pattern (MVC) and (3)
an overwhelming amount of information delivered to the software
architect. Data from our laboratory study and the pattern language
outlined above put us in a position to solve these problems.
Our laboratory study [7] showed that a paper-based USAP could
be used by software engineers2 without researcher intervention, to
significantly improve their design of an architecture to support the
users’ need to cancel long-running commands. Although
significantly better than without a USAP, these software
engineers seemed to disregard many of the responsibilities listed
in the USAP in their designs. To enhance attention to all
responsibilities, we have chosen to design a web-based system
that presents responsibilities in an interactive checklist (Figure 2).

2 The participants in our lab study had a Masters in SE or IT, were

trained in software architecture design, and had an average of
over 21 months in industry.

The design includes a set of radio buttons for each responsibility
that are initially set to “Not yet considered.” The architect reads
each responsibility and determines whether it is not applicable to
the system being designed, already accounted for in the
architecture, or that the architecture must be modified to fulfill the
responsibility. If “Not applicable”, “Must modify architecture to
address this” or “Architecture addresses this” is selected, then the
responsibility’s checkbox is automatically checked. If “Not
considered”, “Must modify architecture or “Discuss status of
responsibility”, is selected, the responsibility will be recorded in
To-Do list generated from the website (Figure 3). We expect this
lightweight reminder to consider each and every responsibility
will not be too much of a burden for the architect, but will
increase the coverage of responsibilities, which is correlated with
the quality of the architecture solution [8].
As Figure 2 show, the responsibilities are arranged in a hierarchy,
which reflects both the relationship of End-User and Foundational
USAPs and the internal structure within a Foundational USAP.
This hierarchy divides the responsibilities into manageable sub-
parts. The checkboxes enforce this structure by automatically
checking off a higher-level box when all its children have been
checked off, and conversely, not allowing a higher-level box to be
checked when one or more of its children are not. Thus, this
mechanism simultaneously addresses the problems of providing
guidance without intervention by USAP researchers and
simplifying the information provided to the software architect.
Another mechanism for simplifying the information delivered to
an architect is that each responsibility has additional details
available only by request of the architect. These details include
more explanation, rationale about the need for the responsibility
and the forces that generated it, and some implementation details.
This information is easily available, but not “in the face” of the
software architect. As well as simplifying the presentation, this
mechanism de-emphasizes the role of illustrative examples
situated in reference architecture like MVC. We expect that this
presentation decision will reduce the negative reactions to generic
example UML diagrams. When using the tool in-house in
industry, the reference architecture used in example solutions
could be changed to an architecture used by that industry. This
would both accelerate understanding of the examples and increase
the possibility of re-using the sample solution. This presumes that
the tool is constantly managed and updated by in-house usability
experts and software architects, a presumption facilitated by
delivering the examples in separate web pages.
Although the hierarchy of responsibilities reflects the relationship
of the End-User USAPs and the Foundational USAPs, the
difference between the types of USAPs is not evident in the
presentation of responsibilities. It was a deliberate design choice
to express each responsibility in terms of the End-User USAP’s
vocabulary. Thus, the responsibilities in Figure 2 are couched in
terms of “User Profile”, “Configuration Description”, “Conditions
for Alarms, Events, and Alerts” and this string replaces the
parameter SPECIFICATION in the Foundational Authoring
USAP.

9

Figure 2: Prototype of a web-based interface for delivering USAP responsibilities to industry software architects.

Figure 3: Prototype “to do” list produced from those responsibilities that are marked as requiring architectural modification.

10

In the next section, we discuss how we anticipate managing the
situation when the architect chooses multiple USAPs as being
relevant to the system under construction. This will allow
distribute architecture teams both to record rationale for their
choice and to discuss potential solutions. Attaching design
rationale and discussion is optional so our delivery tool will
support discussion, but not require it, keeping the tool
lightweight.
At any point in the process of considering the different
responsibilities, the architect can generate a “to do” list. This is
a list of all of the responsibilities that have been checked as “Not
yet considered” or “Must modify architecture”. See Figure 3 for
an example. The list can then be entered into the architect’s
normal task list and will be considered as other tasks are
considered.
Supporting world wide distribution of the architecture team in
the use of USAPs has two facets.

• Enable world wide access

• Reduce the problems associated with simultaneous updates
by different members of the team.

The use of the World Wide Web for delivery allows world wide
access with appropriate access control. Standard browsers
support the concept of check lists and producing the “to do”
lists.
Allowing simultaneous updates is not supported by standard
browsers. Some Wikis do support simultaneous updates, e.g.
MediaWiki [www.mediawiki.org], but we do not yet know
whether these wikis directly support checklists and the
generation of “to do” lists. We are currently investigating which
tool or combination of tools will be adequate for our needs and
what modifications might have to be made to those tools.

5. DELIVERING MULTIPLE USAPS TO
SOFTWARE ARCHITECTS

Our motivation for developing the USAP Pattern Language was
partially to simplify the delivery of USAPs when multiple
USAPs are relevant to a particular system. We also want to
indicate to the architect the possibilities for reuse. In this
section, we describe how we anticipate accomplishing these two
goals.
Recall that the Foundational USAPs are parameterized and each
End User USAP provides a string that is used to replace the
parameter. For instance, consider a responsibility from the
Authoring Foundational USAP “The system must provide a way
for an authorized user to create a SPECIFICATION”. When
three End User USAPs are relevant to the system under design,
such as “User Profile”, “Environment Configuration”, and
“Alarms, Events and Alerts”, the three responsibilities are
displayed to the architect as “The system must provide a way for
an authorized user to create a [User Profile, Configuration
description, Conditions for Alarm, Event and Alerts].
This presentation satisfies two goals and introduces one
problem. Presenting three responsibilities as one reduces the
amount of information displayed to the architect since every
Foundational USAP responsibility is displayed only once, albeit
with multiple pieces of information. This presentation also
indicates to the architect the similarity of these three

responsibilities and hence the reuse possibilities of fulfilling
them through a single piece of parameterized code.
The problem introduced by this form of the presentation is that
now the radio buttons becomes ambiguous. Does the entry
“Architecture addresses this” mean that all of the three
responsibilities have been addressed or only some of them? We
resolve this ambiguity by repeating the radio buttons three
times, once for each occurrence of the responsibility. Thus, the
three responsibilities will be combined into one textual
description of the responsibility but three occurrences of the
radio buttons.

6. CURRENT STATUS AND FUTURE
WORK

At this writing, we have developed the pattern language for
three End User USAPs and four Foundational USAPs (Figure 1)
and have fleshed out all the responsibilities for these seven
USAPs. We have constructed a prototype delivery tools for a
browser based checklist and “to do” list generator.
We plan to test the delivery mechanism in an ongoing industrial
development effort. This will demonstrate strengths and
weaknesses of our approach and we will iterate to resolve any
problems or capitalize on any opportunities. One suggestion put
forth in early industry feedback is to enhance the to-do list by
assigning expected effort to each responsibility. One
requirements engineer at ABB said that her perception of the
effort needed to implement a scenario had been thoroughly
revised just be looking at the to-do list. By adding estimated
hours to the responsibilities, industry would get a better estimate
of the usability improvements’ translation into software
implementation cost. These estimates would vary depending on
many factors such as underlying architectural style,
implementation language, skill of programmers, etc. but a large
organization may have enough data from previous projects to
make such estimates for their organization. In addition, such a
feature could emphasize the savings realized by reuse;
responsibility-implementations that serve multiple End-User
USAPs would show up as requiring very little effort after the
first implementation.
The delivery platform that we have described here, to be used by
software architects, is envisioned to be the final portion of a tool
chain. There are two additional roles involved in the
development and use of USAPs. First, USAP developers will
have to create USAPs within the stylized context of the USAP
Pattern Language. Tool support for USAP developers will
greatly simplify the creation of USAPs.
The second role is the requirements definers; often a team
comprised of technologists and human factors engineers,
usability engineers, designers, or other users or user advocates.
Figure 4 shows how we envision a tool supporting this role.

11

http://www.mediawiki.org/

[2] Adams, R. J., Bass, L., & John, B. E. (2005) Applying
general usability scenarios to the design of the software
architecture of a collaborative workspace. In A. Seffah, J.
Gulliksen and M. Desmarais (Eds.) Human-Centered
Software Engineering: Frameworks for HCI/HCD and
Software Engineering Integration. Kluwer Academic
Publishers.

[3] Bass, L., John, B., & J. Kates, (2001), “Achieving Usability
through Software Architecture,” Technical Report
CMU/SEI-2001-TR-005, Software Eng. Inst., Carnegie
Mellon Univ., 2001.

Figure 4: Tool to support the requirements elicitation
process

[4] Bass, L., & John, B. (2003) “Linking Usability to Software
Architecture Patterns through General Scenarios,” The J.
Systems and Software, vol. 66, no. 3, pp. 187-197, 2003. The requirements team has available to them a repository of

USAPs. They select the ones that are appropriate for the system
being constructed. In our experience, the USAP end-user
scenarios are very general and can be used to invoke ideas about
how they apply to the system at hand. However, industrial teams
would like to tailor these scenarios to match their everyday
usability issues. Thus, the tool supporting requirements definers
will allow them to re-write the general scenarios to suit their
specific application.

[5] Folmer, E. (2005) Software Architecture Analysis of
Usability, Ph.D. thesis. Department of Computer Science,
University of Groningen, Groningen.

[6] Folmer, E., van Gurp, J., Bosch, J. (2003) A Framework for
capturing the relationship between usability and software
architecture; Software Process: Improvement and Practice,
Volume 8, Issue 2. Pages 67-87. April/June 2003.

[7] Golden, E, John, B. E., & Bass, L. (2005) The value of a
usability-supporting architectural pattern in software
architecture design: A controlled experiment. Proceedings
of the 27th International Conference on Software
Engineering, ICSE 2005 (St. Louis, Missouri, May, 2005).

The tool then creates input for the delivery tool while
simultaneously combining redundant responsibilities. The
output of the requirements definition process will then be
presented to software architects, as described in this paper, to
aid in their architecture design process.

[8] Golden, E., John, B. E., Bass, L. (2005) Quality vs.
quantity: Comparing evaluation methods in a usability-
focused software architecture modification task.
Proceedings of the 4th International Symposium on
Empirical Software Engineering (Noosa Heads, Australia,
November 17-18 2005).

In summary, USAPs have been proven to be useful to software
architects but have also demonstrated some problems that hinder
industrial use. Definition of a USAP Pattern Language and an
appropriate selection of tools supporting the roles involved in
the creation and use of USAPs should simplify industrial use.
We are currently constructing versions of these tools and testing
the extent to which they do, in fact, enable the industrial use of
USAPs.

[9] John, B. E., Bass, L. J., Sanchez-Segura, M-I. & Adams, R.
J. (2004) Bringing usability concerns to the design of
software architecture. Proceedings of The 9th IFIP Working
Conference on Engineering for Human-Computer
Interaction and the 11th International Workshop on Design,
Specification and Verification of Interactive Systems,
(Hamburg, Germany, July 11-13, 2004).

7. ACKNOWLEDGMENTS
We would like to thank Fredrik Alfredsson and Sara Lövemark
for their contributions to the “Alarms, Events and Alerts”
USAP. This work was supported in part by funds from ABB Inc.
The views and conclusions in this paper are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of ABB.

[10] Juristo, N., Moreno, A. M., Sanchez-Segura, M. (2007),
“Guidelines for Eliciting Usability Functionalities”, IEEE
Transactions on Software Engineering, Vol. 33, No. 11,
November 2007, pp. 744-758.

8. REFERENCES [11] Tidwell, J. (2006), Designing Interfaces: Patterns for
Effective Interaction Design. O’Reilly Media: Sebastopol,
CA.

[1] Alexander, C. (1977). A Pattern Language: Towns,
Buildings, Construction. USA: Oxford University Press.
ISBN 978-0195019193.

12

Enriching Requirements Analysis with the Personas
Technique

John W. Castro Silvia T. Acuña Natalia Juristo
Departamento de Ingeniería

Informática
Universidad Autónoma de Madrid

Calle Tomás y Valiente 11
28049 Madrid, Spain

Departamento de Ingeniería
Informática

Universidad Autónoma de Madrid
Calle Tomás y Valiente 11

28049 Madrid, Spain

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo s/n
28660, Boadilla del Monte

Madrid, Spain

john.castro@estudiante.uam.es silvia.acunna@uam.es natalia@fi.upm.es

ABSTRACT Two separate processes for building usable systems —one from
SE to develop the system and another from HCI to improve
usability— are not easily manageable. Software development and
usability design cannot be controlled and synchronized separately.
Additionally, the likely overlap of activities across the two
processes would reduce efficiency and increase costs. Milewski
[15] claims that there are still problems with SE-HCI interactions
that require more research. One of the major remaining obstacles
to cooperation between HCI and SE is that there is little
knowledge and communication about the practices and techniques
of HCI in SE and vice versa.

A thorough understanding of the users that interact with the
system is necessary to develop usable systems. The Personas
technique developed by the human-computer interaction (HCI)
discipline gathers data about users, gains an understanding of
their characteristics, defines fictitious personas based on this
understanding and focuses on these personas throughout the
software development process. The aim of our research is to build
Personas into systems development following software
engineering (SE) guidelines. The benefits to be gained are an
understanding of the user which is not traditionally taken into
account in SE. To do this, we had to undertake two types of tasks.
First, we modified the Personas technique to conform to the levels
of systematization common in SE. We have called the modified
technique PersonaSE. Second, we incorporated the proposed
technique into the software requirements analysis process.

In this research, we propose modifying the HCI technique to
assure that it is completely incorporated and assimilated in the SE
development process. This step will benefit both disciplines, as it
will promote an understanding between the SE and HCI activities
and techniques. We have chosen the Personas technique [8] used
in the HCI user analysis activity. This technique is useful for
gathering, analysing and synthesizing the information related to
the users interacting with the software system. Personas helps to
focus software analysis and design on the features and goals of
the product’s end user [7]. Personas are detailed descriptions of
fictitious users, stressing their characteristics and goals based on
surveys of real end users. The quantitative and qualitative data
that are gathered, analysed and synthesized about the users are
used as background for designing the personas [10].

Keywords
Personas technique, usability, human-computer interaction,
requirements analysis, software process.

1. INTRODUCTION
In recent decades, the HCI community has developed a variety of
techniques for improving software systems usability, but these
techniques are not very widespread in SE [17]. On the other hand,
software developers only receive basic usability training [12] and
do not usually have the knowledge they need to build usable
software.

We have selected the Personas technique, as, even though it has
not been around for long (the first HCI literature citation dates
from 1999 [5]), it is a technique used routinely. Additionally,
encouraging results have been reported on the use of the Personas
technique in quite a few developments [2][11][4][7]. Its use is
especially widespread in Web development, although it can be
used to design any type of interactive software [5]. One indication
of the current impact of personas is that the Microsoft MSN
Personas gateway (

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

http://advertising.msn.com/home/
MSNPersonas.asp) uses this technique in its marketing strategy to
attract advertisers, showing concern about who its users are.

However, the Personas technique does not include a detailed
definition of the basic process elements—activity and product—,
which would enable its introduction into the SE development
process to enrich the requirements analysis activity.

I-USED’08, September 24, 2008, Pisa, Italy

13

http://advertising.msn.com/home/%20MSNPersonas.asp
http://advertising.msn.com/home/%20MSNPersonas.asp

The goal of our work is to analyse the Personas technique and
make the modifications required to conform to the levels of
systematization and method characteristic of SE. We have called
this modification of the Personas technique PersonaSE. These
modifications adapt Personas for incorporation and use in the SE
development process analysis activity. Finally, we enrich the
software process analysis activity by establishing the relationships
between the proposed PersonaSE technique activities and the
traditional SE requirements analysis activities to enable the
software engineer to put Personas into routine use.

This paper has been structured as follows. Section 2 describes the
Personas technique. Section 3 presents the analysis of the
weaknesses of the latest version of Cooper and colleagues’
Personas [8], as well as suggested modifications. Section 4
presents the proposed PersonaSE technique. In section 5, we
detail the enrichment of the SE requirements analysis process,
discussing the relationships between the PersonaSE and routine
SE requirements analysis activities. Finally, section 6 discusses
the conclusions.

2. PERSONAS TECHNIQUE
The Personas technique provides an understanding of the system
user in terms of his or her characteristics, needs and goals to be
able to design and implement a usable system. This method is
attributed to A. Cooper [6], who later upgraded the method in [7]
and [8]. Several methods for successfully creating personas have
been proposed on this basis [10][11][18]. To assure that the
design focus is on user considerations, this method does not take
into account real users participating in the design process; it
creates fictitious users, called personas. These personas specify
the target user. The development efforts are focused on these
personas. Personas main potential benefit is that it serves the
explicit development objective [2].
The Personas technique is based on a survey of users that can be
used to tightly couple the key characteristics and goals of the
personas to the user data [10][11][7]. When he was working for
Cooper Interactive, Goodwin [10] suggested that personas should
mainly be based on qualitative data, gathered through interviews
and observations. Cooper and Reimann [7] share Goodwin’s view
and detail the social research methods they recommend. These
methods focus on user goals and take into account user domains.
The data gathered from the observations and interviews are
mapped to behavioural variables. The mapping does not need to
be overly precise. The important thing is for the mapping of
different interview subjects to be correct. A number of interview
subjects grouped within a set of behavioural variables forms a
behavioural model. A behavioural model is the basis of a persona.
If detailed data are added to the behavioural model, it becomes a
persona. Once personas have been created, they need to be
documented and shared with team members. The communication
of personas has been recognized as a key factor for software
project success [16][1]. In a failed application of the Personas
technique, reported by Blomquist and Arvola [3], lack of
communication was identified as the main ground for the failure.
To prevent this failure, Cooper and Reimann [7] mention two
basic deliverables for each created persona: a list of its key
characteristics and a third-person narrative of the persona. Cooper
and Reimann stress the importance of the persona having a name

and a photograph to make it more life like. The narrative should
be one to two pages long and should not cover all the observed
details, as ideally the team members will have participated in the
interview phase, and people outside the team do not need to know
the interview details [7]. When the personas have been
documented and the materials are finished, a meeting should be
arranged with the team of developers to present the personas [16].

3. PERSONAS TECHNIQUE
MODIFICATIONS

To be able to build personas into routine software development,
the technique needs to conform to the guidelines on
systematization and definition of certain elements of the SE
software process. More to the point, the technique needs to be
defined by its activities and the outputs associated with each
activity to be fit into SE. To add these elements to Personas, first
we analysed the criticisms of the latest version of Cooper and
colleagues’ technique [8], proposing improvements that have an
impact on such weaknesses. Second, we systematized the
decomposition of Personas into activities and defined an output
for each activity.

To make all these modifications we selected the latest version of
the Personas technique [8], because i) Cooper authored the
original proposal, ii) versions by other authors were based on this
proposal, and iii) it has been successfully used in different
software development projects (see [11][4][18][9]).

Table 1 is an assessment of Cooper and colleagues’ Personas [8]
with respect to two criteria, Procedure Definition and Product
Formalization and their associated attributes. The attributes of the
Procedure Definition criterion are: a) What does the procedure
do? and b) How does the procedure work? Criterion a) evaluates
how well the technique defines what a step should do (the
possible values are Implicit, Semi-Explicit and Explicit). Criterion
b) evaluates how well the technique defines what techniques and
procedures should be used to perform a step (the possible values
are Undefined, Semi-Defined and Defined). The Product
Formalization criterion also has two attributes: a) Product
Content (the possible values are Undefined, Semi-Defined and
Defined); and b) Product Structure (the possible values are
Informal, Semi-Formal and Formal).
Table 1 is a summary of the values of the characteristics assigned
to each step of the Personas technique [8] for each analysed
criterion. As Table 1 shows, What does the procedure do? is the
only attribute that takes the explicit value for almost all the steps
of the Personas procedure, i.e. the procedure is declarative and
indicates what to do in most steps. Looking at the How does the
procedure work? attribute, we find that over 70% of the steps of
the Personas technique take the value of either undefined or semi-
defined. Therefore, this procedural attribute is not completely
defined in most of the Personas steps. The Product Content
attribute takes the value of undefined and semi-defined in over
70% of the Personas technique steps, reflecting, like the last
attribute, weaknesses in this respect. Product Structure is the
worst rated attribute, as almost 60% of the Personas technique
steps are given the poorest rating, informal, for this attribute, and
none of the steps have a formally defined product structure. This
is evidence that the Product Formalization criterion needs more
modification. Also, changes need to be made to how each

14

Personas step is carried out in order to reach the levels of
systematization demanded by SE.

Table 1. Summary of the Assessment of the Personas
Technique

 CRITERION PROCEDURE DEFINITION PRODUCT FORMALIZATION

STEPS OF THE CHARACTERISTIC

PERSONAS TECHNIQUE [8]
What? How? Product

Content
Product

Structure

Step 1: Identify Behavioural
Variables Semi-explicit Semi-defined Semi-defined Semi-formal

Step 2: Map interview subjects to
behavioural variables Explicit Undefined Semi-defined Informal

Step 3: Identify significant behaviour
patterns Semi-explicit Semi-defined Undefined Informal

Step 4: Synthesize characteristics and
relevant goals Explicit Semi-defined Semi-defined Informal

Step 5: Check for redundancy and
completeness Explicit Semi-defined N/A N/A

Step 6: Expand the description of
attributes and behaviours Explicit Defined Defined Semi-formal

Paso 7: Designate persona types Explicit Defined Semi-defined Informal

For example, Cooper and colleagues [8] assume in Step 1 -
Identify Behavioural Variables- that the users have already been
interviewed and the gathered data have been organized. This is an
implicit step, which should be listed as the first explicit step of the
technique. To improve this aspect, we propose adding an initial
activity in the personas construction process, called State
Hypotheses. This new activity aims to state initial personas
hypotheses and gather the data required from potential future
users and then identify the behavioural variables in a later activity
using the creativity-building techniques proposed in this paper
(see Table 2). Additionally, we define two new documents that
consist, respectively, of a justified List of Personas Hypotheses
for activity 1 and a List of Behavioural Variables for activity 2
(see Table 2). In Step 5 - Check for Completeness and
Redundancy-, Cooper and colleagues [8] do not specify any
product associated with this step, and it is rated as N/A (see Table
1), that is, not applicable. In our version of the personas technique
we suggest that participatory meetings be held to evaluate the
models obtained and that they be recorded in a Validation
Document (see Table 2).
The other steps of Cooper and colleagues’ Personas technique [8]
have been analysed similarly. This analysis is available at
http://arantxa.ii.uam.es/~sacuna/PersonaSE/modificacion and is,
for reasons of space, not detailed in this paper.
The aim behind the Personas technique is to adapt the system to
the future system users. However, none of the steps in this
technique includes usability mechanisms (e.g. provides undos,
alerts, wizards, feedbacks, etc.) connected to the defined personas.
In our paper, we have identified the usability mechanisms (undo,
cancel, etc.), imported from [14], that the different types of
personas will need according to their characteristics and what they
expect of the software system. Following on from this line, the
aim of which is to consider usability in the early stages of the
software development process, we have set out to incorporate
additional activities into the Personas technique that are helpful
for this purpose. These new activities are: a) Relate behaviour
patterns to usability mechanisms; b) Build use cases; and c) Build
mock-ups. Both use cases and mock-ups should include the
usability mechanisms selected for each created persona.
For each of the identified limitations, we have proposed a
modification that can be easily incorporated into the Personas
technique. These modifications implement a new version based

on Cooper and colleagues’ Personas technique [8] that covers the
weaknesses specified in Table 1. This new proposal, called
PersonaSE, is described in the next section.

4. PERSONASE TECHNIQUE
The PersonaSE technique that we propose consists of a set of
interrelated activities that lead to the creation of personas and ease
the incorporation of the usability mechanisms from the SE
requirements analysis activities, thereby helping to improve the
usability of the software system that is to be developed.
Table 2 presents all the activities making up the PersonaSE
technique. For each activity we outline objectives, techniques and
associated products. The new activities proposed are shown on a
grey background.
In activity 1 -State hypotheses- we formulate the list of initial
hypotheses for the personas that are to be created, and develop
and interview the future system users. This produces the
transcribed interviews, from which the information required to
carry out the other activities is gathered. In activity 2 -Identify
Behavioural Variables-, the full List of Behavioural Variables is
identified from the Interview Synthesis.
Activity 3 -Map Interview Subjects to Behavioural Variables
outputs the Ranges of Behavioural Variables and Mapping of
Interview Subjects. These products are the input for activity 4 -
Identify Significant Behaviour Patterns, where the Significant
Behaviour Patterns are identified and the Group Percentage Table
is generated. This is the source of the personas. The Personas
Foundation Document is put together during activity 5 -
Synthesize Characteristics and Relevant Goals-. This document
contains the full definition of a persona. Activity 6 -Check for
Redundancy and Completeness- is carried out to locate
information gaps that need to be filled. Additional interviews may
be required for this purpose. They may discover behaviours
outside the behavioural spectrum, which would have an impact on
other activities. The Validation Document is the input for activity
7 - Expand the Description of Attributes and Behaviours-. This
activity outputs a narrative for each of the created personas, that
is, a one-page document describing the persona and a typical day
in the life of that persona.
In activity 8 -Relate Behaviour Patterns to Usability Mechanisms-
the behavioural patterns or created personas are related to
different usability mechanisms, and these relationships are
justified in a Pattern-Usability Mechanism Relationship
Document. All the information gathered from the above activities
is used in activity 9 -Designate Persona Types- in order to
associate the persona type with each persona. In activity 10 -Build
Use Cases- use cases are built taking into account the
relationships between the patterns and usability mechanisms.
Finally, in activity 11 -Build Mock-Ups-, mock-ups (also
containing the usability mechanisms for each persona) are built,
and the Mock-Up Evaluation Document is generated.
The PersonaSE technique has been used to design a Web-based
Flight Booking System. This application, available at
http://arantxa.ii.uam.es/~sacuna/PersonaSE/aplicacion, gives a
better understanding of how the PersonaSE technique works. This
system searches flights based on the selection, by defined
personas, of dates, destination and origin, as well as the number
of adult passengers.

15

http://arantxa.ii.uam.es/%7Esacuna/Personas*/aplicacion

Table 2. Description of the PersonaSE Technique Activities

ACTIVITIES OBJECTIVES TECHNIQUES PRODUCTS

Activity 1.1: Identify
possible personas

State preliminary hypotheses about the
possible personas to be created.

Based on the information gathered from the customer, the
nature of the application domain and the organizational
documentation gathered at the previous meeting with the
customer, developers state hypotheses for personas. The
technique we recommend for this purpose is brainstorming,
followed by a voting round at the end of the session to
determine the most creative and feasible hypotheses.

• List of
Hypotheses
for Personas

ACTIVITY 1: STATE
HYPOTHESES

Activity 1.2: Hold
ethnographic
interviews

Based on these hypotheses, investigate
possible system users to find out their
motivations and behaviours, gathering
behavioural data.

The interviews for each hypothesis are conducted based on
business domain knowledge and through the proposed
ethnographic interviews template.

• Transcribed
Interviews

Activity 2.1:
Synthesize the
Interview Responses

Synthesize the responses to all the
interviews.

Analyse the results of the survey conducted in activity 1. To do
this, process all the responses to the transcribed interview
questions using Atlas.ti software (http://www.atlasti.com/) to
output the behavioural variables.

• Interview
Synthesis

 ACTIVITY 2:
IDENTIFY
BEHAVIOURAL
VARIABLES Activity 2.2: List

Behavioural
Variables

List all behavioural variables. Check
identified hypotheses for validity.

Behavioural variables are selected by participative meetings.
Then, compare these variables with the personas hypotheses to
validate these hypotheses.

• List of
Behavioural
Variables

Activity 3.1: Identify
the Ranges of
Behavioural
Variables

For each behavioural variable identify
its range of possible values.

At a participatory meeting, analyse the interview synthesis to
identify the ranges of each behavioural variable.

• Ranges of
Behavioural
Variables

ACTIVITY 3: MAP
INTERVIEW
SUBJECTS TO
BEHAVIOURAL
VARIABLES Activity 3.2: Map

Interview Subjects

Represent exactly how the multiple
subjects are grouped with respect to
each of the significant behavioural
variables.

Interview subjects are mapped according to the perception of
the subjects’ observations and the interview responses. To do
this, place each of the respondents in different ranges for each
of the identified behavioural variables.

• Mapping of
Interview
Subjects

ACTIVITY 4:
IDENTIFY
SIGNIFICANT
BEHAVIOUR
PATTERNS

Identify particular groups of interview
subjects occurring in more than one
range or variable.

Examine the mappings of interview subjects from activity 3
and build a table showing the percentage of interview subjects
that share each of the behavioural variable range values. The
groups with the highest percentages are the significant
behaviour patterns. These are the source of the personas, which
are given a name and a photograph.

• Significant
Behaviour
Patterns

• Group
Percentage
Table

ACTIVITY 5:
SYNTHESIZE
CHARACTERISTICS
AND RELEVANT
GOALS

Synthesize characteristics and relevant
goals. Describe the personas’
personalities.

Synthesize the data for each person identified in activity 4,
briefly specifying points about the behavioural characteristics
identified in the synthesis of the interviews (activity 2).

• Personas
Foundation
Document

ACTIVITY 6: CHECK
FOR REDUNDANCY
AND
COMPLETENESS

Check persona mappings,
characteristics and goals.

Check that the important identified aspects are fully defined in
the personas created and models built through participatory
inspection meetings.

• Validation
Document

ACTIVITY 7:
EXPAND THE
DESCRIPTION OF
ATTRIBUTES AND
BEHAVIOURS

Convey the attitudes, personality,
needs and problems of the personas to
other team members.

Analyse the data collected and the personas foundation
document (activity 5) and synthesize the personal profile and a
typical day in the life of each persona. For each created
persona, write a third-person narrative.

• Narrative

ACTIVITY 8: RELATE
BEHAVIOUR
PATTERNS TO
USABILITY
MECHANISMS

Relate each behaviour pattern to
usability mechanisms.

Based on information about the values of the behavioural
variables for each identified persona and the interview
responses, analyse the relationships between the behaviour
patterns and usability mechanisms imported from [14].

• Pattern –
Usability
Mechanism
Relationship
Document

Activity 9.1: Select
Representative
Personas to Elicit
Requirements

Prioritize the created personas to
determine which should be the primary
design objective, that is, find just one
primary persona whose needs and
objectives can be completely and
positively satisfied by a single
interface.

Based on the description of each of the personas types and all
the analyses conducted throughout the personas creation
process, determine the person types (primary, secondary). Each
of the created personas is associated with a personas type.

• Persona
Type
Association

ACTIVITY 9:
DESIGNATE
PERSONA TYPES

Activity 9.2: Enrich
the System with
Secondary Personas

Determine what secondary persona
needs are likely to enrich the system.

Analyse the secondary persona foundation document and
narrative and search for functionalities not stated by the
primary persona that are useful for the system.

(Software
Requirements
Specification is
enriched)

ACTIVITY 10: BUILD
USE CASES

Materialize the usability mechanisms
listed in activity 8 in the use cases.

First build the usual set of use cases, not including the usability
mechanisms, and then add these mechanisms taking into
account the relationship between the behaviour patterns and the
above mechanisms, and the information specified in the
Personas Foundation Document.

• Use Cases
(with
usability
mechanisms)

Activity 11.1:
Implement Mock-ups

Build mock-ups that include the
usability mechanisms.

Based on the use cases developed in the last activity and the
analysis of the relationship between the created personas and
usability mechanisms, build mock-ups.

• Mock-ups

ACTIVITY 11: BUILD
MOCK-UPS

Activity 11.2:
Evaluate Mock-ups

Validate mock-ups. At participatory meetings, validate mock-ups. • Mock-up
Evaluation
Document

16

http://www.atlasti.com/

5. INTEGRATION OF THE PERSONASE
TECHNIQUE INTO THE SOFTWARE
REQUIREMENTS ANALYSIS PROCESS

As PersonaSE helps to synthesize all the data available about the
prospective system users and also to determine what it is that the
product should do to satisfy the personas’ needs and profile, the
best place in the development place to incorporate this new
technique is the software requirements analysis process. To be
able to integrate PersonaSE into the software requirements
analysis process activities, each PersonaSE technique activity has
to be assigned to the activities making up the requirements
analysis process. This way, the requirements analysis activities
will be modified because, apart from the routine tasks,
requirements analysts will also have to perform new tasks taken
from the PersonaSE technique. To define the SE requirements
analysis process activities, we considered SWEBOK (SoftWare
Engineering BOdy of Knowledge) [13]: Requirements Elicitation,
Requirements Analysis, Requirements Specification and
Requirements Validation. The right-hand side of Figure 1 shows
these four activities according to [13]. Each of these SE activity
types is linked to one or more PersonaSE technique activities
(left-hand side of Figure 1). The directed lines in Figure 1 show
links between the PersonaSE technique and the four analysis
activities.

The PersonaSE technique offers the Requirements Elicitation
activity additional information sources and resources for eliciting
knowledge to what are traditionally used in the SE requirements
elicitation activity. The PersonaSE technique activities linked to
the requirements elicitation activity and their justification follow:
- Identify possible personas: state hypotheses for the personas to
be created to determine who the possible interview subjects will
be. This is a preliminary step designed to find out things about the
user.
- Hold ethnographic interviews: these ethnographic interviews are
designed and held taking into account the stated personas
hypotheses. Interviewing is a means of eliciting information. Like
the other information acquisition sessions that are held to elicit
requirements, these interviews also have to be transcribed.
- Synthesize the interview responses: interview synthesis is based
on analysis, for which reason the analysis and synthesis of
interviews are linked to the requirements elicitation analysis task.
- List behavioural variables: by synthesizing the interviews we
get the list of behavioural variables that are to somehow
characterize the possible users, thereby helping to find out things
about the user.
- Identify the ranges of behavioural variables: these ranges are
identified by observing how the subjects are grouped around the
behavioural variables. These groups characterize possible system
users, thereby providing greater knowledge of the user.
- Relate behaviour patterns to usability mechanisms: this
relationship provides information about what the possible users
need to interact with the system.
- Select representative personas to elicit requirements: possible
users are selected to participate in the routine requirements
elicitation process, thereby helping to improve the knowledge
there is about the user.
- Implement mock-ups: building mock-ups provides information
by explicitly stating what the user requires of the system

depending on his or her profile. Discussing the mock-up with
potential users will supply even more information.

The PersonaSE activities offer the Requirements Analysis
activity useful conceptual tools that supplement and/or extend
instruments usually used in the requirements analysis activity.
They can analyse information and knowledge about the user,
model the user and help to model the system. In the following, we
justify the linkage between the PersonaSE technique activities and
the requirements analysis activities.

Fig. 1. Relationships between the PersonaSE activities and SE
requirements analysis activities
- Map interview subjects: by representing how multiple subjects
are grouped around the behavioural variables, we are modelling
the user. This has to do with the conceptual modelling that is
carried out in the requirements analysis activity.
- Identify significant behaviour patterns: personas (archetypal
users) are the result of identifying particular groups of subjects in
more than one range. This is, in the last analysis, equivalent to
user modelling.
- Synthesize characteristics and relevant goals: this brief
description of characteristics and relevant goals, which reflects
the personality of the created personas, is also helpful for
modelling the user.
- Expand the description of attributes and behaviours: the
development of narratives provides a brief introduction to the
persona in terms of job or life style and conveys the persona’s
attitudes, needs and problems to other team members. This is a
user model in the shape of a narrative.
- Enrich the system with secondary personas: system modelling is
extended by determining what functionalities the secondary
personas would add to the system.

MAP SUBJECTS TO VARIABLES

Identify Ranges

Map Subjects

DESIGNATE PERSONAS

Select Representatives

nrich with Secondary PersonasE

BUILD MOCK-UPS

Implement Mock-Ups

Evaluate Mock-Ups

IDENTIFY VARIABLES

List Behavioural Variables

S nthesize Interviews

HIPOTESISSTATE HYPOTHESES

Hold Interviews

Identify Possible Personas

y

IDENTIFY PATTERNS

SYNTHESIZE
CHARACTERISTICS

AND GOALS

RELATE BEHAVIOUR
PATTERNS TO USABILITY

MECHANISMS

CHECK FOR REDUNDANCY
AND COMPLETENESS

BUILD USE CASES

EXPAND THE DESCRIPTION
OF ATTRIBUTES AND

BEHAVIOURS

HIPOTESIS
REQUIREMENTS

VALIDATION

REQUIREMENTS
ELICITATION

HIPOTESIS

REQUIREMENTS
ANALYSIS

REQUIREMENTS
SPECIFICATION

17

- Build use cases: the use cases enriched with the behaviour
pattern-dependent usability mechanisms are a system model. This
activity can therefore be linked to the system modelling
traditionally performed in requirements analysis.
The PersonaSE activity Enrich system activity with secondary
personas inputs information for writing requirements to the
Requirements Specification activity, which generally has to do
with drafting a document specifying the requirements that the
system should comply with and is concerned particularly with the
structure, quality and verifiability of that document:
- Enrich the system with secondary personas: by determining
what functionalities (not explained by the primary persona) the
secondary persona expects to find in the system, this activity
inputs requirements for the Software Requirements Specification
document.

The PersonaSE technique activities related to Requirements
Validation are:
- Check for redundancy and completeness: mappings are checked,
as are the characteristics of the personas and their goals in order
to find out whether there are any important gaps that need to be
filled in. This way, the developed models and products are
validated in both textual and graphical format.
- Evaluate mock-ups: a document is drafted to record the results
of the user evaluation of the mock-ups, thereby validating the set
of mock-ups.

6. CONCLUSION
This work contributes towards building HCI knowledge into
routine SE practice. To do this, we modified the HCI Personas
technique to comply with the levels of systematization common in
SE, and we enriched the requirements analysis process by
incorporating the PersonaSE activities into the four routine
requirements activities: requirements elicitation, requirements
analysis, requirements specification and requirements validation.
After adding PersonaSE to the four activities, the activities that
gained most were requirements elicitation and requirements
analysis, as PersonaSE introduces important innovations into
these activities: i) elicit the characteristics of real users to create
fictitious personas based on the understanding of these users, and
ii) model these personas.
The integration of personas and requirements analysis can better
identify what the software product should do and how it should
behave, as it shapes a common language to help to build an
understanding of the personas who are to interact with the system
and match the system development to the characteristics of these
personas. The next step is to determine the timeline for integrating
the PersonaSE technique activities into SE’s software
requirements analysis process.

7. REFERENCES
[1] T. Adlin, H. Jamesen, J. Pruitt. (2002). Personas: Exploring

the Real Benefits of Imaginary People. Available:
http://www.chiplace.org/ techniques/show-article.jsp?id=1.

[2] H. Beyer, K. Holzblatt. (1998). Contextual Design: Defining
Customer-Centered Systems. Morgan Kaufmann Publishers,
San Francisco.

[3] Blomquist, M. Arvola. (2002). Personas in Action:
Ethnography in an Interaction Design Team. Second Nordic
Conference on Human-Computer Interaction. Proceedings of
NordiCHI, pp.197-200.

[4] S. Calde, K. Goodwin, R. Reimann. (2002). SHS Orcas. The
First Integrated Information System for Long-Term
Healthcare Facility Management. American Institute of
Graphic Arts, New York. Available: http://www.aiga.org/
resources/content/7/6/2/documents/FORUM_calde_case_0
32102.pdf.

[5] Cooper. (1999). The Inmates are Running the Asylum. Sams,
Indianapolis.

[6] Cooper. (2003). The Origin of Personas. Available:
http://www.cooper.com/insights/journal_of_design/articles/t
he_origin_of_personas_1.html.

[7] Cooper, R. Reimann. (2003). About Face 2.0: The Essentials
of Interaction Design. Wiley, Indianapolis.

[8] Cooper, R. Reimann, D. Cronin. (2007). About Face 3.0: The
Essentials of Interaction Design. Wiley, Indianapolis.

[9] J. Dong, K. Kelkar, K. Braun. (2007). Getting the Most Out
of Personas for Product Usability Enhancements. Second
International Conference on Usability and
Internationalization. Proceeding of the UI-HCII, pp.291-296.

[10] K. Goodwin. (2002). Getting from Research to Personas:
Harnessing the Power of Data. Available: http://www.cooper.
com/content/insights/newsletters/2002_11/getting_from_re
search_to_personas.asp.

[11] J. Grudin, J. Pruitt. (2002). Personas, Participatory Design
and Product Development: An Infrastructure for
Engagement. Participatory Design Conference. Proceedings
of the PDC, Computer Professionals for Social
Responsibility, pp.144-161.

[12] Holzinger. (2005). Usability Engineering Methods for
Software Developers. Communications of the ACM 48(1):
pp.71-74.

[13] IEEE Computer Society Professional Practices Committee.
(2004). Guide to the Software Engineering Body of
Knowledge (SWEBOK- 2004 Version). IEEE Computer
Society, Los Alamitos, CA.

[14] N. Juristo, A. Moreno, M. Sánchez. (2007). Guidelines for
Eliciting Usability Functionalities. IEEE Transactions on
Software Engineering 33: pp.744-758.

[15] Milewski. (2004). Software Engineers and HCI Practitioners
Learning to Work Together: A Preliminary Look at
Expectations. Proceedings of the 17th Conference on
Software Engineering Education and Training CSEET´04
IEEE, pp. 45-49.

[16] J. Pruitt, J. Grudin. (2003). Personas: Practice and Theory.
Available: http://www.research.microsoft.com/research/coet/
Grudin/Personas/Grudin-Pruitt.pdf.

[17] Seffah, E. Metzker. (2004). The Obstacles and Myths of
Usability and Software Engineering. Communications of the
ACM 47(12): pp.71-76.

[18] K. Vasara. (2003). Introducing Personas in a Software
Project. Master's thesis, Helsinki University of Technology,
Helsinki.

18

http://www/
http://www.aiga.org/%20resources/content/7/6/2/documents/FORUM/_calde/_case/_032102.pdf
http://www.aiga.org/%20resources/content/7/6/2/documents/FORUM/_calde/_case/_032102.pdf
http://www.aiga.org/%20resources/content/7/6/2/documents/FORUM/_calde/_case/_032102.pdf
http://www.cooper.com/insights/
http://www.cooper.%20com/content/insights/
http://www.cooper.%20com/content/insights/
http://www.research.microsoft.com/research/coet/Grudin/Personas/Grudin-Pruitt.pdf
http://www.research.microsoft.com/research/coet/Grudin/Personas/Grudin-Pruitt.pdf

Towards Industrial-Strength Usability Evaluation
 Martin Schmettow

 Passau University
Informations Systems II

94032 Passau, Germany

schmettow@web.de
ABSTRACT
Usability professionals may face strict economic demands on the
usability process in near future. This position paper outlines a
research agenda to make usability evaluation a predictable and
highly efficient engineering process.

Categories and Subject Descriptors
H.5.2 User Interfaces (e.g. HCI) Evaluation/methodology

Keywords
Usability Evaluation, Measurement, Process Quality

1. MOTIVATION
Usability professionals are never tired to stress the economic
impact of good usability. And indeed, there are several
compelling arguments: The first may be derived from the ISO
norm 9241-11: Efficiency is regarded as one of the three main
criteria of usability and can directly be converted into a bargain.
For example, a very efficient interface to an enterprise
information system makes users do their tasks more quickly
which increases overall throughput. The second argument is
specific to web usability. Web users are known to be very
impatient with web sites having poor usability, especially with
online purchasing; consequently usability directly affects the
conversion rate of e-commerce companies. The third argument is
from the perspective of software development. It is a widely
accepted law, that defect fixing costs overlinearly depend on how
early a defect was introduced and how late it was found. This is a
justification for doing intensive usability evaluation early in
system development.
But, many usability professionals still act under the paradigm of
discount usability. In a broad sense this denotes: usability
evaluation as a best effort strategy and conducted iteratively by
experts who just know what they are doing. What, if clients or
employers of usability professionals start taking the above
economic arguments seriously? For example: What, if a start-up
company has an innovative product idea and plenty of venture
capital, but usability is mission-critical and they have only one

shot? Will they rely on discount usability? Will they accept the
good reputation of a usability company as the only guarantee? It
is more likely, that they want objective preconditions, like a
proven and certified evaluation plan. And maybe they even want
quantitative guarantees and proven contract fulfillment, like:
There is no show stopper left in the system and at least 90% of
serious problems are identified. The paradigm of discount
usability is inappropriate in such cases.
Research on the usability evaluation process has seen two major
debates (research agendas, respectively): The Five-Users-Is-Not-
Enough debate and the Damaged Merchandise debate. The Five
Users debate is about how to reliably plan and control usability
evaluation studies, whereas the Damaged Merchandise debate
treats the topic of how to compare evaluation methods in fair and
valid way. In the following, I will argue why we must continue
these research agendas, in order to make usability evaluation a
well understood and highly optimized engineering activity. But, I
will also claim that we have to put off some blinders.

2. WHY TO CONTINUE THE “FIVE
USERS” DEBATE

The five users debate goes back to Nielsen and Landauer’s
suggestion to model the progress of evaluation studies as a
geometric series [9]. Unfortunately, the debate was primarily
carried by an oversimplification of Nielsen, who trivialized his
own findings in stating that testing five users is enough in
industrial practice [8]. This is, by the way, an excellent example
of the discount usability paradigm, which may turn out obsolete.
In contrast, several researchers went deeper into the theoretical
impact of this model: The phenomenon of variance in the process
was discovered [3], good task design was found to be a major
impact factor [6] and basic stochastic assumptions of the model
were questioned [2]. A recent contribution was the proof that the
geometric model is inherently flawed by falsely assuming that
usability defects are equally visible and sessions equally effective
[10]. Instead, the beta-geometric model, accounting for
heterogeneity, was shown to better predict the process.
But, this is still an oversimplification that does not comprise all
impact factors found in industrial studies. For example, recently I
tried to fit the data reported from the CUE-4 study with the beta-
geometric model – with disappointing results: The model could
not sufficiently explain the overwhelming number of defects that
were detected only once [7]. In consequence, there is still no
reliable estimation of how many defects were left undetected. For
the first, there are two options for enhancing the model in order to
better fit the data and reliably plan and control usability studies:
First, the study progress has to be tracked on the finer grained
level of single tasks presented in a usability test (or imagined by
usability inspectors). Specifically, this may help identify when a
certain set of tasks is “exhausted” and replace it by new tasks that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

 I-USED’08, September 24, 2008, Pisa, Italy

19

make further defects observable. Second, the current models do
not handle the problem of false alarms in evaluation studies.
These may well be liable for the misfit reported above. Currently,
we are working on an enhanced model to incorporate the
occurrence of false alarms and varying task sets. This hopefully
enables us to better estimate the number of remaining defects
(misses) and to give a probability for a reported defect being a
false alarm. The latter may prevent wasting development
resources on would-be defects and thus has direct economic
impact.

3. BEYOND “CHASING THE HE”
The Damaged Merchandise debate arouse by the harsh critique of
Gray and Salzmann on the poor validity of experiments on UEMs
[5]. However, my main point here is not validity, but the
observation that research on designing UEMs has not made much
substantial progress. Even recent well designed studies are still
very restricted in their contribution to understanding the cognitive
or contextual factors of finding usability defects. Instead, they
make more or less marginal adaptions to common inspection
methods and compare this in a two conditional experimental
design to the Heuristic Evaluation (HE). The observed
effectiveness gains are in many cases marginal (e.g. [4]) or non-
existent [11]). This “Chasing the HE” approach has the severe
drawback of restricted insight. It lets us only know which of two
procedures is (slightly) better. It does not inform about the
specific interplay of impact factors granting effective defect
identification. But, this is a precondition to design (much) better
procedures, provide adequate training and adjust the evaluation
process to business goals.
Only few studies have paid attention to successful versus
unsuccessful cognitive-behavioral strategies of usability experts.
To give an example for a rarely recognized work that has done
better: Perspective based reading is a well known technique in
software inspections and raises effectiveness by reducing
cognitive load. Zhang et. al. have transferred this technique to
usability inspection and have found likewise improvements [13].
Another positive example is how Woolrych et. al. analyzed the
knowledge resources involved in usability inspections [1]. (They
also made some points on how false alarms arise.)
These are interesting and relevant results, as they may lead to
methods and training concepts for increased effectiveness of
usability experts. But, there still is a lack of quantitative research
on such topics. Especially, defects are likely having qualitative
properties that make a difference with respect to behavioral
strategies and knowledge resources. Frøkjær and Hornbæk have
found differing detection profiles for two inspection methods after
classifying defects with the User Action Framework [4]. An
promising way to go is to search for defect classes in the raw data
from evaluation processes and derive an empirically valid
classification Advanced statistical exploration techniques, like
differential item functioning from item response theory [12] or
binary cluster analysis probably apply well to this problem, in
contrast to ordinary variance analysis. The strength of these
techniques is that they to not require manipulating independent
variables. Instead, they can reveal latent variables in existing data
sets, including results from industrial studies.
These approaches may be used to profile methods according to
their effectiveness regarding certain types of defects. In industrial

settings this is useful for selecting a method appropriate to the
development context. For example, we may purposefully choose a
method for identification of task related defects early in
development. Late in the process another method may serve
identification of superficial design issues). Another possibility is
aligning the evaluation focus to business goals, e.g. evaluating for
efficiency in case a system is primarily aimed at experts.

4. CONCLUSION
Modern software engineering is well regarding economic
demands: efficiency of development processes, early defect
discovery and aligning software qualities to business goals. The
usability profession is still dragging a little behind, but may
sometimes face their customers’ claims for process approval,
efficiency and guarantees. The aim of this paper was to point out
valuable research agendas in the past, but to also identify future
directions of research: Quantitative research with refined
experimental designs and advanced statistical techniques may
reveal relevant properties on several levels of the usability
evaluation process. Knowing the properties on process level
results in better approaches to plan and control studies towards
given business goals. Knowing the properties on the cognitive-
behavioral level are a precondition to significantly raise
effectiveness and appropriateness of evaluation processes. Much
can be achieved with advanced statistical techniques on existing
data sets. The minimum to get is specific and well grounded
hypotheses that will inspire for well designed and elaborate
experimental studies to deeply understand the anatomy of
usability evaluation.

5. REFERENCES
[1] Alan Woolrych, Gilbert Cockton, and Mark Hindmarch.

Knowledge Resources in Usability Inspection. In
Proceedings of the HCI 2005, 2005.

[2] David A. Caulton. Relaxing the homogeneity assumption in
usability testing. Behaviour & Information Technology,
20(1):1–7, 2001.

[3] Laura Faulkner. Beyond the five-user assumption: Benefits
of increased sample sizes in usability testing. Behavior
Research Methods, Instruments & Computers, 35(3):379–
383, 2003.

[4] Erik Frøkjær and Kasper Hornbæk. Metaphors of human
thinking for usability inspection and design. ACM Trans.
Comput.-Hum. Interact., 14(4):1–33, 2008.

[5] Wayne D. Gray and Marilyn C. Salzman. Damaged
merchandise? A review of experiments that compare
usability evaluation methods. Human-Computer Interaction,
13(3):203–261, 1998.

[6] [Gitte Lindgaard and Jarinee Chattratichart. Usability testing:
What have we overlooked? In CHI ’07: Proceedings of the
SIGCHI conference on Human factors in computing systems,
pages 1415–1424, New York, NY, USA, 2007. ACM Press.

[7] Rolf Molich and Joseph S. Dumas. Comparative usability
evaluation (CUE-4). Behaviour & Information Technology,
27(3), 2008.

[8] Jakob Nielsen. Why you only need to test with 5 users. Jakob
Nielsens Alertbox, March 19 2000.
http://www.useit.com/alertbox/20000319.html.

20

[9] Jakob Nielsen and Thomas K. Landauer. A mathematical
model of the finding of usability problems. In CHI ’93:
Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 206–213, New York, NY, USA,
1993. ACM Press.

[10] Martin Schmettow. Heterogeneity in the usability evaluation
process. In David England and Russell Beale, editors,
Proceedings of the HCI 2008, volume 1 of People and
Computers, pages 89–98. British Computing Society, 2008.
in print.

[11] Martin Schmettow and Sabine Niebuhr. A pattern-based
usability inspection method: First empirical performance

measures and future issues. In Devina Ramduny-Ellis and
Dorothy Rachovides, editors, Proceedings of the HCI 2007,
volume 2 of People and Computers, pages 99–102. BCS,
September 2007.

[12] Martin Schmettow and Wolfgang Vietze. Introducing item
response theory for measuring usability inspection processes.
In CHI 2008 Proceedings, pages 893–902. ACM SIGCHI,
April 2008.

[13] Zhang Zhijun, Victor Basili, and Ben Shneiderman. An
empirical study of perspective based usability inspection.
Technical report, University of Maryland, Human-Computer
Interaction Lab, 1998.

21

Controlling User Experience through Policing in the
Software Development Process

Mats Hellman Kari Rönkkö
Product Planning User Experience School of Engineering

UIQ Technology Blekinge Institute of Technology
Soft Center VIII Soft Center

SE 372 25 Ronneby, Sweden SE 372 25 Ronneby, Sweden
+46708576497 +46733124892

Mats.hellman@uiq.com Kari.ronkko@bth.se

ABSTRACT
 Today the challenge in the mobile industry is User experience
(UX), which is starting to affect software engineering processes.
A common use or definition of the term UX is still not de facto
defined. Industry and academy are both in agreement that UX
definitely includes more than the previous usability definition.
Our concern in this paper is how industry and manufacturers can
manage to successfully get a UX idea into and through the
software development cycle? Our discussion includes obvious
components from usability and new UX components that are not
taken into account by prevailing HCI approaches. We will discuss
branding, trends and timing as vital components in that puzzle.

KEYWORDS
User Experience, usability, brand, trends, invention, software
development process, mobile industry, software engineering,
management

1. INTRODUCTION
Mobile phones have reached a point beyond the level where
technical hot news are not enough to satisfy buyers, because
today mobile devices also have to include the aspect of user
experience. Apple’s iPhone is one indication of this change. In
recent years the mobile industry has put in a lot of efforts to grasp
and develop products that can be claimed to be User Experience
(UX) products. A mental shift from a usability focus toward a
more UX driven requirement gathering focus and handling has
occurred. One reason is that UX discourses has been ongoing for
a long period, even though mostly connected to new services like
web, multimedia and other media centric services. Interestingly,
these are products that acquire a different experience than the
mobile applications and services. Another related factor is today’s
improved hardware possibilities including their infrastructural
developed support on the market.

Unfortunately we are convinced that many companies in the
mobile sector still are stuck with outdated control mechanisms

that do not adequately support the recently introduced UX focus.
Today’s prevailing product control mechanisms has a stronger
relationship to software development costs and rationales than
securing UX. Before returning to the issue of how to secure and
control UX design decisions within today’s prevailing product
and software development approach we will sketch the UX scene
and exemplify challenges following with it.

When Apple launched the iPhone the UX hype hit the roof. All
competitors now saw a device with intuitive, simple finger touch
interface, with fast and smooth transitions and excellent
performance. This device created a lot of media as well as
consumer attention even though targeting a high price range and
offering for bindings to one operator to start with. It got promoted
by operators without fulfilling their requirements, and operators
even accepted a new economical model that would give Apple a
percentage of operator’s winnings. A development we have not
seen earlier in the branch. Why did Apple’s iPhone reach this
high level of UX recognition and operator acceptance?

Symbian Ltd and UIQ Technology have for over a decade offered
an OS and SW platform that support touch; and their licensees,
SonyEricsson, and Motorola to mention some have launched
series of different versions of phones on the UIQ platform. Touch
enabled phone devices like e.g. the P800 to the latest P1i from
SonyEricsson have sold in good numbers and created a lot of
media covering but not close to what the iPhone did. Another
company trying to gain market in the touch area is Neonode. They
created a clear buzz around their product but had trouble reaching
the big sales even with UX claims of their product. So why is it
that well known and established companies, with long experience,
don’t get the same “buzz” around their products as Apple? And
why doesn’t new innovative and creative company like Neonode
hit it of massively? What made the success possible for Apple’s
product iPhone? In our opinion it has to do with a number of
connected reasons.

First, usability as a “hygiene” factor needs to be in place if we
want to hit in a mass-market launch for a new type of device.
Meaning that the functionality and performance of a device are
things a user doesn’t notice until they create annoyance. In this
view, in a well worked up market, usability has become a
dissatisfier [1]. In such market users will notice and complain
about the product when the expected outcome or usage doesn’t
live up to their expectations. On the contrary, if the hygiene
works the way it should, as expected, they won’t praise the
usability of it anyhow. We are convinced that most companies in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy.

22

mobile industry are in control of the level of hygiene through
applying HCI usability test methods (see [11] for example).

Second, total product design is another vital component. The
product must be a throughout solid and attractive design, from
hardware to software design. New and hot functionality is not
enough anymore, today it is the design of the total experience that
sells.

Third, the brand is an important part of the total product design,
just as vital and important for success as is the design itself. We
argue that this is one of the reasons explaining why Apple made a
direct success with their iPhone and Neonode did not. New kids
on the block always have a hard time, and have to make up an
own role an identity to be both understood and accepted.

Fourth, trends need to be monitored and understood. How can you
predict and take into account that a “fuzz” or “buzz” in a small
group of people will turn into a mass market trend? How do you
foresee and market that e.g. a mobile touch screen device will
become a device in “every man’s” hand instead of its initial status
as status device in the pockets of the businessman tribe? Trend
awareness and understanding about marketing, brands and target
groups have always been important, but will in the mobile UX era
be vital for success.

Fifth, timing is a vital component in a successful launch of a
product? There is more than one understanding of timing. If you
talk to product owners etc they will argue that if a specific device
misses its target release window that device could and maybe
should be cancelled. This is obvious and understandable, here we
talk about a specific type of timing; the maturity of the market for
a device with a specific functionality. When is a specific
functionality or technology mature enough to be embraced and
used without any hurdles or suspicion by the market and end
users? Take the e-commerce adaptation as an example from the
PC world. It took some years before users found e-commerce
applications comfortable and secure enough to be used for paying
stuff from the internet. This even though the technology, security
solutions and infrastructure had been in place and worked a long
time. Could this type of user phenomena be foreseen and taken to
account when to launch a product at the optimal time?

Total design, brand, trends and adequate timing are subjects in
need of further understanding within today’s mobile industry;
both concerning how to predict coming trends and brands, when
to launch products, as well as how to secure and control the
resulting UX designs throughout the software development
process. Regarding the former challenge we lend at taking
inspiration and borrow insights from the area of innovation.
Knowledge about innovation processes and framework could be
used to understand and prioritize actions to create and launch
products in a successful manner. When it comes to the latter
challenge, we present one solution in this paper. Our solution fits
the established engineering idea of splitting product complexity
into smaller manageable sub-functions, and working in
multidisciplinary teams. In large software development projects
this splitting approach has proven successful to cut time costs.

Below is provided a hierarchic map where we place the aspects
discussed in this paper in relation to the following categories:
User Experience, Market, Technology, and Software
Development. Here it is possible to visualize relationships such

as: brands and trends exist on a market with potential consumers;
brand and trend is part of the user experience that companies tries
to design to pleasure users; successful match between these is
highly dependent on adequate judgments of maturity and timing
for a product. We can also see where the border of traditional
usability efforts is today. We do not emphasize new or existing
technology in this papers discussion, even though, we indicate the
importance of timing and maturity also here. Our contribution
called “Policing” can be found under the category Software
Development under Methodology and Requirements Engineering
fulfilling the role of monitoring and securing a holistic product
view. The Software development methodology is in this paper
refers to the engineering idea of splitting the product complexity
into smaller more manageable sub-functions (and teams), i.e. a
traditional software engineering development approach.

Figure 1. Overview and placement of discussed subjects

2. USABILITY AS HYGIENE FACTOR
The HCI community is nowadays agreeing that UX include more
factors than defined in usability. Usability is an established part of
software development even though maybe not as formalized as
needed. UX on the other hand is not established throughout the
development process and our belief is that when it is formalized
and established it will change the way we understand and talk
about requirement handling as well as product development
processes and methods.
Usability as such in today’s mobile business and product
development is a thermometer that sets the “hygiene” level of a
product. Users today take the “ease of use” part of product
concepts for granted and will not praise the fact that a product or
service has good usability. On the other hand users will complain
loudly if the product doesn’t live up to the expected level of
hygiene. Usability has become a dissatisfier. Hence, the challenge
for usability engineers is to collect dissatisfiers and feed them
back as prioritized requirements. These will affect the product
negatively if not treated as an important part of UX. In a sense
dissatifiers can be perceived as the base of UX. These are aspects
of a product or service that just have to work and when they do
they will not be noticed by the users. Examples of the areas we
talking about here are responsiveness, snappiness, learnability and
visibility, effectiveness, efficiency etc. Keep in mind that
handling dissatisfiers is not enough to reach a decent UX level.
To do that we need to understand what pleasures a user during
both use and owning a product. When we understand above it will
be possible to launch products with satisfying level of UX.

23

3. TRENDS AND BRANDS
Today we see trends in society that emerge from and support
environmental concerns. We can also see an increase in tribing
activities that in one level has to do with big movements of
refugees moving to other part of the world, to find “shelter from
the storm” in new countries. This has created a possible growth
for national groups that use violence as a toll for securing their
tribal belonging. The other level of tribal behavior has more to do
with groups that have found new ways to indulge themselves in
their hobbies/interests. Examples of this is the late middle-aged
bikers living their teenage dream as they drive down the roads as
aged “hell-riders” on their Harley Davidson’s.
Leading trend institutes has identified trends that need to be
understood and taken into account as important aspects to succeed
when developing a product with high level of UX. Below you
find some trends that one well known trend institute; Faith
Popcorn’s BrainReserve describe on their website [12] and as
they find as necessary to know and beware of when you: look for
a new positioning on the market, strategic development and new
product or service.

99 lives: Too fast a pace, too little time, causes societal
schizophrenia and forces us to assume multiple roles

Anchoring: A reaching back to our spiritual roots, taking what
was secure from the past in order to be ready for the future.

Being alive: Awareness that good health extends longevity and
leads to a new way of life.

Pleasure revenge: Consumers are having a secret bacchanal.
They’re mad as hell and want to cut loose again.

Small indulgences: Stressed-out consumers want to indulge in
affordable luxuries and seek ways to reward themselves.

Cashing out: Working women and men, questioning
personal/career satisfaction and goals, opt for simpler living.

Clanning: Belonging to a group that represents common feelings,
causes or ideals; validating one’s own belief system.

Cocooning: The need to protect oneself from the harsh,
unpredictable realities of the outside world.

Fantasy adventures: Modern age whets our desire for roads
untaken.
In the mobile business obvious trends are staying connected and
sharing content, this simultaneously with being an assessor
expressing belonging and social status. To capture these types of
requirements and to be able to support these kinds of trends we
need to involve more than traditional usability evaluation can
offer; a new UX and innovation related perspective of capturing
user requirements is needed. These factors also need to be
translated and incorporated in new formalized methods in the
process of product and software development.
Neonode relied on the existing touch screen market as entry for
their products. To their disadvantage they did not have large
enough credibility among users in the market of touch phones to
become a truly market success from start. Apple’s iPhone had
both credibility and a successful touch screen product. A product
that provided the user with intuitive and responsive use, a
pleasurable experience concerning the overall design, together
with the pleasure of owning and showing of it as an assessor.
Besides this iPhone also supported the “Mac, Apple” tribe. This

new product called iPhone could actually be claimed to help these
users secure their status and existing as members of precisely this
tribe. This is a group of users that committed themselves to
Apple’s specific brand and design, a consumer group that buys for
reasons of precisely experience and design (that Apple products
helps them to communicate) rather than for a specific set of
functionality. The fact that Apple has a very strong brand could
be the difference when it comes to success or not. User have
expectations and/or and experiences of Apple as “the” design
company whereby the company gets a competitive advantage
over other on-a-technical-level-equal-companies. Apple has the
knowledge and the company culture needed in order to “live the
brand”. Other less brand known companies has to rely on the
product without any help from a brand expectation or experience.
One reason to this could be as Richard Mulholland states in his
article; Fuck. Love. Brand: [13] “You see, “brand” is a word
open too much interpretation, a corporate ID executive sees it as
the face of the company they designed, HR sees it as the people,
marketers see it as the marketing they create, and management
thinks it’s the physical manifestation of the mission, vision, and
values. This is the problem, in order to build “X”, all your
builders need to first understand what “X” is and here’s the
thing, it ain’t rocket science. Once we realize that the word
“brand” is a place-marker, we simply need to find out what we’re
replacing.“ From our point of view the strategic work of building
up a brand needs to be integrated in all levels in a company, relate
to vision, goals and be a vital part of a holistic product view.

4. THE TIMING COMPONENT
“The winner gets it all”, “It’s only first place that counts and will
be remembered”. These are expressions that color us from
upbringing and society and in many respects also true on a tough
market. The timing aspects of releasing a new product is in many
cases as important as the product it self. The right timing will give
an advantage against competitors. But it is hard to judge when to
launch a product; users or consumers on a market must be mature
enough to appreciate the product to its full extent. Its functionality
could be too advanced or just a bad copy of already existing
product. Symbian and UIQ has produced Touch supported
Software platforms for mobile phones for many years and
delivered to customers like SonyEricsson and Motorola. These
products has sold good in the business segment of the mobile
world. It could be claimed that Sony Ericsson and Motorola over
the years of delivering phones with touch enabled screens actually
created both the marketplace as well as the user acceptance and
user mature-ness for touch phones. If we compare with Apple’s
iPhone that was a hit direct, they besides using their extremely
strong brand (se previous section 4) delivered with a good timing
in a mature enough touch market.

5. UX AND PREVAILING SD PROCESSES
Good UX understanding an input is one side of the coin, how to
organize with respect this understanding and input is the other
side. As previous argumentation revealed it has become more and
more important to deliver UX products. This is not enough, these
products has to be developed faster and faster, whereby it also
becomes vital for an organization to continue to keep the
development time short.

"Everything about mobile phone design and production has to be
quick, so it's months from when there is an idea for a phone to the

24

http://www.google.com/search?hl=en&lr=&ie=ISO-8859-1&q=definition:+brand

roll out on the market," said James Marshall, Sony Ericsson's
head of product marketing, who is in Las Vegas this week for the
trade fair. "The market moves very quickly, so you have to
minimize development times."[4]

One approach that many organizations, including UIQ
Technology AB, have chosen to apply to both secure quality and
focus on deliveries, and meet the time challenge is to work in
parallel multidisciplinary teams (see Hellman and Rönkkö 2008
[11] for details). The solution is a typical software engineering
solution, i.e. to make complex things manageable through
splitting up the problem in separated parallel work tasks during
the development process.

Engineers often approach complexity through splitting the
product complexity into smaller more manageable sub-functions.
In the end all the sub-functions are put together and a product
appears, hopefully as the designer or the idea maker intended.
Deviations from the intended product idea are handled through
iterated defect reporting and defect handling until the product is
judged to have sufficient product quality. Hence, monitoring
product quality is conducted by processes in which milestone
criteria are measured mainly by different ways of controlling
defect levels and defect status. So far this approach has been
sufficient enough when striving to secure a product’s quality from
a task and goal perspective (classic usability view from HCI), but
still no guarantee for enhancing the user experience (that
increases the chances of product success on the market). In the
goal and task view three canonical usability metrics have
dominated, i.e. effectiveness, efficiency and satisfaction. Where
the latter, satisfaction, has been a term capturing the felt
experience on a very high level, i.e. without further dividing it
into its diverse constituent elements. Today the UX level of
quality needs to be handled. Handling this quality forces us to
divide satisfaction into other soft values such as exemplified by
fun, pleasure, pride, intimacy, joy, etc. [8, 4].

Figure 2. Split of product complexity
One problem that follows when splitting the product into smaller
manageable sub-functions in the production process is the risk of
losing a holistic product view. In the quality of user experience
apparently small changes made in different subparts can actually
constitute a huge user experience change when put together in the
final product. It is also difficult to predict the effects of such
separately handled changes. Applications in mobile products have
in the past been more or less separate entities or islands in a
product. And opportunities have existed for application designers
and engineers to apply their own solutions and create their own
application specific components with “isolated” specific behavior
to support a use case (see [12] for an example). Such isolated
behavior can and will be a big threat to the total UX of a product.

Pushing out ownership and responsibility to the separate parts is a
common management strategy. It can be questioned if
organizational models that push ownership out to the leaves in
organization really are effective in the mobile industry? Doesn’t
this model encourages handling risks via a focus on each
constituent part rather than a holistic view on the end product?
Are there better and more efficient ways of making an idea appear
in a product? Ways that could shorten the time to market,
minimize the risk of fragmentation of the product, and in effective
ways help organizations to prioritize and secure successful UX in
products. Can we maintain a holistic perspective despite multiple
splits of functionality during development? In this era with a
growing need for high level monitoring of UX in products we are
still left with the goal and task oriented development models. For
the goal and task related usability paradigm dividing and
delegating has been successful. Today we have to realize that
good quality on different parts is not enough, not a guarantee for a
successful product. In parallel with understanding and handling
UX we need to find new ways to measure and monitor UX quality
aspects during development. To support UX qualities efficiently a
process with a clear product focus is needed in parallel with the
up to today successful split application development approach.
Otherwise, because of the prevailing task and goal tradition
within software development, there is a risk that we talk about a
holistic product view but in practice end up monitoring small
identities. Still, we believe the engineering approach of separation
is powerful and necessary in large projects. So - what are the
possible approaches for ensuring an idea appears throughout the
prevailing engineering approach of separating the development?

A risk with dividing is that the product owners (often Product
Managers whining the company) will have an even harder time
knowing that the intended product is the one that will turn up
when all “bits and pieces” are assembled again to constitute the
product.

Figure 2 visualizes above described work in multidisciplinary
teams. Here the separateness of a product vision into many
divided requirements means risks of not monitoring UX in a
holistic way; it also represent today’s goal and task oriented
development models. The outcome/product includes the risk of
becoming something that was not intended.

25

The introduction of an overall UX control process is the solution
we advocate.

3. Validating the product and evaluating the result against the
vision, again by formalizing existing methods like UTUM [3],
[10] in the development process. This is also visualized in figure
3. In order to secure the vision of product intent, in complex and

multi requirement projects, the organization needs to
acknowledge the need for what we call policing (actually having
real cups in mind doing police(ing) work in the positive sense
appreciated by citizens). Not just defect levels, but also and
maybe even more important, the holistic product intent
throughout the development cycle and in all different teams
participating in the development process. This is needed to secure
an efficient and effective way of working towards a successful
product.

There is a risk of losing the UX intent of a product if no support
structure is in place. In order to keep the organization “mean and
lean” and at the same time deliver UX focused products we need
to secure the vision of a product throughout the development
process. Today many companies have developed methods to
validate concepts of the final product with end users. UIQ
technology AB uses for instance their UTUM method. [3], [10].
Unfortunately these kinds of validation activities are too often
handled by and within a UI Design/Interaction Design group and
not as part of the overall design process, e.g. as ad hoc help in the
design work at different stages. Our suggestion is that companies
organize in such a way so that UX requirements developed by end
user understanding and use knowledge are monitored throughout
the development cycle. This can be done by having UX guards in
leading positions in the development process. People that monitor
the holistic view of the product and who have the mandate take
necessary actions whenever it is needed to secure the overall
product intent.

Figure 3. Policing UX requirements
An organizational set up like the one described in figure 3 would
be a better guarantee that the product vision and intent is what
will be delivered in the end compared with the organizational set
up presented in figure 2. Meaning that the whole of the
organization needs to understand and prioritize the end result.
Project Managers need to acknowledge, understand and take these
new UX criteria’s into their plans. The way to secure product
quality and to include UX into the product quality aspect has to be
to introduce “UX guards” in all levels of development. Their role
would need to be to police the fulfillment of the UX quality
criteria in the process defined and decided checkpoints. These
checkpoints could e.g. be expert reviews of requirements and
expert UX reviewers to get the authority to set a pass/not pass
stamp on the intended delivery. This needs to be agreed and
formalized into the development process.

6. POLICING UX
Even though most companies have both verbal and written UX
statements and visions on their walls as lead goals for their
business, an overall UX strategy are often missed out. A products
quality definition is still related to different sub-levels,
measurements and predictions of defects as criteria, and seldom
includes usability and/or UX quality criteria. This means there is
no connection or possible way of measuring the “temperature” of
UX in the product during the development between vision and
final product. There is also a embarrassing divergence between
UX quality and existing product quality, meaning that we have
processes and means from traditional software engineering to
monitor product quality by defects, which do not constitute the
wished for guarantee to achieving an envisioned high level of UX
in the final product.

7. DISCUSSION
It is identified that the academic fields of Software Engineering
(SE), Human Computer Interaction (HCI), and Participatory
Design (PD) to a large extent developed divided from each other
[Juristo et al. 2001, Kensing 3003]. Each area is highly
challenging and has today decades of important documented
knowledge; SE has significant successes in requirements
gathering related to software development organization, HCI in
usability evaluation and PD in techniques and methodologies for
user participation. Industry has picked and applied parts from the
different fields despite the academic separation. Five years ago a
mix of the knowledge inherent in these fields was considered to
provide a good enough foundation for building successful
development process. In recent years the mobile industry has
started to compete with what can be claimed to be User
Experience (UX) products. Hence a fourth aspect called UX
appears that also needs to be integrated on the top of these
aspects.

Therefore a complementary way to also inject UX quality
assurance into the development process would be by:

1. Gaining acceptance of a vision through user research with end
users by means of methods like early prototype testing.

When will the above mentioned areas develop to support also the
understanding of UX, so that we can find better ways to capture
and monitor when a market is mature enough for appreciating a
product or service? We need to widen our understanding of users
also in the UX aspect. Find ways to monitor UX requirements
throughout the process. UX should be the backbone of product
development today and not as in many cases something that is
added as a final finishing procedure of a product. Such approach
is just a “lipstick on a chicken” approach and will not lead to a

2. Policing the vision throughout the development process by
internal review methods to secure UX product quality. UX quality
criteria and milestones should be included in an overall design
process influencing the development process. A new quality
assurance role needs to be created for UX experts to act as
guardians for the UX quality.

26

successful launch of a product. We need to change existing
development processes to be built around UX definitions, and not
just incorporate UX as add on to already existing processes. UX is
a new perspective we have to apply in order to successfully
launch products at the right point of time within an “open” market
window; in which it supports new and existing trends, and of
course deliver satisfactory levels of hygiene. Hence, UX will
change how we perceive and perform product development.
As future work we will continue to look for inspiration and
knowledge within the area of innovation. Denning and Dunham
[2] make a clear distinction between invention and innovation
meaning that invention is the idea as such but with the absence of
adaptation applied. An innovation on the other hand is an
invention that covers the entire way from idea to adaptation and
sustainability of that idea making sure that all is done for that
idea, artifact or process to make it successful in the intended
marketplace. One indication of the power and control over user
innovation is that companies like Apple with control over their
products from hardware to software throughout the marketing
process seem to have better chance than smaller not so well
known companies that has to rely on the market allowance or a
better chance than companies that uses sub-contracting as a way
to produce their product? The WeBIS [5] project is a research
attempt started in the spring 2008 that aim to address some of the
in this paper mentioned innovation aspects, and also to create a
user centric and user innovation driven method; a method to
support early decision making, if an idea, product, service is
worthwhile going for or if there are too high risk of failure.

Figure 4. Focusing UX
In order to introduce this approach a cultural widening or
increased knowledge among existing SWD roles of e.g. Project
managers and Product Managers is needed in order to break the
traditional cultural views of monitoring and planning project
deliveries. We think it is possible and the suggested approach can
be well integrated in traditional SWD processes, but emphasis the
need for other competences and milestones than present today e.g.
project Managers, UX experts, market experts & Product
Managers and technical expertise have to cooperate to a much
larger extent than in most large companies in mobile industry
today.

9. ACKNOWLEDGEMENTS
8. CONCLUSIONS We wish to thank Gary Denman from UIQ Technology AB for

providing valuable support and insights. This work was partly
funded by Vinnova (a Swedish Governmental Agency for
Innovation Systems) under a research grant for the project
WeBIS [5].

Today we monitor and define product quality by measuring
defects levels in different ways. This will still be needed but must
be complemented by UX quality measurements. The product
quality definition needs to be increased and widened to include
measurements from the UX area and new quality criteria need to
be accounted for with actually higher priority than previous sub-
quality criteria. More organizational effort should be spent on
developing Metrics and KPI’s for monitoring and securing UX
product quality.

10. REFERENCES
[1] Patrick W. Jordan 2000. Designing Pleasurable Products.

CRC Press, Taylor & Frances.
[2] Peter J. Denning and Robert Dunham. Innovation as

language action. Communications of the ACM, May
2006/vol. 49, No.5

When we decide to prioritize UX in products a new development
approach is needed as well, this to ensure that the intended UX
appears in products at the market. On a high level there needs to
be a cultural shift into a more UX oriented and UX driven
mentality within the whole product development organization.
On an organizational level UX quality assurance needs to be
established by recognizing and given authority to UX expertise
that can secure the total UX product quality in all levels of
development. In this paper we suggest UX “guardians”, see figure
4 below, for policing the UX throughout the product
development.

[3] UIQ Technology. UIQ Technology Usability Metrics,
UIQ Technology, http://uiq.com/utum.html. 2008-05-22

[4] International Herald Tribune/Technology and Media. Iphone
pushes mobile makers to think simpler. By Eric Sylvers.
http://www.iht.com/articles/2008/01/09/technology/wireless1
0.php, 2008-05-22

[5] WeBiS, http://www.webis.se
[6] Juristo, N., Windl, H., & Constantine, L. (2001),

"Introducing usability", IEEE Software, 20-21.

[7] Juristo, N., Moreno, A. M., Sanchez-Segura, M. (2007),
“Guidelines for Eliciting Usability Functionalities”, IEEE
Transactions on Software Engineering, Vol. 33, No. 11,
November 2007, pp. 744-758.

[8] Kensing, F. Methods and Practices in Participatory design.
Doctoral Thesis, The ITU University of Copenhagen, Press:
ITU, ISBN 87-7949-038-7, 2003.

27

http://uiq.com/utum.html.%202008-05-22
http://www.iht.com/articles/2008/01/09/technology/wireless10.php
http://www.iht.com/articles/2008/01/09/technology/wireless10.php
http://www.webis.se/

[9] Hellman and Rönkkö. Is User Experience supported
Effectively in Existing Software Development Processes?
Proceedings of the International Workshop on Meaningful
Measures: Valid User Experience Measurement (VUUM
2008). ISDN:978-2-917490-02-0

[10] Blekinge Institute of Technology. UIQ, Usability test. 2008
[cited 2008-08-29]; Available from:
http://www.youtube.com/results?search_query=UIQ%2C+Us
ability+test&search_type=&aq=f

[11] Rönkkö, K., Hellman, M., Kihlander, B. and Dittrich, Y.,
2004. Personas is not Applicable: Local Remedies
Interpreted in a Wider Context, Proceedings of the
Participatory Design Conference, PDC ’04, Artful
Integration: Interweaving Media, Materials and Practice,
Toronto, Canada, (July 27-31, 2004), 112-120.

[12] Faith Popcorn’s Brain reserve; Available from:
http://www.faithpopcorn.com/

[13] Richard Mulholland, UX Magazine;
http://www.uxmag.com/strategy/95/fuck-love-brand

28

http://www.youtube.com/results?search_query=UIQ%2C+Usability+test&search_type=&aq=f
http://www.youtube.com/results?search_query=UIQ%2C+Usability+test&search_type=&aq=f
http://www.uxmag.com/strategy/95/fuck-love-brand

Problems of Consolidating Usability Problems
Effie Lai-Chong Law Ebba Thora Hvannberg

University of Leicester/ ETH Zürich
LE1 7RH Leicester/ Institut TIK

UK/Switzerland
+44 116 2717302

University of Iceland
107 Reykjavik

Iceland
+354 525 4702

law@tik.ee.ethz.ch ebba@hi.is

ABSTRACT
The process of consolidating usability problems (UPs) is an
integral part of usability evaluation involving multiple
users/analysts. However, little is known about the mechanism of
this process and its effects on evaluation outcomes, which
presumably influence how developers redesign the system of
interest. We conducted an exploratory research study with ten
novice evaluators to examine how they performed when merging
UPs in the individual and collaborative setting and how they drew
consensus. Our findings indicate that collaborative merging
causes the absolute number of UPs to deflate, and concomitantly
the frequency of certain UP types as well as their severity ratings
to inflate excessively. It can be attributed to the susceptibility of
novice evaluators to persuasion in a negotiation setting, and thus
they tended to aggregate UPs leniently. Such distorted UP
attributes may mislead the prioritization of UPs for fixing and
thus result in ineffective system redesign.

One concomitant procedure of involving multiple users/analysts
in usability evaluation is to consolidate UPs identified by
different users/analysts to produce a master list. Such a
consolidation process can serve two purposes: (i) providing a
design team with neat and clean information to facilitate system
redesign, and (ii) enhancing the validity of comparing the
effectiveness of different (instances of) usability evaluation
methods (UEMs). This process consists of two phases [1]: The
first step is known as filtering, that is, to eliminate duplicates
within a list of UPs identified by a user when performing a certain
task with the system under scrutiny or by an analyst when
inspecting it. The second step is merging, that is, to combine UPs
between different lists identified by multiple users/analysts, to
retain unique, relevant ones, and to discard unique, irrelevant
ones. While such consolidation procedures are commonly
practised by usability professionals and researchers, little is
known about how it is exactly done and what impact it can have
on final evaluation outcomes and eventually on system redesigns,
especially when severity ratings play a non-trivial role in the
prioritization strategy for UP fixing ([2], [3]).

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Evaluation/Methodology

In the HCI literature, the UP consolidation procedure is mostly
described at a coarse-grained level. Nielson [9], when addressing
the issue of multiple users/analysts, highlighted the significance
of merging different UP lists, but he did not specify how this
should be done. Connell and Hammond [1], in comparing the
effectiveness of different UEMs, delineated the merging
procedure at a rather abstract level. Further, Hertzum and
Jacobsen [4] coined the notion of evaluator effect that has drawn
much attention from the HCI community towards the reliability
and validity issues of usability evaluation. Nonetheless, their
work focused on problem extraction on an individual basis rather
than problem merging on a collaborative basis. More recently, a
tool for merging and grouping UPs has been developed [5],
which, however, supports the work of individual evaluators but
neglects the collaborative aspect of usability evaluation.

General Terms
Measurement, Performance, Experimentation, Theory

Keywords
Usability problems, Merging, Filtering, Consensus building,
Downstream utility, Severity, Confidence, Evaluator effect

1. INTRODUCTION
The extent to which UPs identified by different users/analysts
overlap seems unpredictable, despite the persistent research
efforts of formalizing the cumulative relation between the
numbers of users/analysts and UPs ([7], [8], [10]). The practical
implication of these concerns is to recruit as many users/analysts
as the project’s resources allow, thereby maximizing the
probability of identifying most, but impossibly all, UPs. In summary, the actual practice of UP consolidation is largely

open, unstructured and unchecked. With the major goals to
examine the impact of the UP consolidation process and to
understand the mechanism underlying the consensus building
process, we have conducted a research study. In this paper we
summarize the main findings on the first issue while leaving out
the second one as the data are still being analyzed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 2. RESEARCH METHODS

The empirical study was conducted at a university in the UK. Ten
students (one female) majored in computer science were
recruited. All have acquired reasonable knowledge of HCI and

I-USED’08, September 24, 2008, Pisa, Italy

29

mailto:law@tik.ee.ethz.ch

experience in user-based evaluation through lectures and projects.
They were grouped into five pairs. An e-learning platform was
usability evaluated (i.e. think aloud) with representative end-users
one year ago. Among different types of data collected, we
employed for this current study the observational reports written
by the experimenter who was present throughout the testing
sessions and registered the users’ behaviours in very fine detail.
We also developed several structured forms to register the
participants’ findings in the different steps of our study. All the
participants had to attend two testing sessions: In the first one
they performed Individual Problem Extraction and Individual
Problem Consolidation, and about a week later, they paired up to
perform Collaborative Problem Consolidation.

2.1 Individual Problem Extraction
Each participant was given the narrative observational reports
(printed texts) how the users P1 and P2 performed Task 1 (T1)
“Browse the Catalogue” and Task 2 (T2) “Provide and Offer a
Learning Resource”. For each UP extracted, the participant was
required to record in a structured analysis form five attributes:
1. Develop UP identifier with a given format;
2. Provide a UP description as detailed as possible;
3. Select criteria from a given list to justify the UP;
4. Judge the severity level of UP: minor, moderate, severe;
5. How confident the evaluator was that the UP identified was

true: 1 lowest – 5 highest;
After completing the analysis form for T1, the participant was
asked to apply the same procedure to P1’s T2, and then to P2’s T1

and T2 (Figure 1). In other words, each participant was required
to analyse four sets of data (P1-T1, P1-T2, P2-T1 and P2-T2).

2.2 Individual Problem Consolidation
With the four lists of extracted UPs, the participant was required
to filter out any duplicate within the lists and then merge similar
UPs, resulting in two sets of UPs (i.e. P1-T1 and P2-T1 as one set;
P1-T2 and P2-T2 as another set). Unique UPs identified would be
retained or discarded during this process. The participants were
asked to record the outcomes in the same form for problem
extraction, but they needed to indicate explicitly in the column
UP-identifier which UPs were combined. Severity and confidence
levels could also be adjusted. No time limit was imposed.

2.3 Collaborative Problem Consolidation
With a break of several days, two participants of a group came
together to merge their respective lists of UPs prepared in the
individual sessions into a master list. They could access all the
materials used in the earlier sessions. They were asked to track
every item (i.e., a single UP or combined UPs) in their own
consolidated list by recording in a structured form which of the
three possible changes was made - merged (with which one),
retained or discarded. No time limit was imposed on any of the
above procedures. While individual and collaborative problem
consolidation basically involved similar sub-tasks, the latter was
conducted to observe how the collaborative setting influenced an
individual’s merging strategies.

Observational
Reports

P1-T1, P1-T2

E1 E2

Merged list
of UPs for T1

UPs
from
P1-T1

Observational
Reports

P2-T1, P2-T2

Observational
Reports

P1-T1, P1-T2

UPs
from
P2-T1

UPs
from
P1-T2

UPs
from
P2-T2

Observational
Reports

P1-T1, P1-T2

Merged list
of UPs for T2

Merged list
of UPs for T1

UPs
from
P1-T1

UPs
from
P2-T1

UPs
from
P1-T2

UPs
from
P2-T2

Merged list
of UPs for T2

Consolidated lists
of UPs for T1

Consolidated lists
of UPs for T2

Problem
Extraction

Individual
Problem
Filtering and
Merging

Collaborative
Problem
Filtering and
Merging

Figure 1: The workflow of problem consolidating process

30

3. RESULTS
3.1 Individual Problem Consolidation
The ten participants extracted from the observational reports
altogether 98 and 81 UPs for T1 and T2 over the two users (P1
and P2), respectively. Furthermore, they individually consolidated
their UPs. Table 1 shows the extent to which the participants
merged, discarded and retained the UPs extracted.

Table 1. Distribution of outcomes in the individual filtering

 Merged Discarded Retained
T1 39% 13% 48%
T2 51% 10% 39%

For the merged and retained UPs, there were changes in severity
ratings and/or confidence levels or no changes at all. To simplify
the results, we collapse different degrees of increase/decrease
(e.g. minor moderate/severe or vice versa) into INC or DEC,
respectively, and denote no change with SAME.

Table 2. Severity/confidence changes in merged UPs (Indiv.)

Severity Confidence
T1 T2 T1 T2

DEC 4 (10%) 3 (7%) 6 (15%) 4 (10%)
SAME 20 (53%) 29 (71%) 15 (40%) 18 (44%)
INC 14 (37%) 9 (22%) 17 (45%) 19 (46%)

The same notations are applied to the confidence level. In
merging the UPs, the participants tended to increase the severity
ratings by one or two degrees (i.e. 37% for T1 and 22% for T2;
Table 2). In contrast, it seemed they did not bother to adjust the
severity of the UPs retained (i.e., 2% and 6% for T1 and T2,
respectively). In the post-filtering interviews, most participants
explained that when a UP was both identified in P1 and P2, it
could indicate that the UP was more severe than originally
estimated and that it rectified the realness of the problem, thereby
boosting their confidence. Interestingly, the correlation between
the original severity ratings and confidence levels (r = 0.25, n =
179, p = 0.001) was found to be significant, implying that the
participants were more confident that they judged the severe UPs
correctly but less so when judging minor or moderate UPs. In
contrast, the correlation between the changes in both variables (r
= 0.19, n = 26) was insignificant. In other words, changing the
severity of a UP does not imply that the participant has become
more (or less) confident about the realness of the UP.

3.2 Collaborative Problem Consolidation
In comparison, the participants demonstrated an even stronger
tendency to merge UPs in a collaborative setting (Table 3), which
is higher than that (cf. 39% vs. 81% for T1; 51% vs. 77% for T2)
observed in an individual session. The participants tended to
negotiate at a higher abstract level where broad problem types can
accommodate a variety of problem instances, thus mitigating
direct confrontation with partners over controversial similarities.
The participants tended to receptive to their partners’ proposals,
especially when the agreement thus reached would not cause any
actual economic or personal gain (or loss). When negotiating to
merge or retain UPs, the participants adjusted the severity and
confidence ratings. For each aggregate we averaged the ratings of
the original set of to-be-merged UPs and compared it with the

corresponding final ratings. Table 4 displays the results for the
merged UPs. Similar patterns to Table 1 were observed.

Table 3. Distribution of outcomes in the collaborative filtering

 Merged Discarded Retained
T1 81% 10% 9%
T2 77% 15% 8%

Table 4. Severity/confidence changes in merged UPs (collab.)
Severity Confidence

T1 T2 T1 T2
DEC 2 (5%) 2 (7%) 2 (5%) 3 (11%)
SAME 23 (52%) 16 (57%) 22 (50%) 13 (46%)
INC 22 (43%) 10 (36%) 19 (45%) 12 (43%)

4. DISCUSSION
The empirical findings of this study enable us to draw
comparisons between the individual and collaborative UP
consolidation processes, which presumably involve the core
mechanism of judging similarity among UPs. One notable
distinction is the lenience towards merging in the collaborative
setting, as shown by the high merging rate. Indeed, quite a
number of participants combined UPs that had not been merged in
their individual sessions to merge with their partners’. It may be
attributed to social pressure that coerces them to reach consensus.
The data indicate that as a result of the merging process, severity
ratings of UPs tend to inflate and the number of UPs tends to
deflate excessively in the collaborative setting. In contrast,
confidence levels, in which personal experience plays a role, do
not fluctuate with the merging process. Previous research studies
indicate that severity ratings influence how developers and project
managers prioritize which UPs to fix ([3], [6]). Invalid severity
ratings presumably lead to the fixing of less urgent UPs.
Consequently, the quality of the system may still be undermined
by more severe as well as more urgent UPs.

The implication for the future work is to look into relevant
theories on similarity (an age-old issue), communication, and
social interaction. Further, we aim to extend our empirical studies
by systematically comparing merging through negotiation (i.e. the
consolidation procedure is to be implemented by a group of two
or three usability specialists or a group of developers or an
integrated team) versus merging through authority (i.e. only one
person-in-charge is to combine different lists of UPs). The quality
of the consolidated usability outcomes will be compared, thereby
enabling us to identify valid and reliable methods for
consolidating UPs and to develop objective measures of the cost-
effectiveness of such methods. Findings thus obtained will also
contribute to our ongoing research endeavour on downstream
utility.

5. REFERENCES
[1] Connell, I., & Hammond, N. (1999). Comparing usability

evaluation principles with heuristics: Problem instances vs.
problem types. Proc. INTERACT 1999.

[2] Hassenzahl, M. (2000). Prioritizing usability problems: data-
driven and judgement-driven severity estimates. Behaviour &
Information Technology, 19(1), 29-42.

31

[3] Hertzum, M. (2006). Problem prioritization in usability
evaluation: From severity assessments toward impact on
design. International Journal of Human Computer
Interaction (IJHCI), 21(2), 125-146.

[4] Hertzum, M., & Jacobsen, N.E. (2003). The evaluator effect:
A chilling fact about usability evaluation methods. IJHCI,
15(1).

[5] Howarth, J. (2007). Supporting novice usability practitioners
with usability engineering tools. PhD thesis (VT).

[6] Law, E. L.-C. (2006). Evaluating the Downstream Utility of
User Tests and Examining the Developer Effect: A Case
Study. International Journal of Human Computer Interaction
(IJHCI), 21(2), 147-172.

[7] Law, E. L-C., & Hvannberg, E. T. (2004). Analysis of
combinatorial user effect in international usability test. Proc.
CHI 2004

[8] Lewis, J.R. (1994). Sample sizes for usability studies:
Additional considerations. Human Factors, 36(2), 368-378.

[9] Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen & R.L.
Mack (Eds.), Usability inspection methods. New York: Wiley

[10] Virzi, R.A. (1992). Refining the test phase of usability
evaluation: How many subjects is enough? Human Factors,
34(4), 457-468

32

User Experience Metric and Index of Integration:
Measuring Impact of HCI Activities on User Experience

Anirudha Joshi

Sanjay Tripathi

Indian Institute of Technology Bombay
Mumbai 400076, India

+91 9820345569

Tech Mahindra Ltd.
Pune 411004, India
+91 9922963298

anirudha@iitb.ac.in stripathi@techmahindra.com

ABSTRACT
We propose two metrics to demonstrate the impact integrating
human-computer interaction (HCI) activities in software
engineering (SE) processes. User experience metric (UXM) is a
product metric that measures the subjective and ephemeral notion
of the user’s experience with a product. Index of integration (IoI)
is a process metric that measures how integrated the HCI
activities were with the SE process. Both metrics have an
organizational perspective and can be applied to a wide range of
products and projects. Attempt was made to keep the metrics
light-weight. While the main motivation behind proposing the two
metrics was to establish a correlation between them and thereby
demonstrate the effectiveness of the process, several other
applications are emerging. The two metrics were evaluated with
three industry projects and reviewed by four faculty members
from a university and modified based on the feedback.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – process metrics,
product metrics.

General Terms
Measurement, Design, Human Factors

Keywords
User experience metrics, HCI-SE integration.

1. INTRODUCTION
Large contracted software development companies with tens of
thousands of employees are often involved in a wide variety of
software development projects, often in an off-shore mode.
Managers of user experience (UX) groups in such companies
need to track progress of each project and ensure the quality of
deliverables. They are often required to juggle across projects a
limited resource – the time of their best UX professionals. While

there are numerous usability metrics to evaluate specific projects,
there are few that allow organizations to easily track progress
across projects. Our first proposal is product metric (UXM) that
measures the user’s experience with a product. The objective is to
provide a summary measure of the user experience of a product
that is independent of the domain, context of use, platform or the
software development process, so that the manager is able to
make judgments across projects.

Another challenge faced by UX groups is integrating HCI in
established SE processes. The field of HCI has a large amount of
literature on user-centred design methods, techniques and
processes [1], [3], [17], [23] etc. These proposals are excellent
demonstrations of how user centred design can result in improved
user experience design. Unfortunately, there continue to exist
major gaps between HCI and SE, in academics, literature and
industrial practice. The IFIP working group 2.7/13.4 on User
Interface Engineering remarks that ‘there are major gaps of
communication between the HCI and SE fields: the architectures,
processes, methods and vocabulary being used in each community
are often foreign to the other community’ [7]. For example, while
SE literature admits that communication with the customer is an
unsolved problem, even recent editions of standard text books on
software engineering such as [13] and [20] do not suggest use of
established user study techniques like [1] during communication.
Example projects shown in [13] and [20] seem to take HCI design
lightly, prematurely and without following any process. A
detailed critique of SE literature from an HCI perspective is
presented in [11]. There have been several proposals to integrate
HCI in SE process models (for example, [5], [12], [21]) but none
have become popular in the industry. One reason could be
concerns about return on investments. Though there is plenty of
evidence of the a return on investment of usability activities in
general [2], there is no direct evidence that shows that better
integration of HCI activities in SE processes will lead to better
products at less cost.

Contracted software companies often promise a level of process
compliance to their clients. UX managers need summary
measures of process compliance of their projects to ensure that the
company lives up to its promise. One way would be to measure
how integrated were the HCI activities with SE processes. Our
second proposal is a process metric (IoI) that would be one such
measure. If validated, IoI and UXM can also be used to
demonstrate the return on investment on integration of HCI with
SE – if higher IoI consistently leads to higher UXM, it makes
sense to invest in better integration of HCI with SE.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy

33

The main objective of this paper is to share with other metrics
researchers the lessons we have learned from attempting to
incorporate UXM and IoI in live industrial projects.

We begin with an introduction to different attempts done in recent
years on applying metrics in HCI. Next, our metrics proposals are
described. Finally, the evaluation methodology used so far to
analyse the results of study is described.

2. METRICS IN HCI
Metrics are thoroughly discussed in software engineering
literature. Fenton and Pfleeger [4] describe measurement as “the
process by which numbers or symbols are assigned to attributes of
entities in the real world in such a way as to describe them
according to clearly defined rules”. Pressman [20] highlights the
subtle difference between measurement and metrics –
measurement occurs as the result of collection of one or more data
points, while a software metric tries to relate the measures in
some way. IEEE Standard Glossary [6] defines a metric as “a
quantitative measure of the degree to which a system, component
or process possesses a given attribute”.
Though the word ‘metric’ itself is seldom used in the practice of
usability, several measures are often used. Seconds taken to
withdraw money from the ATM, the number of keystrokes to
enter a word in a complex script, the number of errors made to
complete a banking transaction or the percent of users who
abandon the shopping cart on checkout are all examples of
quantitative measures of the user experience afforded by the
product. However, none of these are summary measures that can
be used for apple-to-apple comparison across projects varying in
domains, platforms and contexts. While several research papers
talk about metrics related to usability and HCI, this paper only
focuses on those that give a summary measure.
Lewis [14] used a rank based system of assessing competing
products based on user’s objective performance measure and
subjective assessment. The metric is useful for a relative
comparison between like products with similar tasks but it does
not result in a measure that can be used across unlike products.
McGee [18] derives a single usability scale across users by
including additional reference tasks. However McGee does not
suggest how to derive a single measure for usability from
measures for the different tasks. Further, this work is completely
dependent on the technique of usability evaluation. This is not
always practical in a global contracted software company striving
to move up the HCI maturity ladder. The other limitation of this
method is that it relies only on perception of users and ignores
perspectives of other stakeholders, particularly the goals of
business stakeholders.
Lin et al [15] propose the Purdue Usability Testing Questionnaire
based on eight HCI considerations to derive a single weighted
average score for usability. While the approach does lead to a
single usability score, the selected eight considerations
(compatibility, consistency, flexibility, learnability, minimal
action, minimal memory load, perceptual limitation and user
guidance) seem to be a mix of usability goals and heuristics that
achieve those goals. Secondly, the weightage for parameters is to
be assigned by the evaluator during the evaluation without
consulting stakeholders. Thirdly, the listed eight considerations
and the questions listed under each of them seem to be limiting

and do not leave room for project-specific goals (e.g. “do it right
the first time”).
Sauro et al [22] proposed a ‘single, standardized and summated’
usability metric for each task by averaging together four
standardized values for task time, errors, completion and
satisfaction. Their calculation however is based on the equal
weightage. Tasks, domains, users, contexts and platforms vary a
lot and it does not make sense to give equal weightage in all
contexts. Moreover, the metric ignores some aspects such as
learnability and ease of use, which might be important in some
contexts.
Measuring the wider notion of user experience (as opposed to
usability) is relatively new concept in HCI and is attracting
attention of the academic as well as the industrial world. Usability
parameters are typically related to the processing of information
or completion of tasks. However, affective reactions and
emotional consequences play important role in the overall user
experience [16]. In some product contexts, we may need to
consider visceral, behavioural and reflective elements [19],
aesthetics [25], enjoyment [10] and creativity [24].
None of the summary metrics mentioned above measure the
experience of a product with reference to all user and business
goals relevant to a product. Many are too complex to compute
practically on an on-going basis in the industrial practice. They
lack the flexibility required to serve the needs of a wide variety of
projects or to mature with the UX group. And finally, there seems
to be almost no work on measuring integration of HCI activities
with SE processes.

3. USER EXPERIENCE METRIC
Fenton and Pfleeger [4] emphasise the importance of goals in
metrics: “a measurement program can be more successful if it is
designed with the goals of the project in mind”. User experience
goals are very important in driving the design of interactive
products. They help speed up the design process, make the design
activity more tangible and help evaluate the design. User
experience goals can be understood easily, even by non-UX-
professionals, and they have a significant overlap with business
goals. Stakeholders outline the user experience goals and UX
professionals fine-tune them on the basis of their knowledge and
findings from user studies. User experience goals are (and should
be) available early in a project – another plus when it comes to
metric calculation in a practical situation.
We propose user experience metric (UXM), a product metric that
measures the quality of user experience. The motivations are:

• to measure the user experience of a product in reference
to its user experience goals

• to develop a flexible metric that can be applied across a
variety of projects, irrespective of domain, context,
platform, process model or usability technique

• to develop a flexible metric that that will mature with the
organization

• and to compute the metric with minimal additional costs
and efforts.

UXM is product metric on a scale of 0-100, where 100 represents
the best user experience possible and 0 represents the worst.
UXM consists of these distinctions:

34

Goals: High-level user experience goals guide the design of
interactive systems.

Parameters: Each high-level user experience goal is broken
down into a set of parameters that help the designer to achieve
and measure the higher-level goal in a direct manner. For example
Learnability can have parameters like Conceptual model clarity,
Language understandability, Minimal training time, Consistency
with earlier version etc.

Weightage: Each goal has a weightage between 0-5 where 0
represents that the goal is not important, 2 represents the typical
importance and 5 represents that it is very important. Further,
each parameter under a goal also has a weightage attached.

Score: Each parameter has a score between 0-100, where 0
represents the worst possible user experience on account of that
parameter and 100 represents the best possible user experience.

Guidelines: The purpose of the guidelines is to help evaluators
assign a score to the parameters. Guidelines let the goal-setters
express themselves better and interpret goals for the context of a
project – e.g. “‘Consistency with earlier version’ means all
frequent and critical tasks from earlier version are unchanged.”
Further, guidelines tell the evaluators when to assign which score:
“The interface clearly communicates the correct conceptual
model. Strongly agree = 100, Weakly agree = 75, Neutral = 50,
Weakly disagree = 25 and Strongly disagree = 0”.

Goals and parameters are a way to express the desired user
experience and performance in the design. Though expressing
user experience goals is a common activity in HCI design, there is
no standard way of doing so. There are many ways to describe the
high level user experience goals. For example, ISO 9126-1
describes usability in terms of understandability, learnability,
operability and attractiveness [8]. ISO 9241 on the other hand
defines usability as the extent to which a product can be used by
specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use [9].
Shneiderman [23] describes goals for user interface design in
terms of five human factors central to evaluation: time to learn,
speed of performance, rate of errors by users, retention over time
and subjective satisfaction.
We adopt goals from Shneiderman as the high-level user
experience goals for a product and express them as: learnability,
ease of use, speed of use, error-free use, retention and subjective
satisfaction. We added ‘ease of use’ to the list as we thought that
it is an important user experience goal distinctly different from
the other factors such as speed. We also generalized the
expressions of some of the goals. For example we express ‘time to
learn’ as ‘learnability’ since it allows for expression of other
concerns such as understandability of language or clarity with
which the interface communicates the conceptual model in
addition to the time users take to learn the interface. We believe
that this allows the designers to express a wider set of goals.
Our proposal of an initial set of goals and parameters are listed in
Table 1. However, we must highlight that this is not a prescribed,
exclusive set. We give the evaluators and stakeholders freedom to
derive additional, relevant parameters that express their goals.
Goals and parameters could be added, removed or combined
according to the context of the project, the needs of the users, the
vision of the stakeholders and UX professionals and to fit the

terminology that the product development team is familiar and
comfortable with. The initial list is meant to give users a starting
point, while the flexibility is meant to allow the metric to mature
with the experience of the organization using UXM.
As Shneiderman [23] states, ‘a clever design for one community
of users may be inappropriate for another community’ and also,
‘an efficient design for one class of tasks may be inefficient for
another class’. Weightages express the relative importance of
goals and parameters in the context of a project. For example, a
product meant to be used several times a day by a call-centre
agent is likely to have higher weightage for ‘speed of use’. A one-
time use product like a web site for visa application for a tourist
might insist on learnability and error-free use. On the other hand,
a life-critical product to be used in a operation theatre is likely to
rate highly error-free use and may sacrifice learnability. A game
would perhaps give highest weightage to ‘subjective satisfaction’.
The evaluators and stakeholders assign the weightage to set the
context of the project. Goal-setters should be aware that while it
may be tempting to set a high weightage to each goal, it may not
be necessary, practical, or even possible to achieve such a design.
The weightages should reflect the priorities of the stakeholders
and users. The weightage would also help prioritize usability
evaluation activity – the highest rated goals and parameters must
be evaluated more thoroughly, while the lower weighted goals
could be perhaps evaluated by a discount method.
The process for computing UXM for a product has these steps:
Goal Setting: Early in the project, typically just after user studies
but before design, an HCI professional and stakeholders identify
goals and parameters for each goal, assign weightage to each goal
and parameter and decide evaluation guidelines for the
parameters.

Scoring: Immediately after a usability evaluation, one or more
independent HCI professionals assign a score to each parameter
of each goal. The usability evaluation could be either user-based
(e.g. a usability test) or review-based (e.g. heuristic evaluation).

UXM Calculation: UXM is the sum of the weighted average of
the scores of all goals. UXM = ∑ (Wg x Sg / ∑ Wg), where Wg is
the weightage of a goal and Sg = ∑ (Wp x Sp / ∑ Wp) where Wp is
the weightage of a parameter and Sp is the score of that parameter.
Scores of some of the parameters can be directly linked to the
findings of the usability evaluations (for example, % of users who
did not make errors while doing benchmark tasks, or % of users
who thought the product was engaging). Other parameters may
not be so easily linked numerically (e.g. conceptual model
confusions discovered during a think aloud test or problems
identified during heuristic evaluation). In such cases, evaluators
consider the guidelines and their own experience to arrive at a
score for each parameter. If there are multiple evaluators, a simple
average across evaluators is deemed to be the score for a given
parameter. Multiple evaluators assign scores independently to
begin with. If there is a significant variation in their scores, the
evaluators discuss the parameter and have the opportunity to
converge their scores before the average is calculated.
In case of applications with multiple user profiles, separate UXM
should be calculated for each profile. Calculation of UXM could
be a part of every usability evaluation of the project, but we
recommend that it should certainly be a part of the final usability
evaluation, beyond which no design changes are planned for.

35

Table 1. An example UXM calculation

Goals Weightage Score

Learnability 4 78.6

Speed of use 2 77.1

Ease of use 3 65.6

Error free use 3 67.5

Retention 1 75.0

Subjective satisfaction 2 78.6

UXM Value 73.3

Goal Parameters Weightage Score

Learnability 78.6

Conceptual model clarity 3 75

Language understandability 0 0

Minimal learning time 5 75

Consistency with earlier version 1 50

Visibility of choices and data 4 100

Consistency with other products 1 50

Speed of use 77.1

User control and freedom 3 75

No memory and cognitive load 4 100

Internal consistency 4 75

Customization 0 0

Automation and shortcuts 1 0

Ease of use 65.6

Minimal user task load 5 75

Automation of routine tasks 3 50

Error free use 67.5

Good feedback 4 75

Error tolerance 3 50

Error recovery 3 75

Retention 75.0

Retention 3 75

Subjective satisfaction 78.6

Visceral appeal 2 75

Behavioural appeal 4 75

Reflective appeal 1 100

Table 1 shows an example UXM calculated by a team for an Indic
text input interface for novice users on a mobile phone. The team
was given a default set of higher level goals, parameters and
example parameter evaluation guidelines. The team first assigned
the weightages for higher level goals (shown in the second
column of the upper part of Table 1). Next, they broke down
goals into parameters and assigned them weightages (shown in

the second column of the lower part of Table 1). The team’s
experience from previous Indic text input projects and mobile
phone projects helped them arrive at these weightages.
The team then evaluated the interface and assigned scores to each
parameter (shown in the third column of the lower part of Table
1). A weighted average of parameter scores gave the score for
each goal (shown in the light grey cells of the third column of
lower part of Table 1). A weighted average of the goal scores
gave the UXM value (shown in the dark grey cells of the upper
part of Table 1). Parameter evaluation guidelines have not been
listed in this paper due to space constraints.

4. INDEX OF INTEGRATION
We conceive Index of Integration (IoI) as an empirical process
metric, nominally on a scale of 0-100, where 100 represents the
best possible integration of HCI activities in the software
development activities and 0 represents the worst. The metric
consists of these distinctions:

Software Engineering Phases: These are the broad phases as
described in a software engineering process model.

HCI Activities: These are prescribed for each phase of the
software engineering process model.

Weightage: Each HCI activity will have a given weightage on the
scale of 0-5 where 0 represents that the activity is not important, 3
reflects the typical importance in most projects and 5 indicates
that this activity is very important in the context of that project.

Score: Each activity has a score associated with it. The score is
given on a rating of 0-100, where 100 represents the best case
situation where the activity was done in the best possible manner,
in the most appropriate phase of software development and with
the best possible deliverables. 0 represents the worst case
situation where the activity was not done at all.

Activity evaluation guidelines: These spell out considerations
that help the evaluation of each activity.

Software engineering phases have been extensively described in
literature. For example, the phases of the waterfall process model
are Communication, Planning, Modelling, Construction and
Deployment [20].
On the other hand, no widely accepted industry-wide
specifications of HCI activities for given SE phases have emerged
so far. But there have been a few proposals. For example, [12]
prescribes that the Communication phase of the waterfall model
should have these HCI design activities: Contextual user studies
and user modelling, Ideation, Product definition and Usability
evaluation and refinement of product definition. Figure 1
summarizes the HCI activities suggested for the waterfall model
phases based on these recommendations.

36

Figure 1. Integration of HCI activities with the phases of the

waterfall model [12]. The HCI activities corresponding to
each phase have been underlined.

Weightage of some HCI activities could vary within a range in the
context of a project. For example, if the domain or users are
unknown to the UX team, it may be very important to do
contextual user studies in the communication phase (weightage =
4). On the other hand, if the UX team is already very familiar
with the context and the domain and if they have a lot of
experience designing similar products, it may be less important
(weightage = 2). Table 2 summarises loosely recommended
weightages for HCI activities for the waterfall model.

Guidelines may define the techniques used to carry out activities,
the skills and experience levels of the people doing the activities,
the deliverables and other parameters that affect the fidelity of the
activity. For example, following are the guidelines for the activity
of Contextual user studies and user modelling in Table 2:

1. Organizational data gathering and user studies were done
before requirements were finalised

2. User studies were done in the context of the users by the
method of contextual inquiry

3. User studies were done with at least 10 users in each profile

4. User studies were done by people with experience in user
studies in a similar domain in at least 2 projects

5. The findings including user problems, goals, opportunities
and constraints were analyzed, documented and presented in

an established user modelling methodology such as
personas, work models, affinity diagram or similar Communication

Project initiation
User studies

Ideation
Product definition

Evaluation and refinement
Requirements specification

Planning
Estimating
Scheduling
Tracking

6. Competitive products and earlier versions of the product
were evaluated for potential usability problems by using
discount usability evaluation methods such as Heuristic
Evaluation or better

7. User experience goals were explicitly agreed upon before
finalizing requirements

100 = All the above are true; 75 = At least five of the above
are true, including 7, 50 = At least three of the above are
true, including 7; 25 = At least two of the above are true, 0 =
None of the above are true

Modelling
 Detailed UI prototyping

Table 2. An example IoI calculation

SE Phases and HCI Activities Weightage Score

Communication

Contextual user studies and user
modelling

4 39

Ideation 2 6

Product definition 3 75

Usability evaluation and refinement
of product definition

1 63

Modelling

Detailed UI Prototyping 5 53

Usability Evaluation and
Refinement of the Prototype

4 44

Construction

Development support reviews by
usability team

3 29

Usability evaluation (summative) 1 46

IoI Value 45

The process for computing IoI for a project has these steps:
Company HCI Process Prescription: The HCI group in the
company prescribes what HCI activities should be done in which
phase of SE process, expected deliverables from each activity,
suggested weightages for each activity and suggested activity
evaluation guidelines. As it often happens, a contract software
development company may follow not one SE process, but
several. In that case the HCI design process needs to be integrated
with each SE process. The prescribed process also suggests a
weightage for each HCI activity and guidelines to score each
activity.

Project HCI Process Definition: After getting a project brief, the
UX professional fine-tunes the weightages for the prescribed HCI
activities after considering the domain, the users and project
context. For example, if the HCI team has recently done
contextual user studies in the same domain for a similar product
and is already very knowledgeable about the context, then he may
reduce the weightage of contextual user studies. On the other
hand if the team is less knowledgeable, he may increase the

Usability evaluation
Requirements analysis

Software design

Construction
Code
Test

Usability evaluation

Deployment
Delivery
Support

Feedback

37

weightage. He should consult colleagues in the development team
and business stakeholders before finalizing the weightage.

Process Evaluation: After the project is over, a group of
independent UX professionals review the HCI activities and
evaluate them for process compliance and give a score for each
activity on a scale of 0 to 100. They may reduce the score if an
activity was done with lower fidelity, resulted in poor quality
deliverables or was done later than prescribed. In case of multiple
evaluators, an average across evaluators is deemed to be the
score.

IoI Calculation: The metric is found by computing the weighted
average of the scores of all activities: IoI = ∑ (Wa x Sa / ∑ Wa),
where Wa is the weightage for a particular HCI activity, Sa is the
score (from 0-100) for that activity. In case there is a lot of
divergence in scores of a particular HCI activity, the activity is
discussed and reviewers are given a chance to change their score
before an average is taken.

Table 2 shows calculation of IoI for an example project. First,
senior UX professionals defined the HCI activities, activity
weightages and evaluation guidelines that the company should be
following. Then a project that had recently ended was selected for
retrospective review. The project manager and the UX
professionals working on the project fine-tuned the weightages for
the project context. The second column of Table 2 contains these
weightages. A group of reviewers comprising of some project
insiders and outsiders reviewed and rated the HCI activities in the
project and its IoI was calculated. The third column of Table 2
contains the average scores assigned to each activity by the
reviewers.

Guidelines for evaluating all HCI activities listed in Table 2 have
been created. More guidelines for evaluating HCI activities as
part of extreme programming process have been created as well.
Both have been omitted here due to space constraints.

5. METRICS EVALUATION
The authors evaluated the metric in two ways. First, UXM and IoI
metrics were computed for retrospectively projects in Tech
Mahindra, a large contracted software development company. In
each case, the metrics computation was done by HCI
professionals from the project, independent HCI professionals and
project stakeholders. At the end of metrics computation, feedback
was taken from participants of each project about the metrics.

Second, the metrics were presented to a group of faculty members
from a reputed university and their comments were noted. Three
of these were faculty members from the computer science
discipline. One was a faculty member from a design school who is
also an expert in cognitive psychology.

5.1 Findings
It typically took about 3 hours to compute both IoI and UXM for
each project. The time included explaining the two metrics,
weightage assignment and scoring. This seemed to be optimum
time, longer meetings were difficult to schedule. The projects
performed similarly in IoI and UXM scores – the one project that
had a high UXM value also had a high IoI value. Participants,
particularly project stakeholders, were at home with the activity
of metric calculation. To them, the activity seemed to bring HCI

closer to SE. It seemed to create lot of buy-in for HCI activities
from the project stakeholders. One project stakeholder said “I
never thought we could think so much [about user experience].”
The activity seemed to be more successful in projects where
several stakeholders from the project participated as it stimulated
discussion among stakeholders. While the participants appreciated
the organizational perspective, the metrics seemed of less use to
the projects as the projects were already over. Participants
suggested that metrics should be calculated mid-way through the
project while course correction was still possible.

Specifically, UXM helped the HCI designers and project
stakeholders to make goals explicit. One HCI designer remarked,
“Had we done this earlier, I would have known where to focus.”
The teams usually added a few goal parameters (typically 2-3 per
project) and adjusted weightage to suit UXM to their project.
They confirmed that this flexibility is indeed desirable. Though
parameter evaluation guidelines for UXM helped, more details
were desired. Participants did not make changes to the parameter
evaluation guidelines except when new parameters were added.
Giving examples of HCI goals (learnability, ease of use etc.)
helped participants to set goal parameters and weightages. One
stakeholder remarked: “without these inputs it would have been
difficult to [assign weightage and scores].”

In case of a few UXM parameters, divergent scores emerged for
some parameters in each project. Usually variations happened in
parameters where the evaluation guidelines were not understood
well or were interpreted differently by evaluators. In such cases, it
was felt, that it was better to let participants discuss the parameter
and change ratings to converge scores if they so desire. Reducing
the number of steps in scoring a parameter (e.g. 0-25-50-75-100)
helped reduce variation among scores. More detailed UXM
parameter evaluation guidelines with examples will further help
in reducing divergence.

Computing IoI was useful for project stakeholders as they could
see the importance of HCI activities in the SE context. The HCI
activities integrated in SE process models were acceptable as
suggested. Though they were explicitly prompted, none of the
project stakeholders wanted changes to the prescribed HCI
activities, their weightage or evaluation guidelines. An important
feedback was need for process models specifically targeted to
redesign projects. Process models typically discuss new product
development. Given that many industry projects are “next version
of X” type, process models must be specifically adapted for them.

Walking through the activity evaluation guidelines helped in
scoring as all stakeholders were not aware of all HCI activities. It
was felt that IoI should be computed before computing UXM as
this minimizes bias.

The metric descriptions presented in this paper are a result of
iterative modifications that reflect the feedback and lessons learnt.

6. DISCUSSIONS
It is important to discuss the limitations and risks of the two
metrics proposed. Both UXM and IoI are summary measures that
leave out much information. They allow a drill-down to
constituent components, but do not point to specific problems or
give suggestions for improvement. But summary measures are
useful in many contexts, particularly for comparison across

38

projects. Such comparisons can help UX groups understand what
works and what doesn’t and improve performance year-on-year.
Perhaps most important limitation of UXM comes from the
ephemeral nature of a ‘user experience’. Any attempt to
numerically embody such an abstract phenomenon is bound to be
subjective and measures could differ according to the
interpretation of the evaluators. Further, large companies are
involved in software development projects for many clients,
across domains, platforms, users, use contexts and task
complexity, frequency and criticality.
Finally, there is a risk that because UXM measures are low cost,
organizations may be tempted to sacrifice all user-facing activities
(such as usability tests or field studies) in its favour. We do not
recommend this at all. The purpose of UXM is not to replace
these established methods but to supplement them and to help
them mature.
In spite of these limitations, we believe that UXM is useful. UXM
shows the extent to which user experience goals were achieved in
a particular project. We found that breaking up abstract notions of
user experience into specific goals and parameters helped
evaluators focus on one issue at a time and reduced the
subjectivity in measurement. Making the evaluation criteria
explicit and averaging across several evaluators further reduced
the subjectivity in judgement. The risk of variety in products (the
apples-and-oranges risk) was partly mitigated by selecting goal-
parameters relevant to each project and giving custom weightage
to each parameter.
The main limitation of IoI is that it does not measure the absolute
process quality of the project, rather how compliant was a project
to the prescribed process. There are no widely-accepted integrated
process models at this stage. Yet, IoI in conjunction with UXM
may be used to verify the effectiveness of new process model
proposals. If UXM and IoI are correlated, the new proposal seems
acceptable. On the other hand if the UXM and IoI do not show a
correlation, it questions the prescribed process model.
UXM and IoI have an organizational perspective and make more
sense while looking across hundreds of projects rather than within
each project individually. They have very low additional
overheads on the process and are easy to integrate in the process.
Overall feedback indicates that UXM and IoI are useful and
practical in evaluating products and processes. There was a lot of
buy-in from project stakeholders calculating metrics as there was
a lot of willingness to track, control the user experience of the
product. The aspects that metric calculation was light-weight and
independent of specific usability methods were particularly liked.

7. FUTURE WORK
In future, we plan to use metrics prospectively throughout the
duration of projects and demonstrate their usefulness during the
project. We will be building more elaborate tools and guidelines
to improve the consistency of weightages and scores. We also
propose to do a rigorous validation of the two metrics in
experimental and industrial situations.
In its current form, UXM goals, parameters and weightages have
to be chosen on the basis of experience of individuals. However,
it is possible to design tools in future that will collate experience
of several practitioners to help in choices of future goals,

parameters and weightages. A similar tool for IoI can also evolve
the specification of processes.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for invaluable comments on
improving our presentation of this material. In particular, we
thank Ved Prakash Nirbhay and Deepak Korpal from Tech
Mahindra for allowing us to interact with their team members
while testing the metrics in different software projects. We also
thank members of User Interaction Design Group at Tech
Mahindra Ltd. for participating in User Experience metrics
evaluation. We also thank Pramod Khambete for his continuous
support and appreciation. We thank Prof. NL Sarda, Prof. UA
Athavankar, Prof. Umesh Bellur and Prof. S Sudarshan for their
continuing guidance and suggestions in developing the two
metrics.

9. REFERENCES
[1] Beyer, H., Holtzblatt, K., Contextual Design: Defining

Customer Centered Systems, Morgan Kaufman (1998)
[2] Bias, R., Mayhew, D. (Eds), Cost-Justifying Usability,

Second Edition: An Update for the Internet Age, Morgan
Kaufmann (2005)

[3] Cooper, A., Riemann, R., About Face 2.0 the Essentials of
Interaction Design, Wiley (2003)

[4] Fenton, N.E., Pfleeger, S.L., Software Metrics – A Rigorous
and Practical Approach, Thomsan Brooks/Cole (2002)

[5] Göransson, B., Lif, M., Gulliksen, J., Usability Design –
Extending Rational Unified Process with a New Discipline.
International Workshop on Interactive Systems Design,
Specification, and Verification (2003)

[6] IEEE Standard Glossary of Software Engineering
Terminology, IEEE, 1993

[7] IFIP working group 2.7/13.4 on User Interface Engineering,
Bridging the SE & HCI Communities: http://www.se-
hci.org/bridging/index.html (2004), accessed August, 2008

[8] International Organization for Standardization, ISO/IEC
9126-1:2001 Software Engineering - Product Quality (2001)

[9] International Organization for Standardization, ISO 9241-
1:1997 Ergonomic requirements for office work with visual
display terminals (VDTs) (1997)

[10] Jordan, P. W., Designing pleasurable products, Taylor &
Francis (2000).

[11] Joshi, A: HCI in SE Process Literature, Indo-Dan HCI
Research Symposium, IIT Guwahati (2006)

[12] Joshi, A., Sarda N.L.: HCI and SE: Towards a ‘Truly’
Unified Waterfall Process. HCI International ‘07 (2007)

[13] Kroll, P., Kruchten, P., The Rational Unified Process Made
Easy, Pearson Education (2003)

[14] Lewis, J., A Rank-Based Method for the Usability
Comparison of Competing Products. Human Factors and
Ergonomics Society 35th Annual Meeting 1312--1316
(1991)

39

[15] Lin, H. Choong, Y. Salvendy, G. A proposed index of
usability: a method for comparing the relative usability of
different software systems. Behaviour & Information
Technology (1997)

[16] Mahlke, S., Understanding users’ experience of interaction,
in Marmaras, N., Kontogiannis, T., Nathanael, D. (Eds.),
Proc. EACE '05 (2005). 243-246.

[17] Mayhew, D., The Usability Engineering Lifecycle: A
Practitioner's Handbook for User Interface Design; Morgan
Kaufmann; 1998

[18] McGee, M., Master usability scaling: magnitude estimation
and master scaling applied to usability measurement, Proc.
CHI’00, ACM Press (2004) 335-342.

[19] Norman, D.A., Emotional Design: Why We Love (or Hate)
Everyday Things, Basic Books (2004).

[20] Pressman, R.: Software Engineering – a Practitioner’s
Approach. 6th edition. McGraw Hill (2005)

[21] Pyla, P. S., Pérez-Quiñones, M. A., Arthur, J. D., Hartson, H.
R.: Towards a model-based framework for integrating
usability and software engineering life cycles. Interact 2003
Workshop on “Closing the Gaps: Software Engineering and
Human Computer Interaction” 67--74 (2003)

[22] Sauro, J., Kindlund, E., A method to standardize usability
metrics into a single score. CHI '05 401-409 (2005)

[23] Shneiderman, B.: Designing the User Interface, Strategies for
Effective Human-Computer Interaction. 4th edition. Addison
Wesley (2004)

[24] Swallow, D., Blyth, M., Peter, W., Grounding experience:
relating theory and method to evaluate the user experience of
smart-phones, Proc. 2005 Annual Conference on European
Association of Cognitive Ergonomics (2005) 91-98.

[25] Tractinsky, N., Katz, A. S. & Ikar, D.. What is beautiful is
usable, Interacting with Computers, 13 (2000) 127-145

40

Eclipse Plug-in to Manage User Centered Design
Shah Rukh Humayoun Tiziana Catarci Yael Dubinsky

Dipartimento di Informatica e
Sistemistica “A. Ruberti”

SAPIENZA - Università di Roma
Via Ariosto - 25, 00185, Roma, Italy

Dipartimento di Informatica e
Sistemistica “A. Ruberti”

SAPIENZA - Università di Roma
Via Ariosto - 25, 00185, Roma, Italy

Dipartimento di Informatica e
Sistemistica “A. Ruberti”

SAPIENZA - Università di Roma
Via Ariosto - 25, 00185, Roma, Italy

dubinsky@dis.uniroma1.it humayoun@dis.uniroma1.it catarci@dis.uniroma1.it

ABSTRACT Variations in activities arise in different UCD methods [5, 15],
and still the Human-Computer Interaction (HCI) community lacks
to agree upon a precise definition of UCD methods or process [3,
8]. However, in [8] there is a set of definition of twelve principles
for designing and developing systems with focus on UCD that is
obtained as: “User-centered system design (UCSD) is a process
focusing on usability throughout the entire development process
and further throughout the system life-cycle” (p. 401). The
International Organization for Standardization (ISO) has also
defined the standard guidelines to deal with different aspects of
HCI and UCD; in particular, ISO/DIS 13407

User-centered design (UCD) approach guides the design of user
interface (UI) and its evaluation by integrating user experience as
part of the software development process. Involving users during
the development process by applying UCD techniques minimizes
risks and increases the product quality. One of the challenges
towards this is to automating the management of UCD activities
during the development time thus to steer and control the UCD
activities within the development environment of software
projects. In this paper, we present a plug-in for Eclipse
development platform to manage UCD activities at the Integrated
Development Environment (IDE) level. We develop and evaluate
the plug-in with teams that work according to the agile software
development approach. Using this plug-in, the development teams
can manage UCD activities at IDE level hence developing high
quality software products with adequate level of usability.

3 provides the
guidance on user-oriented design process. Other relevant ISO
standard guidance are ISO 9241-114 5, ISO TR 16982 . A detailed
discussion about the methods, processes, guidelines, and
prototype activities in UCD can be found in ISO standards and in
[5, 15].

Lack of usability and inefficient design of the end-product are
common causes amongst the others for failure of software
products [12, 14]. The software products are developed for the
users, and normally fail if the users find it difficult to operate
them due to the lack of usability and inappropriate design. The
software development teams usually work with the users either at
the start of project for getting the requirements or at the end of
project to test and evaluate the developed product. Furthermore,
normally in the testing phase, the project teams focus more on
checking the functionalities of the product (such as performance,
reliability, security, robustness, etc) rather than its usability and
design aspects. Checking usability or solving defects at the end
of the development process needs more time, efforts, and money
hence causing the failure of many software projects As a result,
involving the users in the design phases is a good practice to
identify lack of usability and design defects early in development
time, in order to avoid any possibility of product failure at the
end. The UCD approach, described above, provides methods and
techniques for involving users at early stages of development
[15]. So, integrating the UCD approach within software
development processes gives the benefit of including the user
experience as part of the development process for producing
quality products with adequate level of usability.

Categories and Subject Descriptors
H5.2 [User Interfaces]: User-centered design, K.6.3 [Software
Management]: Software development, software process.

General Terms
Management, Measurement, Design.

Keywords
User-centered design (UCD), user experience, agile software
development, Eclipse plug-in.

1. INTRODUCTION
The user-centered design (UCD) approach [5, 15] is used to
develop software products by positioning the real users of the
system at the centre of design activities, e.g. by representing or
modeling users in some way like scenarios and personas; through
users testing of prototypes (either paper or working prototype); by
involving users in making design decisions (e.g. thorough
participatory design). The approach focus is on the increase of
usability for the users by involving them in design and
development activities. UCD activities aim at reducing the risks
of the software project and increasing the overall product quality. Analyzing the current software design practices, we identified a

lack of UCD management which we define for a specific software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

3 ISO/DIS 13407: Human Centered Design for Interactive
Systems

4 ISO 9241–11: Ergonomic requirements for office work with
visual display terminals (VDTs)

5 ISO TR 16982: Ergonomics of human-system interaction -
Human-cantered lifecycle process descriptions

I-USED ’08, September 24, 2004, Pisa, Italy

41

project as the ability to steer and control the UCD activities
within the development environment of the project. This
management of UCD activities at IDE level is important as it will
help to integrate and automate UCD activities across different
development life-cycle phases. By automating the management of
UCD activities within development environment we decrease the
time and cost to test each unit and improve the overall product
quality.

In this paper, we present an Eclipse plug-in to manage the user
involvement for different UCD activities in software development
that can work with any software development process life-cycle.
Managing UCD activities while working according to the agile
software development approach [1] was already suggested [2, 4,
10, 11, 13, 7]. Our contribution is by automating UCD
management at IDE level to enable, for example, creating
experiments, adding users, analyzing results, and tracing the code.

The remainder of this paper is as follows. In Section 2 we
describe our framework to integrate the user experience in the
process of software development. Section 3 presents and explains
how we can use our developed Eclipse plug-in to manage UCD
activities at IDE level during software development. We conclude
in Section 4.

2. USER EXPERIENCE AND THE
DEVELOPMENT PROCESS

A software development approach that has been emerging in the
last decade is the agile approach that is used for constructing
software products in an iterative and incremental manner; where
each iteration produces working artifacts that are valuable to the
customers and to the project. This is performed in a highly
collaborative fashion in order to produce quality products that
meet the requirements in cost effective and timely manner [1].

Based on our experience with guiding the implementation of the
agile approach [16, 6, 9], and the integration of UCD techniques
in the last three years in agile projects in academia [7], we gather
the cases in which UCD can be supported within the IDE.

The main characteristics of the integrated approach of agile and
UCD that we use are:

3. Iterative design activities - In many cases, when user-centric
techniques are used, the design of the system is refined
according to the users’ evaluations and this is performed
mainly during the design phase. When introducing the agile
approach, the design is updated regularly as the product
evolves. When combining UCD activities with the agile
approach, the user evaluation is fostered by performing UCD
tasks in each iteration of two to four weeks, and the design is
updated according to the evaluation of on-going outcomes that
are considered as refactoring tasks.

4. Measures – Taking measurements is a basic activity in
software development processes. The agile approach
emphasizes it and suggests the tracker role. When combining
agile and UCD, the set of evaluation tools is built and refined
during the process and is used iteratively as a complement to
the process and product measures.

5. Roles – Different roles are defined to support software
development environments. The agile approach adds roles for
better management and development of the project. Combining
agile and UCD adds the UCD roles, like for example the UI
Designer role.

Using our integrated approach of UCD and agile with software
teams in the academia, we have gathered use cases to establish the
plug-in specifications. Following are six representative use cases
that are categorized in three themes: the development process, the
evaluation activity, and the design improvement.

2.1 Development Process
There is a need to involve the users in the process of development.

Following are examples for use cases that relate to this category:

 One of the tasks during the first planning session is as
follows: ‘Explore who are the kinds of users who should use
the product that we develop; what are their characteristics;
what are their needs; what are their expectations from the
product.’ The customer explains that this is an important task
since he cannot represent all users and actually he does not
know for sure what their exact needs are (though he is sure
they will like it a lot). One of the teammates asks to be
assigned to this task and estimates it as 10 hours of work for
this iteration. Presenting her results after two weeks, she
opens her development environment in the database of the
User Perspective and shows the list of 20 users she talked
with (names, titles, contact details), main issues that were
learned, and one new task that has emerged for future
iterations: ‘Prepare and run a questionnaire that will enable
us to extract users’ needs.’ The customer sets high priority
for this new task.

 The project manager reviews the subjects for the coming
reflection session, and sees that one of the subjects is ‘ways
to assess the usability of our product’. She then sends
invitations to seven users from the two different kinds of
users to join this meeting. During the reflection session, one
decision is made that two users will participate in each
iteration planning session and their responsibility will be to
give feedbacks on what presented. In addition they will help
in defining three measures that will be automated thus enable
teammates an immediate feedback during development.

2.2 Evaluation
There is a need to perform user evaluation and to manage it along
the process of development.

Following are examples for use cases that relate to this category:

 The team leader browses over the details of the user
experiments that are planned for tomorrow. He sees the
number of users that will arrive, the names, and
responsibilities of the teammates that will take care of these
experiments. He checks the variables that were set and the
experiments flow.

 One of the teammates sees that the User Perspective flushes
meaning new data have arrived. He clicks on it and sees that
the results of the user experiments that were conducted
yesterday are in. He is surprised to find a new problem with

42

high severity ranking. Examining results from previous
experiments, he observes that this is a new problem and adds
a note about it in the discussion area. During the next
iteration planning, the experiments’ results are presented and
among others, a measure is presented that shows two
problems that emerged from the users; one in normal
severity and the other one in high severity.

- A user interface to run the experiment
- Client / Server architecture for

running the experiment
- Support automatic measures for user

evaluation that are derived from user
experience

- On line help
- Traceability – experiments should be

part of a specific project that we
develop; each specific development
task that is derived from one or more
experiments results should be
associated with the appropriate code
parts that implement them

2.3 Design Improvement
There is a need to improve the design of the user interfaces based
on the evaluation results.

Following are examples for use cases that relate to this category:

 The designer of the user interface views the latest design
diagrams and tries different changes that adhere to the new
task in this iteration. The task was added due to the last
problem that was found by the users. Thinking of different
options, she talks with two users and receives their
feedbacks. She shows them the possible drawings of the new
interface and asks them to simulate trying it while thinking
aloud. She summarizes the results and sets her decision.

3 3 Stability
- Testing and Refactoring
- Development refinement

4 5 Heuristics and User Profiling
- Support Nielsen heuristics technique
- Support user profiling
- Scale with more end projects

 One of the teammates browses over the system reports and

looks for each user experiment, which was conducted in the
last two releases, what were the results and what were the
implications on design. For each implication, he sees the
development tasks that are related.

3.2 Using the UCD Management Plug-in
The main feature of the UCD management plug-in is the ability to
create and deploy user experiments from within the Eclipse IDE.
Focusing on a specific software project, we can define different
kinds of experiments. One kind for example is a task-based user
experiment in which the participant uses the target product and
receives the tasks to perform along the experiment. During this
experiment the system measures different performance times.
Another kind of experiment is questionnaire-based experiment in
which the user specifies the level of his/her agreement with the
presented set of statements. The development team chooses the
set of experiments according to the nature of software project and
then selects appropriate users from the pool of target users to
perform these tasks.

We suggest that the combination of the agile and UCD
approaches should be supported by an extension to a
contemporary development environment in order to be used in a
natural manner. This is elaborated in the next section.

3. THE UCD MANAGEMENT PLUG-IN
3.1 The Project
A team of six developers in a project based course in the
academia has developed the UCD plug-in that is presented in this
paper6 We illustrate the definition of a task-based user experiment using

a view that is presented by Figures 1 and 2.
. The project took five and a half months and was

composed of 4 iterations, three of 5 weeks each and one of 3
weeks. Table 1 shows the durations and the main themes of each
iteration.

Table 1. The iterations – duration and themes
Iter. Duration

(weeks)
Themes

1 5 Experiments and Roles
- End-to-end experiments: define the

experiment, execute it, results view
- Evaluation manager role-perspective
- UI designer role-perspective
- Work items can be created, assigned
- The system has one data repository

Figure 1. Defining the experiment (left hand side) 2 5 Users’ interface and user experience (UX)

automation
- Users’ management and permissions

In the left hand side of the view (Figure 1) we can see the options
of setting the experiment schedule and the users who are
involved. In the right hand side (Figure 2) we can see the options
of adding tasks to the experiment, save the experiment, and
execute it.

6 This project was developed as part of the “Annual Project in

Software Engineering” course that is instructed by the first
author at the Computer Science Department at Technion IIT.

43

Figure 2. Defining the experiment (right hand side)

The experiment can run locally i.e., on the server on which the
data is stored, or remotely. Setting the remote option causes the
enlisted users to receive email with the experiment files attached,
so they can perform the experiment in a way that the results are
stored in the server. Figure 3 shows the results view of a specific
experiment. Different kinds of experiments were developed that
support appropriate results views.

Figure 5. Associating code to a development task

Figure 6 shows how this code is marked (left side bar) and
highlighted.

Figure 6. Associated code is marked Figure 3. The experiment’s results view

 Experiment Explorer is available to support the experiments of a
specific project (Figure 4). Experiments can be shared among
different projects. 3.3 Evaluating the Plug-in

As part of the third iteration, the team was asked to evaluate its
own product (the UCD management plug-in) using itself (“eating
own cookies”). Following is the plan and the results of this
preliminary evaluation.

The evaluations goals as written by the team were:
 Examining suspicious issues like adding new users to the

system and analyzing the experiments’ results (specifically
for the questionnaire-based experiments).

 Receiving feedback on the graphical user interface (GUI)
and how intuitive it is.

 Examining the plug-in on a large scale project.
Two kinds of experiments were defined by the team for the
evaluation of the plug-in. The first experiment was a task-based
experiment and the second was a questionnaire-based experiment.

Figure 4. The Experiment Explorer The participants were 3 students from another team in the same
course, and in addition all the six developers performed both
kinds of experiments. Each participant performed the experiment
by himself / herself while one observer was sitting aside for
writing notes.

Managing the experiments, new development tasks are derived.
These tasks are the results of the already conducted experiments.
The plug-in enables associating code part/s to the appropriate
task/s and vice versa so traceability is kept. Figure 5 shows how a
code segment can be associated.

44

Figure 7. Results of questionnaire-based experiment – participants from another team

Figure 8. Results of questionnaire-based experiment – team members are the participants

1. “In the questionnaire-view that is presented to the

participant, long tasks appear truncated.”
We focus on the questionnaire-based experiment and comments
of the observers and show an example of a derived task that
emerged for further development. The questionnaire included the
following statements:

2. “The participant did not know how to save the changes in the
result page. He searches for a save button like appears in
other screens.”

1. Logging in to the system is simple. 3. “The names of the operations in the menu of the experiment
view are not clear.” 2. Adding a user or a teammate to the system is simple.

3. Switching between teammates is fast and simple.
Analyzing the results of both experiments, associations to the
specific results were presented for each conclusion, and then
suggested development tasks were associated to the conclusions.

4. The configuration page is intuitive.
5. The Questionnaire result page displays the level of

agreement (per statement) in a clear way.
6. The Questionnaire result page displays the usability

problems discovered in a clear way. One of the finding, for example, was detailed as follows:
“It was found that there is a difficulty in identifying problems in
the product out of the information that is presented in the ‘results
page’. Participants find it hard to associate the results (as
presented in the ‘results page’) to the experiment goals and to the
practical problems that were discovered.”

7. The different editors and views of the plug-in are uniform
and follow a similar theme

8. The different editors and views of the plug-in blend
seamlessly into the eclipse.

9. I would use this plug-in to test the usability of an application
in development. “Association to the results:

Figures 7 and 8 show the results of the three participants from
another group and the results of the developers themselves
respectively.

 In the questionnaire-based experiment the two teams marked
‘Disagree’ for statement 6 [The questionnaire result page
displays the usability problems discovered in a clear way].

 In the task-assignments experiment, it took long time, 84 and
177 seconds in average for the two groups, to complete task
5 [According to the experiment goals, try to assess the

Following are few comments, for example, that were presented by
the observers:

45

number of usability problems indicated by the results, and
write that number as a conclusion to this experiment].”

The development task that was defined using the plug-in is as
follows: “Enable determining thresholds for success and failure in
an experiment and present them clearly in the ‘results page’.”

4. CONCLUSION
In this paper, we present our Eclipse plug-in to automating the
process of managing UCD activities at the Integrated
Development Environment (IDE) level during the development
time of software projects. To develop the framework we were
inspired by use cases that emerged when performing UCD
activities with the agile teams. Using this plug-in, the software
project team can create experiments, adding users, analyzing
results and tracing back it to code for their developed or in-
progress product. By automating the process of managing UCD
activities the chances of creating quality products with adequate
level of usability become high, as it helps to get benefits of user
experience during development time.

In future, we intend to continue work on the developed plug-in to
manage more UCD activities. Further, we also intend to evaluate
the developed product on big scale with different size of software
development teams.

5. ACKNOWLEDGMENTS
Our thanks to the plug-in developers from Technion IIT whose
product is presented in this paper: David Ben-David, Tomer
Einav, Yoav Haimovitch, Barak Nirenberg, Laliv Pele, and Alon
Vinkov.

6. REFERENCES
[1] Agile Alliance 2001. Manifesto for Agile Software

Development. Technical Report by Agile Alliance,
http://www.agilealliance.org.

[2] Blomkvist, S. 2005. Towards a Model for Bridging Agile
Development and User-Centered Design. Published as a
book chapter: Seffah, A., Gulliksen, J., and Desmarais, M.,
(eds.). Human-Centered Software Engineering – Integrating
Usability in The Development Process. Springer, Dordrecht,
The Netherlands, 217-243.

[3] Blomkvist, S. 2006. User-Centered Design and Agile
Development of IT Systems. IT Licentiate theses,
Department of Information Technology, Uppsala University.

[4] Detweiler, M. 2007. Managing UCD within Agile Projects.
ACM Interactions May-June, 40 – 42.

[5] Dix, A., Finlay, J.E., Abowd, G.D., and Beale, R. 2003.
Human Computer Interaction, 3rd Edition, Prentice Hall.

[6] Dubinsky, Y. and Hazzan, O. 2005. The construction process
of a framework for teaching software development methods,
Computer Science Education, 15:4, 275–296.

[7] Dubinsky, Y., Catarci, T., Humayoun, S., and Kimani, S.
2007. Integrating user evaluation into software development
environments, 2nd DELOS Conference on Digital Libraries,
Pisa, Italy.

[8] Gulliksen, J., Goransson, B., Boivie, I., Blomkvist, S.,
Persson, J. and Cajander, A. 2003. Key principles for user-
centered systems design. Behaviou & Information
Technology, Vol. 22, No. 6, 397–409.

[9] Hazzan, O. and Dubinsky, Y., Agile Software
Engineering, Undergraduate Topics in Computer Science
Series, Springer-Verlag London Ltd, 2008, in press.

[10] Hudson, W. 2003. Adopting User-Centered Design within an
Agile Process: A Conversation. Cutter IT Journal, (16), 10
http://www.suntagm.co.uk/design/articles/ucdxp03.pdf

[11] Hwong, B., Laurance, D., Rudorfer, A., and Schweizer, A.
2004. User-Centered Design and Agile Software
Development Processes. Siemens Corporate Research
http://www.scr.siemens.com/en/pdf/se_pdf/rudorfer-1.pdf.

[12] Landauer, T. K. 1995. The trouble with computers:
usefulness, usability, and productivity, MIT Press.

[13] McInerney, P., and Maurer, F. 2005. UCD in agile projects:
Dream team or odd couple?. ACM Interactions, 12(6), 19 -
23.

[14] Norman, D. 2006. Why Doing User Observations First Is
Wrong, ACM Interactions, July-August 2006.

[15] Sharp, H., Rogers, Y., and Preece, J. 2007. Interaction
Design: Beyond Human-Computer Interaction. 2nd Edition.
Willey.

[16] Talby, D., Hazzan, O., Dubinsky, Y. and Keren, A. 2006.
Agile software testing in a large-scale project, IEEE
Software, Special Issue on Software Testing, 30-37.

46

http://www.agilealliance.org/
http://www.suntagm.co.uk/design/articles/ucdxp03.pdf
http://www.scr.siemens.com/en/pdf/se_pdf/rudorfer-1.pdf

Integrating Software and Usability Engineering through
Jointly-constructed, Event-based Stories

John Teofil Paul Nosek
Temple University

Rm. 316 Wachman Hall
Philadelphia, PA 19122

215-204-7232

nosek@temple.edu

ABSTRACT
This position paper proposes that event-based stories appear to
have the potential to provide a simple, but powerful technique for
users and developers to communicate emotional and
informational needs, redesign processes, and structure the user
interface design within the agile development paradigm. Informal
evaluation of the use of event-based stories in several
development projects suggest that event-based stories could be
useful in integrating software and usability engineering.
Controlled experiments, in addition to more formal case analyses
are the next steps.

Categories and Subject Descriptors
D.2.2 Design Tools and Techniques H.5.2 User Interfaces

General Terms
Design, Human Factors

Keywords
Events, stories, scenarios, usability engineering, software
engineering

1. POSITION PAPER
Software engineering has focused on functionality, i.e., the
system must do “x” [2]. However, much of software development
focuses on usability issues [7]. Usability Engineering focuses
more on how easy the developed system is to learn and use, but
these divisions are artificial. The earlier user feedback begins and
the more it can be maintained throughout the development
process, the better [3]. Nosek & Ahrens [4], Nosek & Schwartz
[5], Nosek & Roth [6] explored techniques that can be used by
users and developers over the translation process from problem
statement to developed system. Such techniques must be powerful
enough for users to express needs that can be ultimately translated

into code by developers. Through experience, end-users have not
found most technically-oriented techniques, such as data flow
diagrams, easy to learn and use. Juristo et al recommend applying
elicitation patterns to garner usability requirements “after a
preliminary version of the software requirements has been created
[1].” This position paper explores the use of jointly-constructed,
event-based stories as a powerful, flexible communications
technique among end users and developers. Stories can be
employed from the earliest stages of development and in concert
with applying other techniques, such as, elicitation patterns. For
example, agile-based development recognizes the real-world
demands that development work be divided in time-segmented
portions of completed deliverables, which includes, code, testing,
and interface design. Rosson and Carroll use scenarios and a
process of refinement of the scenarios from problem to activity
design to information design to interaction design [7]. However,
they lack sufficient granularity to easily identify the problems and
track the refinement of the scenarios from problem description
through interaction design. This is because a single scenario as
employed by Rosson and Carroll can include multiple events and
activities and incorporate wordier, less directly relevant task
descriptions that may make for a more interesting story but adds
complexity and reduces clarity. Events help to organize the
problem space for software development and the construction of
stories based on these events may help to integrate software and
usability engineering. Developing stories for single events
provides finer granularity and makes it easier to track refinements
of the scenarios.
Information-based techniques by their nature filter out any
emotional aspects discovered in the initial information gathering
process. Through the initial story of the problem statement, users
may be able to place themselves within the story and judge
whether the developer understands both emotional and
informational aspects. For example in the sample story below, the
user can observe that the developer has incorporated the emotion
of worry in the problem scenario and the reduction of this worry
in the activity design. Emotions add strength or importance to a
situation. Specifically recognizing emotions within stories
validates the user’s contribution and may make the user more
confident that the developer accurately understands the situation.
Users that can read have the necessary capabilities to modify, and
therefore, should be able to co-construct the stories without
additional training in any particular technically-oriented
technique.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy

47

mailto:nosek@temple.edu
http://www.acm.org/class/1998/H.5.2.html

In the next phase, developers can incorporate process redesign in
refining the problem statement to incorporate the new activities
with the proposed system. This process can be refined through
information and interaction design. Figure 1 shows how Event-
based stories can proceed in tandem with technically-oriented
techniques, which focus on coding and testing. Figure 2 shows
how the solution space can be subdivided by Event-based stories
and Technically-oriented techniques. An example is given for a
how stories may be refined around a single event.

 Event 1: Prof. Bob London missed the flight after a conference
and so had to cancel the class next day. (Instructor alters the class
schedule)

Problem
Scenario

Activity
Design

Information
Design

Interaction
Design

Context
Diagram

Data
Model

Use
Cases

Functional
Requirements

Cost
Benefit

Screen
Designs

Test
Plans Code

Stories – User focussed

Technically-oriented Techniques – Developer focussed

 Figure 1: Event-based Stories in Software and Usability Eng.

Event 1
Stories

Event 1
ToT

ToT: Technically-oriented Techniques

Event 2
Stories

Event 2
ToT

Event n
Stories

Event n
ToT

…
 Figure 2: Division of Solution Space by Events

Problem Scenario for Event 1: Prof. Bob London was in
Houston, TX on Tuesday for a conference and missed the last
flight. He realized that he would miss the class next morning and
was worried that students would show up to class confused and
angry at him. However, he had neither the list of students for the
class nor their contact information with him. So he sent an email
to Ms. Tika Farrell, the dept.’s secretary, asking her to let the
students know that the class for Wednesday morning is cancelled.
Ms. Tika was annoyed with having to do one more thing and
didn't have the contact information for the students. So she replied
saying that she will post a note in the class room. Prof. B L
searched through his emails and found a student's email. He
made an educated guess that the student was in the Wednesday
morning class and emailed him saying that the Wednesday class
is cancelled and that he let other students know. It was already
late in Philadelphia and Prof. B L was not sure if the student read
his email that night.

(Process Redesign) Activity Design Scenario from Problem
Scenario for Event 1: (same as above …) He realized that he
would miss the class next morning. B L was not worried and
didn’t have to bother the secretary. He connected his laptop to the
Internet and logged into the Online Instructional Support System
and sent out an announcement to the students to the effect that the
class is cancelled. Wednesday morning, Prof. B L checked the
system and found that 12 out of 15 students read the

announcement. He easily sent a reminder to the 3 students who
didn’t read the announcement.

Information Design Scenario from Activity Design Scenario
for Event 1: (same as above …) Prof. B L connected his laptop to
the Internet and logged into the Online Instructional Support
System. He noticed that there were a couple of alerts, which he
decided to ignore for the time being. Prof. B L had predefined
groups of students in various courses. These were in his personal
address book. He started to compose a new ‘announcement’. A
window similar to composing an email got displayed. Prof. B L
typed in the announcement and sent it to the predefined group of
students in his Wednesday class. Wednesday morning, Prof. B L
checked the system and found that 12 out of 15 students read the
announcement.

Interaction Design Scenario from Activity Design Scenario for
Event 1: (same as above - interaction refinements are underlined)
Prof. B L connected his laptop to the Internet and logged into the
Online Instructional Support System. He noticed that there were a
couple of alerts, which he decided to ignore for the time being.
So, he clicked on the "remind me later" button. The main menu
showed up. Prof. B L selected "messaging" option. He selects the
"new announcement" item. A window similar to composing an
email shows up. In the compose window, he selected the "To"
field; right clicked and selected "predefined groups". The
predefined groups in his personal address book showed up. He
selected the group that corresponded to the students in his
Wednesday class. The "To" field got populated with the group
information. He typed in the announcement information in the
"message" field and pressed the "send" button to send the
announcement.

2. SUMMARY
This position paper proposes that event-based stories appear to
have the potential to provide a simple, but powerful technique for
users and developers to communicate emotional and
informational needs, redesign processes, and structure the user
interface design within the agile development paradigm. Informal
evaluation of the use of event-based stories in several
development projects suggest that event-based stories could be
useful in integrating software and usability engineering.
Controlled experiments, in addition to more formal case analyses
are the next steps.

3. ACKNOWLEDGMENTS
George Mathew developed the initial story example. I thank the
anonymous reviewers for their thoughtful and constructive
comments.

4. REFERENCES
[1] Juristo, N., Moreno, A. M., Sanchez-Segura, M. (2007),

“Guidelines for Eliciting Usability Functionalities”, IEEE
Transactions on Software Engineering, Vol. 33, No. 11,
November 2007, pp. 744-758.

[2] Larman, C. (2004) Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design,
Prentice Hall, New York.

[3] Nosek, J.T., Sherr, D. (1984) "Getting the Requirements
Right vs. Getting the System Working - Evolutionary

48

Development," in Bemelmans, T.M.A. (ed.) Beyond
Productivity: Information Systems Development for
Organizational Effectiveness, North Holland, New York.

[4] Nosek, J.T., Ahrens, J. (1986), "An Experiment to Test User
Validation of Requirements: Data Flow Diagrams v.
Task-oriented Menus" (with J. Ahrens), International Journal
of Man-Machine Studies, Vol. 25, No 6, December, 675-684.

[5] Nosek, J.T., Schwartz, R. (1988), "User Validation of
Information System Requirements: Some Empirical Results",

IEEE Transactions on Software Engineering, Vol. 14, No. 9,
September, 1372-1375.

[6] Nosek, J.T., Roth, I. (1990), "A Comparison of Formal
Knowledge Representation Schemes as Communication
Tools: Predicate Logic vs. Semantic Network", International
Journal of Man-Machine Studies, Vol. 33, 227-239.

[7] Rosson, M.B. & Carroll, J.M.(2002) Usability Engineering:
Scenario-based Development of Human Computer
Interaction, Morgan Kaufmann Publishers Inc., San
Francisco, CA.

49

Reducing Risk through Human Centred Design
Nigel Bevan

Professional Usability Services
12 King Edwards Gardens

London W3 9RG, UK
www.nigelbevan.com

mail@nigelbevan.com

ABSTRACT 3. Iterative system development and definition: cyclic
refinements of requirements, solutions, and development
plans. Such iteration helps projects to learn early and
efficiently about operational and performance requirements.

The National Academy of Science’s report on Human-System
Integration in the system development process (NAS HSI report)
[12] explains how human needs can be integrated into system
design using an incremental systems engineering development
process that continually assesses risks at each phase of the system
development. This paper suggests how appropriate Human
Centred Design (HCD) methods can be selected to mitigate risks
to project success.

4. Concurrent system definition and development: that includes
concurrent engineering of requirements and solutions without
waiting for every requirement and subsystem to be defined.

5. Risk management – risk driven activity levels and anchor
point milestones. The level of detail of specific products and
processes should depend on the level of risk associated with
them.

Principles 2, 3 and 4 are consistent with approaches to human
centred design, such as recommended in ISO 13407. 1. RISKS IN SYSTEMS DEVELOPMENT

The NAS HSI report points out that the ultimate goal of system
development is to produce a system that satisfies the needs of its
operational stakeholders (including users, operators,
administrators, maintainers and the general public) within
acceptable levels of the resources of its development stakeholders
(including funders, acquirers, developers and suppliers).
Operational stakeholders need a system that is effective, efficient
and satisfying

The other two principles (Stakeholder satisficing and Risk
management) provide a means to determine which human centred
design activities and methods are needed in a project to be
confident that the final system will be acceptable to the
operational stakeholders.
This contrasts with existing approaches to human centred design,
which are commonly based on a one-size-fits-all methodology
(e.g.

[1]. Developing and delivering systems that satisfy
all of these success-critical stakeholders usually requires
managing a complex set of risks such as usage uncertainties,
schedule uncertainties, supply issues, requirements changes, and
uncertainties associated with technology maturity and technical
design.

[5], [14]) that may be justified by a cost benefit analysis to
assess the potential business benefits of producing a more usable
system [3].
The additional expenditure needed for human centred activities is
often difficult to justify because the budget holder for project
development usually does not personally gain from longer-term
benefits such as increased sales or reduced whole life costs.

Boehm and Lane [4] suggest five principles for managing these
risks:

Project managers are much more likely to be influenced by the
risks of not achieving stated project objectives. It is thus useful to
recast the potential cost benefits of usability as risk reduction
strategies. Table 1 restates the list of cost benefits in

1. Stakeholder satisficing; identifying the success-critical
stakeholders and their value propositions (what is offered at
what cost); negotiating a mutually satisfactory set of system
requirements, solutions, and plans; and managing proposed
changes to preserve a mutually satisfactory outcome.

[2] as
potential project risks.

2. Incremental growth of system definition and stakeholder
commitment: incremental discovery of emergent human-
system requirements and solutions using such methods as
prototyping, testing with users, and use of early system
capabilities.

2. HUMANCENTRED DESIGN
ACTIVITIES

Looking for advice on which methods to use for human centred
design can be bewildering.

Ferré [6] analyzed the methods contained in six popular HCI
textbooks and identified 96 categories of HCD techniques.
Individual textbooks each contained between 21 and 43 of these
categories of technique:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy

50

Table 1. Risks mitigated by HCD

A: Increased development costs to produce an acceptable
system
Not detecting and fixing usability problems early in the

development process
Increasing the cost of future redesign or radical change of the

architecture to make future versions of the product more
usable

Increased costs due to unnecessary functionality
Increased costs due to additional documentation
Product fails

B: Web site usability: poor web sales
Users cannot find products that they want to purchase
Users cannot find additional information (e.g. delivery, return and

warranty information)
Dissatisfied users do not make repeat purchases
Users do not trust the web site (with personal information and to

operate correctly)
Users do not recommend the web site to others
Web site fails to increase sales through other channels
Increased support costs

C: Product usability: poor product sales
Competitors gain advantage by marketing competitive products

or services as easy to use
Dissatisfied customers do not make repeat purchases or

recommend the product to others
Poor ratings for usability in product reviews
Brand damage

D: Poor productivity: risks to purchasing organisation
Slower learning and poorer retention of information
Increased task time and reduced productivity
Increased employee errors that have to be corrected later
Increased employee errors that impact on the quality of service
Increased staff turnover as a result of lower satisfaction and

motivation
Increased time spent by other staff providing assistance when

users encounter difficulties

E: Increased support and maintenance costs
Increased support and help line costs
Increased costs of training
Increased maintenance costs

Author Number of categories
Constantine [5] 31
Hix [7] 21
Mayhew [10] 31
Nielsen [11] 25
Preece [13] 43
Shneiderman [15] 29

ISO PAS 18152 contains an exhaustive list of 125 human systems
(HS) activities that are needed for all aspects of systems
development. These were derived from an analysis of best
practice in human centred design in civilian and military systems.
The categories of activity are:

HS.1 Life cycle involvement activities
HS.1.1 HS issues in conception
HS.1.2 HS issues in development
HS.1.3 HS issues in production and utilization
HS.1.4 HS issues in utilization and support
HS.1.5 HS issues in retirement
HS.2 Integrate human factors activities
HS.2.1 HS issues in business strategy
HS.2.2 HS issues in quality management
HS.2.3 HS issues in authorisation and control
HS.2.4 Management of HS issues
HS.2.5 HF data in trade-off and risk mitigation
HS.2.6 User involvement
HS.2.7 Human-system integration
HS.2.8 Develop and re-use HF data
HS.3 Human-centred design activities
HS.3.1 Context of use
HS.3.2 User requirements
HS.3.3 Produce design solutions
HS.3.4 Evaluation of use
HS.4 Human resources activities
HS.4.1 Human resources strategy
HS.4.2 Define standard competencies and identify gaps
HS.4.3 Design staffing solution and delivery plan
HS.4.4 Evaluate system solutions and obtain feedback

In [12] Table 3-A-1, the HS activities in ISO PAS 18152 have
been categorised by type of system development activity:

1. Envisioning opportunities
2. System scoping
3. Understanding needs
4. Requirements
5. Architecting solutions
6. Life-cycle planning
7. Evaluation
8. Negotiating commitments
9. Development and evolution
10. Monitoring and control
11. Operations and retirement
12. Organizational capability improvement

An elaborated version of the table is included as an annex to this
paper.

51

3. SELECTING HUMAN CENTRED
DESIGN METHODS

The steps needed to select human-centred methods for an
individual project are thus:

1. Identify the success-critical stakeholders.

2. Identify which potential consequences of poor usability
affect the success-critical stakeholders.

3. Assess the likelihood and impact of these consequences.

4. Identify which categories of HS activities can reduce the
risks.

5. Identify which HCD methods in each category are most
cost-effective. The alternative methods should be assessed
against criteria such as:

• To what extent will each possible method address the
activities that have been identified as important?

• How cost effective is each method likely to be, given the
time and effort required and constraints such as available
skills, access to stakeholders and other users, etc.?

The needs for usability evaluation in particular should be judged
in the broader context of the relative importance of usability
evaluation in relation to other HS activities. For example, when
designing and developing for a new context of use, the major risks
might be associated with requirements, so that the majority of
HCD resources might be devoted to early life cycle activities
(which could include evaluation of early concepts and competitive
evaluation).

4. CONCLUSIONS
This paper suggests how HCD can be justified as part of systems
development and how the most appropriate HCD methods can be
selected on a project-by-project basis.
This will enable HCD resources to be used most effectively for
individual projects. The author would be happy to advise on or
support the application of this approach to selecting HCD methods
in a real development project.
The prerequisites for successfully using this approach include
having usability experts in the development team who:

• can convince the project of the specific risks associated with
poor usability;

• have sufficient experience to be able to select the most cost
effective HCD methods; and

• have the expertise and resources to apply a wide range of
different types of methods.

5. REFERENCES
[1] Bevan, N. (1999). Quality in use: meeting user needs for

quality, Journal of Systems and Software, 49(1), pp 89-96.
[2] Bevan, N. (2005). Cost benefits framework and case studies.

In [3].
[3] Bias, R.G. & Mayhew, D.J. (eds) (2005). Cost-Justifying

Usability: An Update for the Internet Age. Morgan
Kaufmann.

[4] Boehm, B. and Lane, J. A. (2007). Using the Incremental
Commitment Model to Integrate System Acquisition, Systems
Engineering, and Software Engineering. CrossTalk, October
2007. Available at:
www.stsc.hill.af.mil/crosstalk/2007/10/0710BoehmLane.html

[5] Constantine, L. L. and Lockwood, L. A. D. (1999). Software
for Use: A Practical Guide to the Models and Methods of
Usage-Centred Design. Addison-Wesley, New York.

[6] Ferré, X, Juristo, N, Moreno, A.M. (2004). STATUS
Deliverable D.6.6. Final results on the Integrated Software
Process. Universidad Politécnica de Madrid.

[7] Hix, D. and Hartson, H.R. (1993). Developing User
Interfaces: Ensuring Usability Through Product and Process.
John Wiley and Sons.

[8] ISO 13407 (1999). Human-centred design processes for
interactive systems. ISO.

[9] ISO PAS 18152 (2003). A specification for the process
assessment of human-system issues.

[10] Mayhew, D. J. (1999). The Usability Engineering Lifecycle.
Morgan Kaufmann

[11] Nielsen, J. (1993). Usability Engineering. AP Professional,
[12] Pew, R. W. and Mavor, A. (eds.) (2007). Human-System

Integration in the System Development Process: A New Look.
National Academies Press. Available at:
books.nap.edu/openbook.php?record_id=11893

[13] Preece, J., Rogers, J., Sharp, H., Benyon, D., Holland, S.,
Carey, T. (1994). Human-Computer Interaction. Addison
Wesley

[14] Schaffer, E. (2004). Institutionalization of Usability: A Step-
by-Step Guide. Addison-Wesley.

[15] Shneiderman, B. (1998). Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley.

52

Annex A. Examples of methods that can be used to support HS best practices
Activity category Best practices for risk mitigation with ISO 18152 clause reference HCD methods and techniques
1. Envisioning
opportunities

• Identify expected context of use of systems [forthcoming needs, trends and
expectations].
• Analyze the system concept [to clarify objectives, their viability and risks].

-Future workshop
-Preliminary field visit
-Focus groups
-Photo surveys
-Simulations of future use environments
-In-depth analysis of work and lifestyles

• Describe the objectives which the user or user organization wants to achieve
through use of the system.

-Participatory workshops
-Field observations and ethnography
-Consult stakeholders
-Human factors analysis

2. System scoping

• Define the scope of the context of use for the system. -Context of use analysis
3. Understanding
needs
a) Context of use

• Identify and analyze the roles of each group of stakeholders likely to be
affected by the system.
• Describe the characteristics of the users.
• Describe the cultural environment/ organizational/ management regime.
• Describe the characteristics of any equipment external to the system and the
working environment.
• Describe the location, workplace equipment and ambient conditions.
• Decide the goals, behaviours and tasks of the organization that influence
human resources
• Present context and human resources options and constraints to the project
stakeholders.

-Success critical stakeholder identification
-Field Observations and ethnography
-Participatory workshop
-Work context analysis
-Context of use analysis
-Event data analysis
-Participatory workshops
-Contextual enquiry

b) Tasks

• Analyze the tasks and worksystem.

-Task analysis
-Cognitive task analysis
-Work context analysis

c) Usability needs

• Perform research into required system usability. -Investigate required system usability
-Usability benchmarking
-Heuristic/expert evaluation

d) Design options

• Generate design options for each aspect of the system related to its use and its
effect on stakeholders.
• Produce user-centred solutions for each design option.

-Early prototyping & usability evaluation
-Develop simulations
-Parallel design (tiger testing)

4. Requirements
a) Context
requirements

• Analyze the implications of the context of use.
• Present context of use issues to project stakeholders for use in the development
or operation of the system.

-Define the intended context of use
including boundaries

b) Infrastructure
requirements

• Identify, specify and produce the infrastructure for the system.
• Build required competencies into training and awareness programs.
• Define the global numbers, skills and supporting equipment needed to achieve
those tasks.

-Identify staffing requirements and any
training or support needed to ensure that
users achieve acceptable performance

c) User
requirements

• Set and agree the expected behaviour and performance of the system with
respect to the user.
• Develop an explicit statement of the user requirements for the system.
• Analyze the user requirements.
• Generate and agree on measurable criteria for the system in its intended context
of use.

-Scenarios
-Personas
-Storyboards
-Establish performance and satisfaction
goals for specific scenarios of use
-Define detailed user interface
requirements
-Prioritize requirements (eg QFD)

5. Architecting
solutions
a) System
architecting

• Generate design options for each aspect of the system related to its use and its
effect on stakeholders.
• Produce user-centred solutions for each design option.
• Design for customization.
• Develop simulation or trial implementation of key aspects of the system for the
purposes of testing with users.
• Distribute functions between the human, machine and organizational elements
of the system best able to fulfil each function.
• Develop a practical model of the user's work from the requirements, context of
use, allocation of function and design constraints for the system.
• Produce designs for the user-related elements of the system that take account of
the user requirements, context of use and HF data.
• Produce a description of how the system will be used.

-Function allocation
-Generate design options
-Develop prototypes
-Develop simulations

b) Human
elements

• Decide the goals, behaviours and tasks of the organization [that influence
human resources]
• Define the global numbers, skills and supporting equipment needed to achieve
those tasks.
• Identify current tasking/duty
• Analyze gap between existing and future provision

-Work domain analysis
-Task analysis
-Participatory design
-Workload assessment
-Human performance model
-Design for alertness

53

• Identify skill requirements for each role
• Predict staff wastage between present and future.
• Calculate the available staffing, taking account of working hours, attainable
effort and non-availability factor
• Identify and allocate the functions to be performed Functional decomposition
and allocation of function.
• Specify and produce job designs and competence/ skills required to be
delivered
• Calculate the required number of personnel.
• Generate costed options for delivery of training and/or redeployment
• Evolve options and constraints into an optimal [training] implementation plan
(4.3.5)
• Define how users will be re-allocated, dismissed, or transferred to other duties.
• Predict staff wastage between present and future.
• Calculate the available staffing, taking account of working hours, attainable
effort and nonavailability factor.
• Compare to define gap and communicate requirement to design of staffing
solutions.

-Plan staffing

c) Hardware
elements

See a) System architecting.

-Prototyping and usability evaluation
-Physical ergonomics
-Participatory design

d) Software
elements

See a) System architecting.

-User interface guidelines and standards
-Prototyping and usability evaluation
-Participatory design

6. Life-cycle
planning
a) Planning

• Develop a plan to achieve and maintain usability throughout the life of the
system.
• Identify the specialist skills required and plan how to provide them.

-Plan to achieve and maintain usability
-Plan use of HSI data to mitigate risks

b) Risks • Plan and manage use of HF data to mitigate risks related to HS issues.
• Evaluate the current severity of emerging threats to system usability and other
HS risks and the effectiveness of mitigation measures.
• Take effective mitigation to address risks to system usability.

-HSI program risk analysis

c) User
involvement

• Identify the HS issues and aspects of the system that require user input.
• Define a strategy and plan for user involvement.
• Select and use the most effective method to elicit user input.
• Customize tools and methods as necessary for particular projects/stages.
• Seek and exploit expert guidance and advice on HS issues.

-Identify HSI issues and aspects of the
system requiring user input
-Develop a plan for user involvement
-Select and use the most effective methods
-Customize tools and methods as
necessary

d) Acquisition • Take account of stakeholder and user issues in acquisition activities. -Common Industry Format
e) Human
resources

• Implement the HR strategy that gives the organisation a mechanism for
implementing and recording lessons learnt
• Enable and encourage people and teams to work together to deliver the
organization's objectives.
• Create capability to meet system requirements in the future (conduct
succession planning)
• Develop and trial training solution to representative users.
• Deliver final training solutions to designated staff according to agreed
timetable.
• Provide means for user feedback [on human issues].

7. Evaluation

a) Risks

• Assess the health and well-being risks to the users of the system.
• Assess the risks to the community and environment arising from human error
in the use of the system.
• Evaluate the current severity of emerging threats to system usability and other
HS risks and the effectiveness of mitigation measures.
• Assess the risks of not involving end users in each evaluation.

-Risk analysis (process and product)

b) Plan and
execute

• Collect user input on the usability of the developing system.
• Revise design and safety features using feedback from evaluations.
• Plan the evaluation.
• Identify and analyze the conditions under which a system is to be tested or
otherwise evaluated.
• Check that the system is fit for evaluation.
• Carry out and analyze the evaluation according to the evaluation plan.
• Understand and act on the results of the evaluation.

-Obtain user feedback on usability
-Use models and simulation

c) Validation • Test that the system meets the requirements of the users, the tasks and the
environment, as defined in its specification.
• Assess the extent to which usability criteria and other HS requirements are
likely to be met by the proposed design.

-Compare with requirements
-Common Industry Format for usability
reports
-Performance measurement

d) HSI knowledge • Review the system for adherence to applicable human science knowledge, style
guides, standards, guidelines, regulations and legislation.

54

e) Staffing • Decide how many people are needed to fulfill the strategy and what ranges of
competence they need.
• Develop and trial training solution to representative users.
• Conduct assessments of usability [relating to HR].
• Interpret the findings
• Validate the data.
• Check that the data are being used.

HR

8. Negotiating
commitments
a) business case

• Contribute to the business case for the system.
• Include HS review and sign-off in all reviews and decisions

-Program risk analysis

b) requirements • Analyze the user requirements.
• Present these requirements to project stakeholders for use in the development
and operation of the system.
• Identify any staffing gap and communicate requirement to design of staffing
solutions.

-Value-based practices and principles
(identify success critical stakeholder
requirements)
-Common Industry Specification for
Usability Requirements
-Environment/organization assessment

9. Development
and evolution

• Maintain contact with users and the client organization throughout the
definition, development and introduction of a system.
• Evolve options and constraints into an implementation strategy covering
technical, integration, and planning and manning issues.
•

-Risk analysis (process and product)
-User feedback on usability
-Use models and simulation
-Guidelines: Common Industry Format
for usability reports
-Performance measurement

10. Monitoring
and control

• Analyze feedback on the system during delivery and inform the organization of
emerging issues.
• Manage the life cycle plan to address HS issues.
• Take effective mitigation to address risks to system usability.
• Take account of user input and inform users.
• Identify emerging HS issues.
• Understand and act on the results of the evaluation.
• Produce and promulgate a validated statement of staffing shortfall by number
and range of competence.

-Organizational and environmental context
analysis
-Risk Analysis
-User feedback
-Work context analysis

11. Operations
and retirement

a) Operations

• Analyze feedback on the system during delivery and inform the organization of
emerging issues.
• Produce personnel strategy.
• Review the system for adherence to applicable human science knowledge, style
guides, standards, guidelines, regulations and legislation.
• Deliver training and other forms of awareness-raising to users and support
staff.
• Assess the effect of change on the usability of the system.
• Review the health and well-being risks to the users of the system.
• Review the risks to the community and environment arising from human error
in the use of the system.
• Take action on issues arising from in-service assessment.
• Perform research to refine and consolidate operation and support strategy for
the system.

-Work context analysis
-Organizational and environmental context
analysis

b) Retirement • Collect and analyze in-service reports to generate updates or lessons learnt for
the next version of the system.
• Identify risks and health and safety issues associated with removal from service
and destruction of the system.
• Define how users will be re-allocated, dismissed, or transferred to other duties.
• Plan break-up of social structures.
• Debriefing and retrospective analysis for replacement system.

12. Organizational
capability
improvement
a) HSI capability
data collection,
analysis, and
improvement

• Identify and use the most suitable data formats for exchanging HF data.
• Have a policy for HF data management.
• Perform research to develop HF data as required.
• Produce coherent data standards and formats.
• Define rules for the management of data.
• Develop and maintain adequate data search methods.
• Feedback into future HR procurement, training and delivery strategies.

-Assess and improve HSI capability

b) Organizational
skill/career and
infrastructure
development
planning and
execution

• Define usability as a competitive asset
• Set usability, health and safety objectives for systems
• Follow competitive situation in the market place
• Develop user-centred infrastructure.
• Relate HS issues to business benefits.
• Establish and communicate a policy for human-centeredness.
• Include HR and user-centred elements in support and control procedures.
• Define and maintain HCD and HR infrastructure and resources.
• Increase and maintain awareness of usability.

-Develop and maintain HSI infrastructure
and resources
-Identify required HSI skills
-Provide staff with HSI skills
-Establish and communicate a policy on
HSI
-Maintain an awareness of usability

55

• Develop or provide staff with suitable HS skills.
• Take account of HS issues in financial management
• Assess and improve HS capability in processes that affect usability, health and
safety.
• Develop a common terminology for HS issues with the organization.
• Facilitate personal and technical interactions related to HS issues.
• Feedback into future HR procurement, training and delivery strategies.
• Create capability to meet system requirements in the future (conduct
succession planning)
• Identify any opportunities for redeployment.
• Develop a strategy for [HR] data gathering

56

Users’ Practices and Software Qualities: a Dialectical
Stance

 Alessandro Pollini
Interaction Design Area,

Communication Science Dpt.,
University of Siena

Via Roma 56, 53100, Siena
0039 0577 270565

pollini@media.unisi.it
ABSTRACT
The Ubiquitous Computing technology in practice is often
characterized by users that experience recurring breakdowns,
standards’ incompatibility and a proliferation of interfaces when
using, accessing and trying to connect different devices (e.g. PCs,
cameras, printers, and phones). Such interconnected devices
populate ordinary Ubiquitous Computing scenarios.
The focus of the present research is on how software architecture
can support Ubiquitous Computing applications and how people
might use these technologies to enhance their practices and reach
personal goals. Architectural support is indeed needed for
designing embedded, distributed, intelligent and interactive
systems, which need communication through middleware
components.
Use practices and Architectural Qualities have been investigated
in the Active Surfaces case study. Active Surfaces is an embedded
and modular system of tiles aimed at supporting therapeutic use
practices and special needs. The design and developmental
process is articulated on the relationship and the exchange
between key users practices and architectural qualities.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.

General Terms
Design, Performance, Experimentation.

Keywords
Software architecture, Ubiquitous computing, Usability, User
requirement, Participatory Design.

1. INTRODUCTION
Design and development of software architectures for ubiquitous
systems have been a major concern in academic research and
industry [1] and how architectures impact real use and usability

have also become issue of research interest. Usability benefits
have been widely applied to individuals performing on a desktop
computer but need now to be re-examined within the context of
distributed, interactive, networked and embedded applications.
Usability studies, which traditionally approach aspects specific to
a given task or application, have to be reinterpreted and adapted
to Ubiquitous Computing application systems, wherein networks
of laptops, PDAs, wearable computers, mobiles and other
distributed devices are constructed, de-constructed and integrated.
Designers and developers must also find ways in which sensitive,
responsive and intelligent UbiComp technology can also become
usable, i.e. noticeable, comprehensible, adaptable and easy to
control. That is why usage and usability concerns need to be
reconsidered outside of the desktop metaphor. Achieving usability
traditionally depended on how the functions provided by the
system were understandable and clearly visible through the user
interface. In this paradigm users have many input and output
peripheral devices and the overall system interface must be
adequate for their needs. There is a multitude of interfaces and
usability issues for each mobile device of the distributed and
ubiquitous system, and this requires a unique and enabling
software architecture that must be designed according to users’
needs.
In this paper we primarily discuss the interplay between software
architecture development and users practices by focusing on the
architectural qualities peculiarity of designing ubiquitous systems
for users with special needs and diverse abilities through the case
of Active Surfaces, a modular system of tiles used for play and
therapy in water.
Active Surfaces relies on the service-oriented architecture
developed in the EU funded IP PalCom, Palpable Computing [2].
We will discuss the interplay between users’ practices and
software architecture development by experimenting with the
Active Surfaces with therapists and children with special needs.
By focusing on those attributes that support palpable use of
technology, that we henceforward call Qualities, we also consider
the architectural attributes required by usable ubiquitous
technology.

2. ARCHITECTURE AND USE Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The software architecture has been explored and experimented in
different application prototypes related to the Health Care and the
Landscape Architecture domains [2]. Each general scenario is
characterized by an application prototype in which the
architecture, or part of it, has been experimented. The application
prototypes served as testbeds for the development of the

I-USED’08, September 24, 2008, Pisa, Italy

57

architecture and as case studies that provide the requirements
coming from the field studies.
The architectural qualities have been introduced and described as
the meeting point between architecture and use/application. The
peculiarity of these non-standard architectural qualities is that
they both evolve and gain meaning through software development
and investigation of key user practices to account for.
In fact the architectural qualities and the user practices are
tightly coupled and represent the two perspectives adopted in this
research: the software architecture engineering and the interaction
design perspective.
In order to better focus on users and architecture it is necessary to
describe the Active Surfaces application prototype. The concept,
the system and the architecture are described below.

2.1 Active Surfaces
Active Surfaces is a modular system constituted by physical and
interactive units, the tiles. They are interactive modules that
activate the surfaces of the swimming pool by making the
environment featured with a network of distributed interactive
components [3][4]. In particular, the prototype as developed in
this research affords the horizontal configuration of the tiles on
the water surface.

Figure 1. The current Active Surfaces prototype

The tiles constitute a network of physical (and software) objects
that communicate and exchange data. Each Active Surfaces tile is
thought of as a modular unit that can communicate with the others
through its six sides. These entirely homogeneous devices, the
tiles - which have exactly the same physical characteristics and
computation and communication resources - are assembled. Each
tile is an independent, physical, tangible object that can be picked
up and moved around, and the interaction between the tiles is
coherent and straightforward: all the tiles can communicate with
their adjacent neighbours. They are, in fact, able to recognize
their relative position as being essentially positioned and
orientated in a sequence of tiles.
The Active Surfaces is highly scalable in respect to computational
power and number of components. In fact it can scale up or down
(vertically) by adding or removing resources to a single node in a
system, typically involving the addition or removal of CPUs or
memory to a single tile. Active Surfaces can also scale out
(horizontally) by the addition of more nodes to a system, such as
adding new tiles to the distributed system.
The concept emphasizes issues related both to the use, such as
physical manipulation, positioning and emergent uses of the

system, and the architectural platform, like the networking and
dynamic assembly of tiles that is configured purposely [3][4].

3. SPECIAL NEEDS AND USERS’
PRACTICES

In order to better focus on use practices as they emerge in the
Active Surface application prototype it is thus necessary to
describe the target users profiles - that is, the therapists and
caregivers together with the disabled children - their needs,
wishes and abilities [4].
Together with the study of the domain and a survey of the
enabling technologies [5], fieldwork has been carried out with the
aim of directly exploring the field of therapeutic intervention in
water. The fieldwork has been conducted in two settings for
psychomotor therapy in water, the Disabled Children Parents
Association, Siena and the D. Chiossone Institute in Genova. We
adopted ethnographic methods - such as field observation and
interviews - and design methods - such as user workshops and
creative brainstorming. The ethnographic activities attempted to
observe and reveal relevant issues related to the environment (the
features of the water, the physical structure of the swimming
pool), the actors (therapists, disabled children, parents), the tools
(objects, toys and water noodles) and, above all, the activities (the
procedures, the different phases, the practices). We have
addressed the whole practice starting from the planning, entering
the activity and proceeding with the evaluation phase [5].
We will exclusively focus here on the overall description of users’
needs and therapists practices in order to understand the
implications they have on software architecture development.

Figure 2. Playing domino like games with Active Surfaces

The main actors of this therapeutic setting are the children with
special needs. Children with very diverse profiles actually benefit
from therapeutic play in the water. The users we have observed
can be summarized in three main groups described below:
Autistic Spectrum Disorders and Other Affective and Socio-
Relational Disturbances. People with autism have impaired social
interaction and social communication and have a limited range of
imaginative activities. People with autism have a tendency toward
repetitive behaviour patterns and resistance to any change in
routine. They need to be instructed and supported during the
game, otherwise they very quickly return to their own solitary
‘obsessive activities’.
Physical and Motor Disabilities and Cerebral Palsy. These
children have limitation or an impossibility of movement,
restrictions in force, abnormal postures, the presence of

58

neurological movement disorders such as dystonia, tremor, ataxia,
etc. Children with cerebral palsy can be severely impaired in
playing by their motor disability, but also by speech and
communication disabilities, and sensory impairments (visual
and/or hearing).
Mental Retardation/ Intellectual Disabilities/ Learning
Disabilities. Children with mental retardation (also referred to as
intellectual disabilities or learning disabilities, for example
children with Down’s syndrome), have a reduced capacity for
attention and might not understand the meaning of the proposed
activity. They might not understand the meaning of language and
many of them have speech limitations too.

3.1 Key Practices
The therapists and trainers are the other main actors of this
setting. They essentially have the role of facilitating the playful
physical, social and emotional experience. They have to mediate
the social relationships, the experience in the water and offer a
reassuring presence to the child. They are the scaffolds that allow
the child to express and freely explore the space of the pool. The
therapists have to facilitate the activity, and not impose rules or,
on the opposite extreme, abandon the child without a guide. Even
when the child would like to explore by herself the therapist
should also be present and support her independent action. The
intervention is considered successful when the therapist interprets
the meanings of the behaviors of the child. Having an intimate
knowledge of the child is central to achieving this interpretation.
The outcomes of this activity resulted in key observations that
have informed the whole design process. They can be summarized
as follows:

Looking for creative solutions: The therapists usually deal with
dynamic settings and changing conditions. This implies the
ability to manage and rearrange the available resources in
purposeful and creative ways.

Dynamic configuration of the tools: In dealing with
continuously changing conditions and rehabilitation demands,
the therapists should always find new solutions for adapting
their tools and the environment to the patients and for
maintaining their attention throughout the session.
Consequently a core characteristic is that the tools have to be
easily re-configurable and adaptable to this evolving situation.

Resource availability and opportunities for action: The
therapist needs to feel in control of the available resources and
how they might be adopted, changed and exploited. As in
many workplaces, since their attention is exclusively directed
to the patients, the resources the therapists use have to be
ready at hand and immediately understandable.

Exploration and performance: This practice facilitates and
encourages exploratory experimentation by users. Tools have
to be used, customized and altered according to established
degrees of freedom and constraints.

The key therapist practices are among the outcomes of the field
exploration of the application sites and have continuously
informed the development of the software architecture.

4. RESEARCH METHODOLOGY
Dealing with diverse and special users requires that methods and
experimental environments would be appropriate, i.e. non-

obtrusive, able to be personalized, adaptable, and capable of
anticipating emerging user needs [6].
A wide variety of methods have been used throughout the
iterative design life cycle [5]. These methods pertain to Human
Computer Interaction, Participatory Design and Software
Architecture Engineering. In particular we integrated a
participatory design perspective with a co-evolutionary approach
to interaction design and we explored this methodology in the
domain of software architecture design. The process is co-
evolutionary since architectural development, site exploration,
activity analysis and concept design have been carried out in
parallel so that each path of the process can inform, without
constraining, the others.
We especially highlight on how the use of scenarios helped the
structuring of data gathered through activity analysis, the
envisioning of the role and functionalities of the system, and the
assessing and validating the envisioned solutions from an
architectural perspective (see [7][8] for scenario-based evaluation
methods).
Throughout this research the scenarios are used to step through
the software architecture and to document the consequences of
architectural solutions from a user perspective. Different kinds of
scenarios drove the research process: Activity scenarios,
Envisioning scenarios, Prototype scenarios and Qualities
scenarios [5]. We will focus here on Activity and Qualities
scenarios that better represent the dialogue between Application
and Architecture.
Activity scenarios stem from the fieldwork and activity analysis.
They are grounded and built on data collected with ethnographic
observation and user research. Activity scenarios account for
concrete use episodes and key practices. We used the Activity
Scenarios to understand, as thoroughly as possible, what is
relevant and appropriate in the specific domains of use, which in
this case study was the therapeutic practice in the water. These
issues have thus been evolved into user requirements that
informed the definition of the envisioned solutions at the software
architectural level.
The key User Practices also were the criteria to define the
experimental plan with the architectural prototype and the
evaluation framework. In fact in this research experimental
architectural prototypes have been used to conduct experiment on
the architectural qualities that we have analyzed, in particular
those observable at run-time (like performance) [9]. The
experimental architectural prototypes allowed concrete
measurements to be made under a range of different situations
that might be also defined in terms of Qualities scenarios. They
will be described in Par. 6.1.
Qualities scenarios consist of a slight adaptation of the quality
attribute scenarios [1][10] that are a way to make the Qualities for
palpable systems operational. They are short technical scenarios
referred to specific Qualities. Qualities scenarios provide a way to
concretely measure whether the architecture fulfils the
requirements of the scenario. It states measurable properties of an
architecture by defining metrics to be used in performance testing
of the architecture. These scenarios allowed us to experiment with
and evaluate specific features of the technology by testing the
Qualities of the software architecture.

59

5. ARCHITECTURAL QUALITIES
In the multiple iterative cycles of the process followed in this
research, scenarios have been used to bridge the use practices and
the architectural development. The key practices have been
discussed in terms of system use and from the software
architecture perspective. The Architectural Qualities are
summarized below:

USERS PRACTICES ARCHITECTURAL
QUALITIES

Looking for creative solutions Assemblability

Dynamic configuration of the
tools

Adaptability

Resource availability and
opportunities for action

Resource Awareness

Exploration and performance Experimentability

Table 1. From Users Practices to Architectural Qualities
Each Quality comes from an iterative design and development in
which user participation and technological challenges were
interwoven strands of the whole process.

Assemblability. Each Active Surfaces tile is identical and
interchangeable and can run any piece of code that is passed to it
through a neighbour, included the game logics. They can be
assembled in many different formations that take into account the
tiles’ communication capabilities and the surfaces on which they
have to be placed. Each formation of tiles is instantiated as a
functional and physical Assembly of devices and services. The
Assembly takes form as the users construct it by means of the
Assembler Tile. The Assembly can then be dynamically altered
and adapted over time. Despite the stability it has when it is
created, the Assemblies can be easily deconstructed and re-
constructed in a different formation being supported by flexible
ad-hoc networks that can be controlled and configured by end
users.

Adaptability. The Active Surfaces system consists of a set of
tiny, resource constrained computers that can be arranged together
to create a physical network. Because the tiles can only
communicate with their close neighbours, there is an explicit and
consistent discovery and communication framework underpinning
the whole system. The tiles can be arranged in three-dimensional
patterns, like squares in a crossword puzzle, and tiles, which are
stacked one on top of the other, communicate through the top and
the bottom. The network can be easily reconfigured by picking up
a tile and moving it; this movement immediately changes the
feedback that is provided.

Resource Awareness. The tiles are embedded systems with
powerful and limited resources at the same time, such as available
energy, available memory or communication bandwidth. Because
of the limitations of these devices they represent a concrete
challenge for the developers of the software architecture. In
Active Surfaces a game application can exist within a network,
rather than on a single unit or a central mainframe. Through the
networking among the tiles and the instantiation of the assembly,
they can discover the resources present in the system and debug
the behaviour of such resources in order to overlook malfunctions
or degraded individual or generalized performance. The resources
are monitored and managed throughout time.

Experimentability. Active Surfaces can be thought of as a toy
problem to experiment the software architecture because of its
peculiar characteristics, as a modular system made of small easy
to handle units. The tiles can be experimented with and tested
without altering the structure of the system or causing any
malfunctions or error. Indeed, Active Surfaces has to operate even
despite the presence of an error in the use. An error is a condition
of exception resulting from some deviation from the expected
behaviour, which leads to a fault or failure, and the design of the
architecture aims at minimizing the eventual adverse
consequences of accidental or unintended actions.
These Qualities should not be considered in isolation, but rather
as interwoven contributory factors that exhibit dependencies and
influences on one another. The purpose of the Qualities is to
capture the essence of what defines the nature of usable, easily
perceivable and understandable (in a word, palpable) ubiquitous
computing applications.

6. EXPERIMENTING WITH THE
SOFTWARE ARCHITECTURE

The goal of this experimental phase is to describe the behaviour
of the Active Surfaces system by measuring the performance of
the architectural prototypes. The Qualities scenarios help in
describing the performance in terms of more informative detailed
statements. These statements allow quantifiable arguments about
a system to be made [10].
Empirical testing is possible when relevant requirements and
architectural components have been identified and prototypes
have been developed. In particular the Active Surfaces
architectural prototypes, described in the following paragraph,
were used to observe, explore and evaluate the Architectural
Qualities.

6.1 Architectural Prototypes
Prototypes of software components with different levels of
accuracy and completeness have been used throughout the
process. Their usage in architectural development provided the
opportunity to have intermediate embodiments of the systems’
functionality even if not supposed to represent any final or
complete stage.
The Active Surfaces system underwent a concurrent development
either within the Simulation Framework and the Hardware
Platform. The hardware platform selected for the Embedded
Architectural prototype is the UNC20 microcontroller. With such
small microprocessor only the PalVM, the Virtual Machine
developed within the PalCom project [2], is supported as a
runtime engine.
The embedded architectural prototype has been built to learn
about the PalVM platform and the serial communication over IR.
The testing aims at discriminating whether there are restrictions in
the PalCom open architecture or if the constraints are due to the
current hardware implementation (e.g IR communication
implemented over serial port).

60

Task (a), (a1): 1+1 tiles, one is still, the other is rotated to reach
the correct orientation for the side connection. In one case (a)
Two tiles are put together, in the other (a1) two correctly
connected tiles are kept apart.
Task (b), (b1): 1+2 tiles, one is still, the other two are rotated to
reach the correct orientation at the same time. In (b) three tiles are
put together, in (b1) three correctly connected tiles are kept apart.

 Task (c), (c1): 1+3 tiles, one is still, the other three are rotated to
reach the correct orientation at the same time. In (c) four tiles are
put together, in (c1) four correctly connected tiles are kept apart.

Figure 3. PalCom tile stack
The middleware management layer, which consists of managers
handling resources, services, assemblies, and contingencies,
requires too great a memory footprint to fit into the 8MB memory
of the UNC20. Therefore, the software for the tiles has been
developed to run on a standard PC with simulated infrared
communication in concurrence with the development of the
hardware for the tiles and the optimization of the middleware
management layer. On the desktop machine the simulated
framework runs on top of Sun’s JavaVM.

The tasks are designed as two series each consisting of 10
repetitions of the tasks. In the first series the tasks are interrupted
by re-boot of the game services (Re-boot series), in the other
series the tasks are carried out continuously over time (Over time
series). The former case represent the normal performance the
tiles have on these tasks. The latter evidences how the
performance in these specific tests varies over time.

Re-configuration (Adaptability)
The tiles deployed as simulated devices on a desktop machine are
expected to have an optimal performance and can still exhibit a
certain level of experimentability through the simulated game
with a graphical user interface. In fact the therapists had the
valuable opportunity to exploit the opportunities provided by the
middleware managers, even if within the simulation framework
The architecture experienced on the Simulated Framework was
likely to inform the development of the embedded applications.

The tiles currently can run either fixed GameServices, like the
Jigsaw Puzzle Fish game (see Figure 1) and the Domino game
(see Figure 2); or open GameServices where the tiles are in
programming mode and learn how to configure by physical
programming-by-example. The tiles also run FeedbackServices,
like the actual LEDService or the possible VibrationService and
SoundService that can be developed in the future.
The Re-Configuration tasks can either mean: choosing among
existing pre-defined GameServices or the flexible use of single
services related to game configuration, e.g. tiles’ sequence,
sensing and feedback.

6.2 Performance Testing
The Performance Testing have been organized around tasks
designed in order to translate the Qualities, and therefore with a
relation to the Users’ Practices, in measures observable via
execution. The tasks aim at demonstrating how the existing
architectural components would behave in performing the Active
Surfaces scenario, e.g. performing the assigned activities.

In one case the system should allow shifting between pre-defined
GameServices, i.e. different games that have already been
configured. In the second case the system should allow running
more services at the same time

The performance testing is based on a user-oriented perspective
and assumes human practice in the therapeutic setting. In
particular time responses, delays or frequency of errors have been
observed with respect to the requirements coming from the
activity analysis. For what regards timeliness, the major
requirements from the therapeutic activity in the water are the
duration of the whole session (45 minutes), the pace of the
interaction (cycles of 3 to 5 minutes games to the utmost)
intervened by the restless time pauses (2-3 minutes). These data
allowed us to define the baseline for the experiments [5].

That’s why we launched different services in parallel simulating
the two conditions described above. We are able to compare the
task under two different conditions represented by the
ist.palcom.tiles.test.fish.prc services, which involves IR
communication among the tiles; and ist.palcom.tiles.test.timer.prc
which doesn’t involve the use of IR communication.

Performance (Experimentability)
Performance comprises 1 task performed under both the
experimental conditions, with and without the use of
communication. Thus there is a set of 2 tasks that consist of
observing two GameServices running for 30 min.

In order to determine whether there are restrictions in the software
architecture or if the eventual constraints are due to the current
hardware implementation, we have organized testing around two
different conditions: 1) Tasks in which the performance is
influenced mainly by the software architecture currently running;
2) Tasks in which the performance is both influenced by the
architecture and mostly by the current hardware implementation
[10].

As mentioned above, the overall session lasts 45 minutes and the
duration of a single game situation can be assumed to be 30
minutes at the very most. In fact even if it is possible that children
find some games very engaging, it is very hard to carry out the
same game for almost the whole session. Furthermore game
dynamics usually last few minutes.

In particular the experimental tasks can be grouped into the
following areas. Each area represents a way to translate the
Architectural Qualities (in brackets) into less conceptual and more
verifiable evaluation tasks.

7. RESULTS
In this paragraph a short summary of the gathered data is
presented. For an extensive overview of the results see [5].
The results related to Communication and Discovery are
presented regarding the two series of gathered data (Re-boot and

Communication and Discovery (Assemblability and Resource
Awareness)

61

Over Time series), the two main actions (Put Together and Put
Apart) and the scalability factor represented by the number of
tiles utilized (2, 3 or 4 tiles).

Conditions Tasks 2 Tiles 3 Tiles 4 Tiles

Put together 3.2 7 6.9
 Re-Boot

Put apart 7.6 9.8 12.5

Put together 3.5 7.6 7.5
 Over Time

Put apart 8.1 10.6 13.3

Table 2. Communication and Discovery. Summary of Results
The comparison among Communication and Discovery between 2
Tiles, among 3 Tiles and 4 Tiles, also gives a quantitative
measure of how horizontal scalability affects the performance of
the tiles system. Active Surfaces is conceived and designed as a
modular system that in future implementation will be made of 12
units. The experimental data suggest that the performance of
PalVM and the PalCom Communication components should be
improved to meet the requirements of a highly scalable system
and guarantee acceptable time responses as the number of the
modules increase.
Tasks related to Re-configuration show how the system supports
several services running in parallel and also creative combinations
and adaptations of the tiles system. This can be done by shifting
among these pre-defined solutions or by flexibly combining
single services related to game configuration (e.g. game logics,
sensing and feedback).
The eventual shifting among GameServices would be affected by
the time required by new services to start, about 10 sec. As we
observed through the activity analysis, the pace of the activity in
the Active Surfaces scenario would impose a quicker response
time for the re-configuration of the system. It is estimated to be no
more than 10 sec in order to really provide the user with the
experience of ready-at-hand tools. The results show that there is
still not adequate support for the multiple services combination,
i.e. more than three services running).
Regarding the combination of services, all the VM versions well
support two services running in tandem both in tasks involving
the use of IR communication or not. Simultaneously running two
services, the system coherently exhibits the behaviours defined by
the two services. Three services running in parallel are also
supported but it seems to affect the behaviour of the tiles by
decreasing the overall performance of the PalVM-release. These
results are close to what happen with running one service alone
and this could prove valuable support for re-configuration.
Tasks regarding the Performance over long periods of time show
that the current implementation restricts the overall performance
of the tiles. In fact, the performance through the LightUp
GameService proved to be optimal, while tasks involving the
communication modules resulted in a series of malfunctions that
negatively affected the overall performance.
The results of the experiments allowed us to revise and elaborate
on the initial formulation of the Qualities. For the Architectural
Qualities revised see [5].

8. CONCLUSION
In discussing software architecture development and users’
practices we have described the integration among the traditional
ethnographic studies, participatory design methods and
naturalistic experiments to inspire, inform and evaluate the design
of software architectures [9]. This approach has already been
adopted for the design of ubiquitous computing technologies [11]
while it seems to be still fully appreciated in software architecture
design [11].
Recently there has been a growing interest in understanding
specific evaluation problems that arise from the use of Ubiquitous
Computing systems [12]. In such paradigm software and hardware
resources are distributed throughout the physical world and this
impacts individual and social behaviours. Different evaluation
criteria have been outlined, user attention (focus and overhead),
the adoption of the system (value and availability) and the
qualities of the interaction (physically embeddedness, dynamic
input/ output, multiple devices, multiple users). Criteria related to
the use and the person, such as understanding, control, accuracy,
appropriateness, and customization, are also discussed.
This study helped us to figure out the complexity of such intricate
stage where persons and computational resources influence one
each other. With this research we wanted to highlight on
multifaceted aspects interwoven in the interplay between real use
and software development.
We observed that the introduction of UbiComp technology
affected and changed users’ activities and that, at the same time;
they became responsible for maintaining, controlling and
changing it. The system architecture / use relationship is
dialectical since on one hand, technology enhance certain
practices by enabling novel use opportunities, on the other hand
user-specific dynamics provoke, inspire and inform the
emergence of unpredicted architectural solutions.
In this paper we showed how such interplay took place through
the whole research process, i.e. through design and development
strategies that accounted for the special needs of the involved
users and challenged the development of the system architecture.
We wanted to give a feeling of this multiplexed process by
describing the design of the experiments and the results. Data
gathered during the activity analysis and activity modeling
provided the backbone to define the experimental plan and the
baseline for the evaluation of the system.
We empirically investigated the dialogue between user studies
and software development by means of operative choices. We
tried to bridge these two different fields and to take advantage of
the methods of each domain. This study also resulted in the
investigation of newly emergent interwoven processes that make
use and architecture meeting at the edge, where software
Qualities and Users’ Practices juxtapose and evolve tightly
coupled.

9. ACKNOWLEDGMENTS
Thanks to Prof. Patrizia Marti, Alessia Rullo and Erik Grönvall as
they were a part of the research group for the duration of the
PalCom project. Thanks to the collegues at the Computer Science
Dpt, Univeristy of Aarhus that played a fundemental role in the
software architecture development.

62

10. REFERENCES
[1] John, B. E.; Bass, L. (2001) Usability and software

architecture. In Behaviour and Information Technology, 20
(5) pp. 329-338

[2] Palcom Project Website, http://www.ist-palcom.org/

[3] Grönvall, E., Marti, P., Pollini, A., Rullo, A. (2006) Active
surfaces: a novel concept for end user composition,
NordiCHI 2006, Oslo, Norway, 14-18 October, 2006.

[4] Pollini A., Grönvall E. (2006) Constructing assemblies for
purposeful interactions. In Proceedings of Mobile Interaction
in the Real World Workshop, MUIA06 at MobileHCI 2006,
8th International Conference on Human Computer
Interaction with Mobile Devices and Services. 12 September
2006. Espoo, Finland.

[5] Pollini A., (2008) Experimenting with an Ubiquitous
Computing Open Architecture. Ph.D. Thesis, University of
Florence, Italy, 2008.

[6] Emiliani, P. L., Stephanidis, C. (2005) Universal access to
ambient intelligence environments: opportunities and
challenges for people with disabilities. IBM Syst. J. 44, 3
(Aug. 2005), 605-619.

[7] Kazman, R., Barbacci, M., Klein, M., Carriere, S. J., Woods,
S. G. (1999) Experience with Performing Architecture
Tradeoff Analysis, In proc. of the 1999 International
Conference on Software Engineering, pp. 54-63, 1999.

[8] Bengtsson, PO. (2002) Architecture-Level Modifiability
Analysis. ISBN: 91-7295-007-2, Blekinge Institute of
Technology, Dissertation Series No 2002-2, 2002.

[9] Bardram, J. E., Christensen, H. B., and Hansen, K. M. (2004)
Architectural Prototyping: An Approach for Grounding
Architectural Design and Learning. In Proc. 4th Working
IEEE/IFIP Conference on Software Architecture, pp. 15-24,
2004.

[10] Bass, L., John, B. E. (2003) Linking usability to software
architecture patterns through general scenarios. Journal of
Systems and Software, 66 (3), 187-197.

[11] Edwards, W. K.; Bellotti, V.; Dey, A. K.; Newman, M.
(2003) Stuck in the Middle: The challenges of user-centered
design and evaluation for infrastructure. ACM Conference on
Human Factors in Computing Systems (CHI 2003); 2003
April 5-10; Fort Lauderdale; FL. NY: ACM; 2003; 297-304

[12] Scholtz, J., Consolvo, S. (2004) Toward a Framework for
Evaluating Ubiquitous Computing Applications. IEEE
Pervasive Computing Magazine, Vol. 3, No. 2 (Apr-Jun
2004), pp. 82-8.

63

Fostering Remote User Participation and Integration of
User Feedback into Software Development

Steffen Lohmann Asarnusch Rashid
University of Duisburg-Essen

Interactive Systems and Interaction Design
Lotharstr. 65, 47057 Duisburg, Germany

Research Center for Information Technology
Information Process Engineering (IPE)

Haid-und-Neu Str. 10-14, 76131 Karlsruhe, Germany

steffen.lohmann@uni-due.de rashid@fzi.de

ABSTRACT
Permanent involvement of end users in software development is
both highly recommended and highly challenging. Against the
background of our results and experiences from two research
projects, we summarize several key issues and design concerns
that need to be considered when integrating users and their
feedback into software development.

Within the research projects SoftWiki [8] and CallaBaWue [3],
methods and tools have been developed that ease remote
participation of end users in the software development process, in
particular with respect to requirements elicitation and usability
evaluation. The basic toolset in both projects consists of a
collaboration platform and participation channels that enable
users to make suggestions for improvements concerning a certain
software product (cp. [4, 6]). During the development of these
methods and tools as well as in three usability tests and two case
studies (one short-term and one long-term) including over 50
participants in total, we got valuable insights regarding successful
forms of remote user participation as well as drivers for the
integration of user feedback into software development. In the
following, we summarize some key issues and design concerns
that need to be taken into account when involving distributed
users in software development.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software development. D.2.1
[Requirements/Specifications]: Elicitation methods. D.2.2
[Design Tools and Techniques]: User interfaces. H.5.2 [User
Interfaces]: User-centered design. H.1.2 [User/Machine Systems]:
Human factors. I.3.6 [Methodology and Techniques]: Interaction
techniques.

General Terms
Design, Human Factors 2. DIMENSIONS FOR REMOTE

PARTICIPATION Keywords
Several important issues and conceptual aspects regarding the
integration of distributed users to improve software systems, such
as the reporting of bugs or remote usability evaluations, are
discussed in related work (e.g., [5, 1, 2]). On a general level, we
identified three dimensions that appeared to be central when it
comes to the implementation of computer-mediated user
participation in software development: degree of autonomy,
number of users, and level of collaboration.

Remote User Participation, User-centered Software Development,
Distributed Participatory Design, User Interface Annotation

1. INTRODUCTION
Nowadays, software development is increasingly characterized by
evolutionary processes and short development cycles. Modern
software systems usually need continuous updating, improvement,
and customization. Perpetual usability evaluations and user
surveys are crucial to guarantee that a software system meets the
users’ needs. Development concepts such as Participatory Design
in Use [2] emphasize the importance of continuous user
participation. However, the spatial and temporal distribution of
system users often limits the possibilities for co-located methods
of participatory design. In many cases, user participation is only
remotely possible, e.g. via computer-mediated forms of commu-
nication.

The degree of autonomy can be divided in the two opposite
approaches of autonomous and event-driven participation.
Autonomous participation means that the user decides on his own
when to participate. A typical scenario would be that the user
expresses requirements whenever they appear in his daily use of a
software system. Event-driven participation forms, in contrast,
explicitly invite users to participate in certain situations or at
particular points in time. Our favorite solution is a combined
approach that regularly reminds the users that they can influence
the system design and inspires participation by providing certain
topic frames and at the same time allowing them to contribute at
any time, independently of the particular development status.
Especially the last aspect seems to be crucial, since we
experienced that test users very much liked the possibility of
being able to express requirements immediately whenever they
occur while interacting with the system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In addition, the optimal form of participation support relies
largely on the number of users that are expected to be actively

I-USED’08, September 24, 2008, Pisa, Italy

64

involved in the development. The higher the number of
participants, the more important are mechanism that guarantee
systematic and structured elicitation and analysis that can handle
large amounts of requirements. For instance, within the tool
OpenProposal [6], we made promising experiences with the
digital annotation of user interfaces that are automatically saved
as screenshots and send to the developers. In cases where large
numbers of users participate, automatic utilization of user
annotations proofed to be useful as in the tool Softfox [4] that
supports direct linking of user input to the application structure or
underlying system models, in particular if a model-driven
development [7] approach is being used.
A third design dimension concerns the level of collaboration, both
among users and between users and developers. A central
question is whether users provide requirements individually and
independently or if the requirements are collaboratively deve-
loped and improved. Within our research, we came to the result
that sophisticated solutions should collect the user at the point he
is willing to participate. For instance, a web platform can provide
collaboration support such as commenting, discussion, or
cooperative editing features as well as possibilities to rate, vote,
and link requirements. Embedded participation channels can be
moreover provided for those users who are willing to participate
but are not willing to deal with the collaboration platform.
However, some kind of awareness regarding already existing
requirements should be given in any case – this reduces the effort
for the user as he does not need to formulate a requirement a
second time that has already been expressed. Furthermore, the
amount of redundant requirements is reduced leading to lower
effort in analyzing the requirements.

3. FURTHER ASPECTS
Next to these basic design dimensions, we identified several
aspects that we regard as highly valuable for successful imple-
mentation of remote user participation in software development.
In the following, we summarize further key issues that can help to
lower the participation barrier and to better link user feedback
with the software product.

3.1 Reducing the Participation Barrier
Integration into the user’s environment: The participation
interfaces should at best be directly embedded into the user’s
system environment to establish an affordance always reminding
the user that involvement and thus system improvement is
possible. For instance, some kind of ‘participate’-button can be
constantly visible on the desktop or can be integrated into the
interface of the web browser or application of interest.

Lightweight Participation: It should be possible for the user to
participate whenever an idea for improvement comes to his mind,
resulting in only a marginal interruption of his actual activity or
workflow. At best, the user should decide what and how much
information he wants to provide. The initial input should be based
on a lightweight and informal process that can later be refined and
elaborated.

Simplicity and Assistance: All interactions with the user
interface should be as simple and self-explaining as possible in
order to encourage users getting involved. The interface should
not require to login each time the users express a requirement;
appropriate interaction support, such as automatic form filling or

system suggestions, should moreover be provided. The user
should furthermore not be enforced to provide extensive data or
make classification decisions that are cognitively challenging.
However, too much assistance, such as pre-defined templates or
automatic system proposals, can also have a negative impact on
the creativity of the user.

Transparency: In every situation, it must be clear to the user
what data is captured along with his input. Ideally, the user can
continuously track the progression of his requirements in the
development process. The user’s motivation is heavily based on
the fact that he recognizes how the system is improved as a
consequence of his input, which might lead to a personal benefit.

2.1 Linking User Input to Software Artifacts
Most user requirements refer to specific artifacts of the software
system. We found that both – users and developers – can benefit
from options allowing to implicitly or explicitly link requirements
to parts of the software system.
A key feature of our tools that has been rated as highly valuable
in user tests is the possibility to directly refer to elements of the
graphical user interface while formulating requirements. This is
either realized by digital annotation (in case of OpenProposal) or
by direct selection of web elements (in case of Softfox). The
assumption of this feature is that many software artifacts have a
representation in the user interface, in particular artifacts that end-
users refer to. On the one hand, references to the user interface
ease the requirements formulation for the user as he does not need
to textually describe the interface elements but can directly point
at them. Furthermore, this concretizes and illustrates his ideas for
improvement and can reduce typical problems that often arise
from text-only communication such as misconceptions due to
wrong word choice, incomplete data, or descriptions that are too
elaborate. On the other hand, the application context can provide
valuable assistance in systematically analyzing the user require-
ments; the analyst can, for instance, inspect all requirements at
once that refer to a certain element of the user interface.

4. CONCLUSION AND OUTLOOK
This position paper reported several aspects we experienced as
valuable to foster user participation in distributed settings and
help to integrate feedback in the software development process.
However, we have not discussed in what ways developers have to
rethink and change their habits to make remote user participation
successful. This remains a topic for future work.

5. REFERENCES
[1] Castillo, J.S., Hartson, H.R., Hix, D. 1998. Remote Usability

Evaluation: Can Users Report Their Own Critical Incidents?
In CHI'98 Human Factors in Computing Systems, 253-254.

[2] Draxler, S., Stevens, G. 2006: Getting Out of a Tailorability
Dilemma. In Informatik 2006 – Informatik für Menschen, 1,
LNI P-93, 576-579.

[3] CollaBaWue – research project, funded by the
Landesstiftung Baden-Wuerttemberg Foundation, see
http://www.collabawue.de/

[4] Lohmann, S., Ziegler, J., and Heim, P. 2008. In Engineering
Interactive Systems 2008, LNCS 5247, 221–228, in press.

65

[5] Nichols, D.M., McKay D., Twidale, M.B. 2003. Participatory
Usability: Supporting Proactive Users. In Proc of 4th ACM
SIGCHI NZ Symposium on Computer-Human Interaction
(CHINZ'03), 63-68.

[6] Rashid, A., Wiesenberger, J., Meder, D., Baumann, J. 2008.
In Proc of the PRIMIUM Subconference at the Multi-
konferenz Wirtschaftsinformatik (MKWI), CEUR-WS 328.

[7] Schmidt, D.C. 2006. Model-Driven Engineering. IEEE
Computer 39(2).

[8] SoftWiki – research project, funded by the German Federal
Ministry of Education and Research (BMBF), see
http://softwiki.de

66

Designing Usable Applications based on Web Services
Fabio Paternò, Carmen Santoro, Lucio Davide Spano

HIIS Laboratory – ISTI-CNR
Via Moruzzi 1

56126 Pisa, Italy

{fabio.paterno, carmen.santoro, lucio.davide.spano}@isti.cnr.it

ABSTRACT
One trend in software development is to implement application

functionalities through Web services. This eases the possibility of

developing interactive applications exploiting functionalities

implemented by others. In this paper we discuss the issues raised

when designing user interfaces for these types of applications. In

particular, we describe a possible approach to address them based

on the use of model-based user interface descriptions with the

possibility of obtaining versions adapted to different types of

interactive devices. The development of the final user interface is

supported by a semi-automatic process in which at first the

designers take benefit of an authoring tool able to automatically

generate the first version of the user interface and then, after an

evaluation phase of of the resulting user interface, they can

manually make further modifications and refinements in order to

obtain highly usable user interfaces.

Categories and Subject Descriptors

H5.m. Information interfaces and presentation (e.g., HCI).

General Terms
Design,

Keywords
Model/based design. Usability, Web services.

1. INTRODUCTION
One current trend in software development is the use of Web

services. They have been introduced to better support

software−to−software communication. This is achieved through

the WSDL (Web Service Description Language) description

associated with each service, an XML-based description of the

possible operations, and input/output parameters. The basic idea

is to ease the development of applications based on the SOA

(Service−Oriented Architecture) approach in which often

applications developers have to design access to services and their

compositions developed by others.

Meanwhile, recent years have also assisted to a renewed interest

in model-based user interface design and development because

logical descriptions allow designers to better manage the

complexity of multi-device environments (see for example [1],

[4]). This is usually obtained by exploiting XML logical

descriptions and associated transformations for the target devices

and implementation languages. Having the possibility of

specifying a user interface at different levels has several

advantages: it helps designers because the separation in different

abstraction levels provides different “views” of the same user

interface, and the selection of the most appropriate view is

performed by the designers depending on the specific aspects they

are currently interested in, and/or on their specific skills. In

addition, it is worth pointing out how not only designers can be

involved in the approach, but also other stakeholders can play a

relevant role in the process. Indeed, as the method is supposed to

be iterative and refinement-based with a semi-automatic approach

there is enough room for even an early intervention of evaluation

in the process, to the aim of identifying usability problems and

include the design of their solutions as soon as possible in the user

interface software lifecycle.

In addition, the information contained in the models can be

exploited both at design and at run time. Therefore, the use of

models does not pose any particular constraints to when and how

the models should be used. Maintaining links among the elements

in the various abstraction levels enables e.g. linking semantic

information (such as the activity that users intend to do) with

more concrete levels, up to the implementation levels, and this can

be exploited in many ways. For instance, such links can be

automatically supported by suitable transformations, which are

useful for obtaining a description in a specific abstraction level,

once a description in a different level is available, not forcing

designers to build all the different descriptions or to use any

specific model.

If we consider the abstract level, it is generally recognised that the

main benefits in using an abstract description of a user interface is

for the designers of multi-device interfaces, because they do not

have to learn all the details of the many possible implementation

languages supported by the various devices. Thus, one advantage

of using the abstract levels of a user interface is that designers can

reason in abstract terms without being tied to a particular

platform/modality/implementation language. In this way, they

have the possibility to focus on the 'essence' of the interaction

(e.g.: what is the intended effect the interaction wants to

achieve/support?), regardless of the details and specificities of the

particular environment considered. In addition, considering the

abstract level of the user interface appears to be particularly useful

when the user interfaces are aimed at handling Web Services.

Indeed, WSDL files provide a description of the operations

supported by the Web Services. The relationships of such

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy

67

descriptions of the operations (contained in WSDL files) with the

abstract user interface objects expected to support them in the

resulting user interface (contained in the abstract user interfaces)

is an interesting issue to investigate, and appears to be promising

in helping to solve the problem of generating user interfaces for

Web Services.

This is a novel problem. Indeed, most model-based approaches

have not addressed the specific issues related to Web-service

based applications. Work on generating user interfaces for Web

services but without using model-based approaches has been

carried out at Dresden [6] and Yonsei [5] universities. The

limitation is that such works usually consider direct mappings

between Web services functional interface and an implementation

language for user interface, which cannot be exploited when

devices supporting different implementation languages are

considered.

Work by Vermeulen et al. [7] aimed to solve such issues by

extending Web services with OWL-S combined with task and

layout model. This approach requires a lot of manual work by the

designers.

In general, the type of issue that we have to solve is how to

associate information regarding the data types and information on

the user interface. Indeed, while the semantic Web has mainly

focused on the data semantics through the use of ontologies and

languages that allow for more intelligent processing, user interface

models allow designers to consider the semantics of interaction,

which is related to the tasks to support in order to reach the users’

goals. Thus, we need to link these two types of information.

In this paper we discuss how to address the issues introduced by

proposing a specific approach and a language and the associated

environment, which builds on our previous experiences but aims

to provide better support when designing interactive applications

based on Web-services, we also report on how the approach can

be applied in an application in the home domain and how it

supports the interplay between software development and

usability evaluation.

2. METHODOLOGICAL APPROACH
A traditional top-down approach going through the various

abstraction layers that have been considered useful in HCI (task,

abstract interface, concrete interface, implementation) does not

seem particularly effective in this context for various reasons. One

is that designers and developers have to create interactive

applications accessing application functionalities developed by

others. Thus, they have to focus their effort on how to take into

account the specific requirements that the application interface of

the existing Web services pose. In addition, they also have to

indicate how to compose functionalities implemented in different

Web services.

Our approach (see Figure 1) is to have first a bottom-up step in

order to analyse the Web services providing functionalities useful

for the new application to develop. In this phase an analysis of the

operations (OP1, .. OP4 in Figure 1) and the data types (DT1, ..,

DT4 in Figure 4) associated with input and output parameters is

carried out in order to associate them with abstract interaction

objects suitable to support presentation of their values and their

modification.

For example, a Boolean can be represented by a button, an

enumeration type by a list or a radio button depending on its

cardinality. Thus, for each Web services we can have a

corresponding abstract description of the user interface.

Then, we can use the task model expressed in ConcurTaskTrees

(CTT) [3] for describing the interactive application and how it

assumes that tasks are performed. This notation is a standard de

facto in the area of task model representations, and it also under

consideration for standardization in the W3C consortium. CTT

provides a first classification of tasks depending on the agent

performing them: the user (in case of only internal cognitive

activity, such as making a decision about how to carry on a

session), the system (completely automatic task) or interaction

(involving both the user and the system). Web services are

application functionalities, thus they are associated with system

tasks. Another issue is what level of granularity to reach in the

task decomposition. There are mainly two possibilities:

associating the system basic tasks to the web services or reach a

further detail in order to associate each system basic task with the

operations of the web services. Thus, if a Web Service supports

three operations, then there would be three basic system tasks.

The latter solution allows for a more detailed and flexible

specification.

The next step is to obtain first an abstract, and then a concrete,

platform-dependent, user interface description of the user

Figure 1. The Proposed Approach.

68

interface. To this end we have to consider information derived

from the task models and the various pieces of abstract interface

associated with the various Web Services. The information

coming from the task model is useful in order to identify how to

structure the presentations of the interactive applications and

define the navigation model through them. The information

coming from the abstract interface excerpts are mainly useful to

identify the interface elements to include in each presentation and

their type. Defining the structure of a presentation mainly means

to identify the logical groups of elements inside it, and whether

there are particular relations among some of such groups The

structure of the Web services can be useful for this purpose

because we can think of ‘groupings’ associated with each

operation (indicating how to represent their input and output

parameters), and higher level groupings associated with the Web

services.

The use of an automatic tool and, consequently, automatic

transformations, has several advantages: it allows for generating

usable and consistent user interfaces by incorporating already in

the transformation rules some design guidelines/rules for

obtaining usable interfaces. In addition, it also allows for ensuring

that some minimal consistency overall the pages is automatically

kept (eg: ensuring the consistency of the title label or the style of

the presentations overall an entire user interface application).

However, very often the results of fully automatic authoring tools

for user interfaces are not very satisfactory from a usability point

of view, even when some good design rule have been

incorporated in the transformations.

To this aim in our approach a semi-automatic process has been

proposed. Such a process provides also space for (a manual)

intervention, an evaluation phase carried out on an initial version

of the user interface that has been automatically generated.

Therefore, in order to improve the usability of the final results, an

evaluation feedback from a HCI expert can be envisaged so that a

consequent manual refinement and modification of the user

interface which has been automatically obtained with the

authoring tool can be carried out accordingly.

3. MARIA
In order to obtain a more powerful description language able also

to satisfy the new requirements posed by service/oriented

architectures, and modelling the new forms of human-computer

interaction, we are developing a new UI specification language,

which will take also into account the new technical requirements

raised by the issue of generating usable interfaces for Web

Services. The new language name is MARIA (Model-bAsed

descRiption of Interactive Applications) XML and it can be used

for the abstract and concrete user interface definition. Its

development takes into account our previous experiences with a

previous language (and the associated tool) for designing multi-

device user interfaces, TERESA XML [4].

There are many differences between TERESA XML and MARIA

XML. For example, MARIA supports also an abstract description

of the underlying data model of the application. The interactors

(namely, the elements of the abstract or concrete user interface)

which compose an abstract (resp.:concrete) user interface, can be

bound to a type or an element of a type defined in the abstract

model. In this way, a change of application status is modelled as a

change of one or more values in the abstract data, which will be

reflected on the interface (abstract or concrete) status. This is a

powerful feature that can be used to express in a natural manner

aspects such as correlation between the value of interface

elements, conditional presentation connections, conditional layout

of interface parts, etc.

The data model is described using the XSD type definition

language. In MARIA there is the possibility to define the data

manipulated by the user interface both at the abstract level

(through an abstract data model) and at the concrete level (a

concrete data model, which is a refinement of the abstract one).

The introduction of a data model at the abstract level also allows

for having more control on the operations that will be done on the

different data types. In addition, the data model is also useful for

specifying the format for values: the format specification for a

value can be expressed in MARIA by bounding the concrete data

model with the editing interactor used for getting the input value

from the user: if the editing object is bound with a date, the

underlying implementation will have the needed information for

validating the value that will be provided by the user. The

MARIA data model can be the same as the types part of the

WSDL description of the service, or it can be mapped on a more

UI oriented description using an XSLT style sheet. The new

authoring environment for MARIA XML is currently being

developed to support this operation. The problem of mapping

fields to services parameters is also supported by the MARIA

environment: the mapping is obtained by performing the inverse

operation of the process described before: another XSLT style

sheet performs the mapping from the AUI data model to the

WSDL one.

Figure 2 shows a graphical representation of an abstract interactor

of type only_output in MARIA XML abstract user interface

description (the description has been unfolded only for the higher

levels).

Figure 2. The specification of the only_output element

The only_output interactor models the possibility for the user to

receive information from the application, and, depending on the

69

type of information received (text, object, description, feedback,

alarm), suitable interactors should be used.

In the same way, within MARIA XML an abstract interactor

allowing the user to interact with the underlying application is

refined into different objects depending on the type of activity

which is supported: selection (select an object within a set of

objects), edit (modifying an object), control (activating a

functionality), and interactive description (a combination of both

only_output and interaction objects).

Figure 3 presents a graphical representation of an abstract

interactor of type interaction in MARIA XML abstract user

interface description (the description has been unfolded only for

the higher levels).

Figure 3. The specification of the interaction element

The corresponding excerpt of MARIA XML Schema for the

abstract user interface description of the abovementioned

interaction object (only for the first level) is visualised, together

with the specification of the two possible types an interactor can

assume (interaction and only_output):

<xs:complexType name="interaction_type">

 <xs:choice>

 <xs:element name="selection" type="selection_type"/>

 <xs:element name="edit" type="edit_type"/>

 <xs:element name="control" type="control_type"/>

 <xs:element name="interactive_description"

type="interactive_description_type"/>

 </xs:choice>

 <xs:attribute name="mode" type="mode_type" fixed="input"/>

</xs:complexType>

<xs:complexType name="interactor_type">

 <xs:choice>

 <xs:element name="interaction" type="interaction_type"/>

 <xs:element name="only_output" type="only_output_type"/>

 </xs:choice>

…

</xs:complexType>

Figure 4 shows how it is possible, with MARIA XML, modelling

a concrete user interface object (for the desktop platform)

allowing for editing a textual value. More in detail, in the figure it

is visualised the hierarchy of concrete interactors unfolded only

for the branch of textfield objects, which allow editing text-based

values. Textfields have a number of attributes, label (the label of

the interactor), length (the length of the field), and the information

about whether the field is aimed at accepting passwords (therefore

the object should have a special behaviour in the feedback -eg: in

a graphical platform it will not visualise the inserted value).

Figure 4. The specification of the textfield element

In Figure 4 below the objects derived from refining the interactor

object down to the textfield object have been highlighted with a

different colour, in order to make clearer to the reader such

decomposition.

70

Below there is the corresponding MARIA XML specification

excerpt for the textfield object

<xs:complexType name="textfield_type">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="label" type="xs:string" use="required" />

<xs:attribute name="length" type="xs:NMTOKEN"

use="required" />

<xs:attribute name="password" type="option_type"

use="required" />

</xs:extension>

 </xs:simpleContent>

</xs:complexType>

4. AN EXAMPLE APPLICATION

We have applied our approach to the design of a home

application. This is an application domain that is raising an

increasing interest because our houses are becoming more and

more populated with interactive, intelligent devices. In this case

we have used a home server able to support interoperability

among home devices supporting various communication protocol

(X10, UpnP, Konnex, …). The functionalities of the domestic

appliances are made available through a standardised set of Web

services exposed by a home server [2]

This case study has also provided us with the possibility to define

an algorithm for generating a default user interface for accessing a

Web service operation. The idea is that the generated UI can then

be refined by a designer with an authoring environment, but we

want to create heuristics to minimize the need of human

intervention.

For the sake of simplicity, in order to illustrate the algorithm we

take into account a single service with a finite set of operations

and data types.

The algorithm has a first step that aims to extract an object

oriented model of the operations: each operation is associated to

a data type (the type “owner” of the operation) defined in the

types part of the WSDL file, checking the operation parameters.

After that the constructed model is reviewed for identifying the

input and output operations that read or write the same properties.

For instance we can take into account a Sensor data type that

contains an element status. The WSDL has two operations :

• SetSensorStatus(Sensor s, boolean status)

• Boolean GetSensorStatus(Sensor s)

These two operations are bound to the Sensor data type, the first

one is an input operation that writes a value in the status field and

it is marked as input, while the second is a read operation and it is

marked as output (it delivers as a result a Boolean data, as you can

see from its specification). When the parameter that represents

the value of the input operation matches with the read value of an

output operation, their names are checked using the following

heuristic: if the names are similar enough, they are merged into a

single input/output operation: as a consequence, the same

interactor will be used for supporting the input and output

operations. Otherwise the two operations will remain distinct and

different interactors will be used for accessing the two operations.

As an explanatory example of the above concept, we could

consider a mobile user interface in which screen space is limited,

and therefore it may be useful to have a single interactive element

able to cover both aspects (possibility of changing the state and

show actual state). In order to identify such cases, we have

developed a heuristic indicating that when in the WSDL we find

two methods having complementary structures (such as

set<value> and get<value>, like e.g. setSensorStatus and

getSensorStatus before) associated to one device, then they are

mapped onto one element able to support both methods instead of

two separate interface elements.

Enumeration data type, with high cardinality

Abstract User

Interface

<selection>
 <single_choice
cardinality="high"/>
</selection>

Concrete

Desktop

<selection>
 <single
 cardinality="high">
 <list_box
 alignment="…">
 <choice_element
 label="[elementName]">
 elementName
 </choice_element>
 [Other elements]
 </ list_box >
 </single>
</selection>

Concrete

Mobile

<selection>
 <single
 cardinality="high">
 <drop_down_list
 alignment="…">
 <choice_element
 label="[elementName]">
 elementName
 </choice_element>
 [Other elements]
 </drop_down_list>
 </single>
</drop_down_list>

Concrete

Vocal

<selection>
 <single
 cardinality="high">
 <message_menu
 message="…"
 nomatch_event="[nomatchmsg]"
 noinput_event="[noinputmsg]"
 help_event="[helpmsg]" >
 <message>
 [elementName]
 </message>
 [Other elements]
 </message_menu>
 </single>
</selection>

Figure 5. Examples of mappings

71

The next step is the creation of the abstract user interface using

the collected operation information. The table shown in Figure 5

describes an example of the main mapping rules in the case of an

enumeration data type with high cardinality, by showing an

abstract single_choice element and the corresponding concrete

elements for the desktop, mobile, and vocal platforms.

In this way it is possible to obtain an application able to support

access through multiple types of devices. For example, it is

possible to generate versions for a PDA and a desktop system, but

other device types can be considered as well. In the case of the

PDA access, we consider the possibility of generating an

application in C#, even able to support libraries for vocal and

multimodal access. This application has to be downloaded and

installed in the mobile device. In the case of a desktop access, we

consider the generation of a Web application able to support

access, through some servlets, to the web services associated with

the domestic appliances. Whatever interaction device is actually

used, then the user can freely choose one domestic device and

perform the desired information, usually check the state of some

parameters (such as temperatures or alarms) or change some of

their values.

Figure 6. The Desktop User Interface.

The different screen space implies substantial differences in the

generated user interfaces. In the desktop interface (see Figure 6)

it is possible to show the various rooms, select a device and access

the associated controls in one single presentation.

Figure 7. The PDA User Interface.

All these possibilities are still available in the PDA interface (see

Figure 7) but they require multiple presentations and the addition

of navigation capabilities among them.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed a method for the model-based

design of interactive applications based on the use of Web

services. We have also briefly reported on the development of a

new XML specification language, and the associated authoring

environment, to better support the method, and, more generally,

to provide more flexible support to UI designers. We have also

illustrated the approach with a specific example in the home

domain.

In addition, we pointed out how our approach leverages an easy

coupling between on the one hand software design and

development and, on the other hand, usability evaluation. Indeed,

the approach is supported by a semi-automatic process in which

an initial version of the user interface is expected to be obtained

through the use of automatic tools in which some guidelines for

good UI design are already incorporated (eg within the

transformation rules). Therefore, the initial results automatically

obtained should already be compliant with principles of good

design if they have been incorporated in suitable transformations

(which, if not hard coded in the automatic tool can be even

subject of an usability evaluation as well). Afterwards, the

preliminary versions of the user interfaces so obtained are

supposed to be analysed and evaluated by HCI experts: the

feedback of such an evaluation can be included through a manual

refinement which can affect (and, hopefully improve) the result

not only at the final UI level but also at more abstract UI levels,

depending on their skills.

Future work has been planned for applying the presented

approach to more complex case studies, in order to test the

generality and the flexibility of the method.

6. ACKNOWLEDGMENTS
This work is partly supported by the ServFace EU ICT project.

7. REFERENCES
[1] Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S.,

Shuster, J. UIML: An Appliance-Independent XML User

Interface Language, Proceedings of the 8th WWW

conference, 1999.

[2] Miori V., Tarrini L., Manca M., Tolomei G. - An open

standard solution for domotic interoperability. In: IEEE

Transactions on Consumer Electronics, vol. 52 (1) pp. 97-

103. IEEE, 2006.

[3] Paternò F., Model-based Design and Evaluation of

Interactive Applications, Springer Verlag, November 1999,

ISBN 1-85233-155-0.

[4] Paternò F., Santoro C., Mantyjarvi J., Mori G., Sansone S.,

Authoring Pervasive MultiModal User Interfaces,

International Journal of Web Engineering and Technology,

N.2, 2008

72

[5] Song, K., Lee, K.-H., 2007. An automated generation of

xforms interfaces for web services, Proceedings of the

International Conference on Web Services, 856-863.

[6] Spillner, J., Braun, I., Schill, A., 2007. Flexible Human

Service Interfaces, Proceedings of the 9th International

Conference on Enterprise Information Systems, 79-85.

[7] Vermeulen J., Vandriessche Y., Clerckx T., Luyten K. and

Coninx K., Service-interaction Descriptions: Augmenting

Services with User Interface Models, Proceedings

Engineering Interactive Systems 2007, Salamanca, Springer

Verlag.

73

Direct Integration: Training Software Developers and
Designers to Conduct Usability Evaluations

Mikael B. Skov and Jan Stage
Aalborg University

Department of Computer Science
DK-9220 Aalborg East

Denmark

{dubois,jans}@cs.aau.dk

ABSTRACT
Many improvements of the interplay between usability evaluation
and software development rely either on better methods for
conducting usability evaluations or on better formats for
presenting evaluation results in ways that are useful for software
designers and developers. Both approaches involve a complete
division of work between developers and evaluators, which is an
undesirable complexity for many software development projects.
This paper takes a different approach by exploring to what extent
software developers and designers can be trained to carry out their
own usability evaluations. The paper is based on an empirical
study where 36 teams with a total of 234 first-year university
students on software development and design educations were
trained in a simple approach for user-based website usability
testing that was taught in a 40 hour course. This approach
supported them in planning, conducting, and interpreting the
results of a usability evaluation of an interactive website. They
gained good competence in conducting the evaluation, defining
task assignments and producing a usability report, while they
were less successful in acquiring skills for identifying and
describing usability problems.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical user interfaces (GUI), Theory and
methods.

General Terms
Measurement, Experimentation, Human Factors.

Keywords
Usability evaluation, user-based evaluation, training of software
developers, dissemination of usability skills, empirical study

1. INTRODUCTION
Usability evaluation and user interaction design are two key
activities in the development of an interactive system. The two

activities are mutually dependent, but in practice there is often too
little or no fruitful interplay between them [6].
Considerable efforts have been devoted to improve the interplay
between usability evaluation and software development. A
substantial part of these efforts reflect two typical approaches.
The first approach focuses on better methods. The aim is to
improve the products of usability evaluations through use of
methods that provide better support to evaluators that carry out
usability evaluations. During the last 20 years, a whole range of
methods have been developed within this approach. A prominent
and influential example is Rubin [15] that covers all activities in a
usability evaluation. There are many others that cover all or some
selected evaluation activities.
The second approach focuses on better feedback. The aim is to
improve the impact of usability evaluations on user interaction
design. This is achieved in a variety of ways, typically by
improving the format that is used to feed the results of usability
evaluations back into user interaction design. The classical format
for feedback is an extensive written report, but there have been
numerous experiments with alternatives to the report; see [7] for
an overview.
Compared to both of these approaches, website development is,
however, particularly challenging. Websites exhibit a huge and
unprecedented amount of information, services and purchasing
possibilities, and the users of websites are a tremendously
heterogeneous group that use websites for a multitude of purposes
any time, any place. Due to this, website developers must
accommodate a massive variety of user preferences and
capabilities.
Many contemporary websites suffer from problems with low
usability, e.g. an early investigation of content accessibility found
that 29 of 50 popular websites were either inaccessible or only
partly accessible [17]. This is in line with the suggestions that
usability evaluations of websites should focus on the extent to
which users can navigate the website and exploit the information
and possibilities for interaction that are available [16].
A conventional usability evaluation that involves the prospective
users of an interactive system facilitates a rich understanding of
the actual problems that real users will experience [15]. The main
drawback of user-based usability evaluations is that they are
exceedingly demanding in terms of time and other resources;
some researchers have reported that duration of one month and
efforts amounting to around 150 person-hours are not unusual
[11][12][13]. These figures are simply not feasible for many
website projects. The projects do not have this amount of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-USED’08, September 24, 2008, Pisa, Italy

74

resources, and they cannot wait for the usability evaluators to
conduct the evaluation and provide relevant feedback.
The two approaches that were emphasized above share a key
characteristic, as they involve a complete division of work
between developers and evaluators. The software is produced by
the developers, and its usability is assessed by the evaluators. This
division of work is undesirable or impossible in many fast-paced
projects. The division of work necessitates handovers between the
two groups, and this will increase project complexity and tend to
lengthen development time. Thus the division between developers
and evaluators is a main obstacle for integrating usability
evaluation into most website development projects.
This paper presents results from an empirical study of a course
where first-year students in software development and design
educations were trained to conduct their own user-based usability
evaluations. The aim of the approach behind this course is to
facilitate direct integration of usability evaluation into software
development by removing the division between evaluators and
developers. In the study, we explored whether designers and
software developers who had received a 40 hour training course
could conduct a usability evaluation of a reasonable quality. In
the following section 2, we present previous work related to our
study. In section 3, we describe the study in detail. The results of
the study are presented in section 4, and section 5 discusses
additional aspects of the results. Finally, section 6 provides the
conclusion.

2. RELATED WORK
The idea of reducing the gap between software development and
usability evaluation by broadening the skills of software
developers is not new. It has been suggested that education of
software developers in usability engineering could contribute to
reduce the problems with the usability that characterize many
software products. This suggestion focused on a general
awareness of usability issues and on the early activities in a
development project [9].
It has also been discussed on a more general level how
development teams can best be trained to use fundamental
techniques from the usability engineering discipline. This requires
systematic empirical studies of the true costs of learning and
applying usability engineering techniques [8].
We conducted a search on the web on training of software
developers in usability engineering. We found a group of
companies that offer training courses for software developers in
various methods from the usability engineering discipline. The
two most common methods were the so-called discount usability
evaluation techniques (expert inspection and walkthrough) and
user-based empirical testing based on a think-aloud protocol.
There were much fewer and mostly shorter courses on general
usability topics.
Such courses for practitioners respond to the request for training
of practitioners in usability topics [9]. Unfortunately, they are not
complemented by the research studies of cost and effects that
were also requested [8]. In fact, we have only been able to find
very few systematic studies of efforts to train software developers
in key topics from usability engineering.
A notable exception to this limited amount of research is an
empirical study of training of software engineering students in a

language for describing and analysing user interface designs [3].
This study measured the effect of a training course and also
provided improved insight to the way experts work in this area.

3. METHOD
We have conducted an empirical study of a training course that is
intended to teach software developers and designers to conduct
usability evaluations. The aim of the study was to provide the
participants with skills in formative usability evaluation.

Table 1. The 10 class meetings of the training course

Lecture Exercises

1 Introduction to the course and
basic website technology

2 Basic introduction to usability
issues and guidelines for
interaction design

3 The think-aloud protocol and
how to set up a test scenario.
User groups and their different
needs

4 Application of questionnaires
for collecting data and how to
use different kinds of questions

Pilot test:

Each team conducts simple
pilot usability tests of
websites to train their
practical skills in usability
evaluation.

The teams choose the
website themselves.
Experience with conducting
tests and the results achieved
are discussed afterwards.

5 Computer architecture and
website technology

6 Describing the usability testing
method and how to collect and
analyze empirical data

7 Other usability evaluation
methods and how to conduct a
full-scale usability test session

8 Website structures, information
search and web surfing

9 Guidelines for website design
and principles for orientation
and navigation

10 Principles for visual design and
different interaction styles

Usability evaluation:

The teams conduct a
usability evaluation of the
Hotmail website according
to a specification provided
by the course instructors.

The usability evaluations are
conducted at the university
in assigned rooms for each
team.

After the usability test
sessions, the teams analyze
the empirical data and make
a usability report that
describes the identified
usability problems.

3.1 Training Course
We studied the training course in a first year university
curriculum. The course included ten class meetings, cf. Table 1,
each lasting four hours that was divided evenly between two
hours of lecture, and two hours of exercises in smaller teams. The
course required no specific skills in information technology which
is the reason why class meeting number one and five included
introductions to technological issues. The purpose of the exercises
was to practice selected techniques from the lectures. In the first
four class meetings, the exercises made the students conduct small
usability pilot tests in order to train and practice their practical
skills with selected methods. The exercises in the last six class
meetings were devoted to conducting a realistic usability
evaluation of a specified website.
The course introduced a number of methods for usability testing.
The first was the conventional method for user-based testing with
the think-aloud protocol [14][15]. The second method was based
on questionnaires that test subjects fill in after completing each
task and after completion of the entire test [16]. The students were

75

also introduced to additional methods such as interviewing,
heuristic inspection, cognitive walkthroughs, etc.
The students were required to document their work by handing in
a usability report. The instructors suggested to the students that
the usability report should consist of 1) executive summary (1
page), 2) description of the usability evaluation method applied (2
pages), 3) results of the evaluation, primarily a list and detailed
description of the identified usability problems for the website
that was evaluated (5-6 pages), and 4) discussion of the method
that was applied (1 page). The report would typically amount to
around 10 pages of text. It was further emphasized that the
problems identified should be categorized, at least in terms of
major and minor usability problems. In addition, the report should
include appendices with all data material produced such as log-
files, tasks assignments for test subjects, questionnaires etc. A
prototypical example of a usability report was given to the
students.

3.2 Website
We chose www.hotmail.com as the website for our study. This
website provides advanced interactive features and functionalities
appropriate for an extensive usability test. Furthermore, it
facilitates evaluations with both novice and expert test subjects
due to its vast popularity. Finally, it has been used in other
usability evaluations that have been published, which enabled us
to compare the results of the student teams in our study with other
result (this is further explained below under Data Analysis).

Table 2. Team and test subject data

Total number
of students

Total number
of teams

Team size
Average

Team size
Min / Max

234 36 6.5 4 / 8

Number of test
subjects
Average

Number of
test subjects
Min / Max

Age of test
subjects
Average

Age of test
subjects
Min / Max

3.6 2 / 5 21,2 19 / 30

3.3 Participants
The participants were first-year university students enrolled in
four different studies at a faculty for natural sciences and
engineering. The first of the four studies was informatics, which is
a user-oriented IT education with focus on software development
but also with elements of design in general. The other three
studies were architecture and design, planning and environment,
and chartered surveyor, which all shared a focus on design in
general but also had elements of software development. All four
groups of students participated together in the course described in
this paper. None of the participants had any experience with
usability evaluation prior to the study.
36 teams involving a total of 234 students (87 females, 37%)
participated in the course and our study. Each team was required
to distribute the roles of test subjects, loggers, and test monitor
among themselves. This was done before the second class
meeting, well before they started the evaluation of the Hotmail
website. 129 (55%) of the students acted as test subjects, 69

(30%) as loggers, and 36 (15%) as test monitors, cf. [15]. The
average team size was 6.5 students (SD=0.91). The average
number of test subject in the teams was 3.6 (SD=0.65), and their
average age was 21.2 years old (SD=1.58). 42 (33%) of the 129
test subjects had never used www.hotmail.com before the
evaluation, whereas the remaining 86 subjects had varied
experience with the website. These data are summarized in Table
2.

3.4 Setting
Due to the pedagogical approach of the university, each team had
their own office equipped with a personal computer and Internet
access. Most teams conducted the tests in their office, while the
rest did it in one of their homes. After the tests, the entire team
worked together on the analysis and identification of usability
problems and produced the usability report.

3.5 Procedure
The student teams were required to apply the techniques
presented in the course. After the second class meeting, the test
monitor and loggers of each team received a two-page scenario
specifying the web-based mail service www.hotmail.com that
they should focus on in the usability evaluation. The scenario also
specified a comprehensive list of features that emphasized the
specific parts of www.hotmail.com they were supposed to
evaluate. The test monitor and the loggers examined the system,
designed tasks, and prepared the evaluation, cf. [15]. The use of
www.hotmail.com as the website to be evaluated in the study was
kept secret to the test subjects until the actual test was conducted.

3.6 Data Collection
The main data collected in the study was the usability reports that
were handed in by the teams. The 36 reports had an average
length of 11.4 pages (SD=2.76) excluding the appendices, which
had an average length of 9.14 pages (SD=5.02). 30 (83%) of the
36 teams provided information on task completion times for 107
(83%) of the 129 subjects, and they had an average session time
(with one user) of 38.10 minutes (SD=15.32 minutes).
We did not collect any data on the way the students performed
during the evaluation, and we did not monitor or record how they
carried out the evaluations.

3.7 Data Analysis
All reports were analyzed, evaluated, and marked by the two
authors of this paper according to the following three steps.
Step 1. We designed a scheme for the evaluation of the 36 reports
by analyzing, evaluating and marking five randomly selected
reports out of the total of 36 reports. Through discussions and
negotiations we came up with an evaluation scheme with 17
variables as illustrated in Table 3. The 17 variables were divided
into the following three overall categories: evaluation (the way
the evaluation was conducted), report (the presentation of the
evaluation and the results), and results (the outcome of the
usability evaluation). Finally, we described, defined, and
illustrated all 17 variables in a two-page marking guide.
Step 2. We worked individually and marked each of the 36 reports
in terms of the 17 variables by using the marking guide. The
markings were made on the following scale of 1 to 5: 1= wrong

76

answer or no answer at all, 2=poor or imprecise answer,
3=average answer, 4=good answer, and 5=outstanding answer.

Table 3. The 17 experimentally identified variables used in the
assessment of the 36 usability reports.

Category Variable

Evaluation 1) Conducting the evaluation
2) Task quality and relevance
3) Questionnaires/interviews quality and relevance

Report 4) Test procedure description
5) Data quality
6) Clarity of usability problem list
7) Executive summary
8) Clarity of report
9) Report layout

Results 10) Number of identified usability problems
11) Usability problem categorization
12) Practical relevance of usability problems
13) Qualitative results overview
14) Quantitative results overview
15) Use of literature
16) Conclusion
17) Test procedure evaluation

We also counted the number of identified usability problems in
each of the 36 usability reports. We defined a usability problem as
something in the user interaction that prevents or delays users in
realizing their objectives. Each time a report would described
such an obstacle or delay, we would count that as a usability
problem. Finally, we specified intervals for grading of the
identification of usability problems based on their distribution on
the following scale: 1=0-3 problems, 2=4-7 problems, 3=8-12
problems, 4=12-17 problems, and 5>17 problems.
Step 3. All reports and grades were compared and a final
assessment on each variable was negotiated. In case of
disagreements on a grade, we employed the following procedure:
1) if the difference was one grade, we would renegotiate the grade
based upon our separate notes; 2) if the difference was two
grades, we would reread and reassess the report together focusing
only on the variable in question. For our study, no disagreement
exceeded two grades. For each report, we also went through the
set of usability problems that each of us thought they had
identified. We negotiated each team’s list of usability problems
until we had consensus on that as well.
To examine the overall performance of the students, we included
two additional sets of data in the study. Firstly, we compared the
student reports to usability reports produced by teams from
professional laboratories. These reports were selected from a pool
of usability reports produced in another research study where nine

usability laboratories received the same scenario as we used and
conducted similar usability tests of www.hotmail.com, cf.
[10][11]. Of the nine usability reports, we discarded one because
it was only based on heuristic inspection, which was different
from our focus on user-based evaluation. The remaining eight
usability reports were analyzed, assessed, and marked through the
same procedure as the student reports. Secondly, we calculated a
combined score for each team based on the grades that the
individual team members had obtained in other courses they
attended in the same semester. This was done to explore the
correlation between the overall skills of the students and their
ability to conduct a usability evaluation.

4. RESULTS
The overall results show that the student teams did quite well. It is
not surprising that the professionals did better on most variables.
It was, however, surprising to us that on some variables, the
students had a comparable performance and on a few variables
they even performed better than the professional teams.

Table 4. Results for conducting the evaluations. Boldface
numbers indicate significant differences between the student

and professional teams.

Evaluation

Teams

Conducting
the evaluation

Task quality
and relevance

Questionnaire/
Interviews

Student
(N=36) 3.42 (0.73) 3.22 (1.05) 2.72 (1.00)

Professional
(N=8) 4.38 (0.74) 3.13 (1.64) 3.50 (1.69)

4.1 Evaluation
These three variables relate to the way the usability evaluation
was conducted, see Table 4. On variable 1, conducting the
evaluation, the professional teams have an average of 4.38
(SD=0.74). This is almost one grade higher than the student teams
and a Mann-Whitney U Test shows strong significant difference
between the student teams and the professional teams (z=-2.68,
p=0.0074). On variable 2, task quality and relevance, the students
performed slightly better than the professionals, but this
difference is not significant (z=0.02, p=.984). No significant
difference was found on variable 3, questionnaire/interviews
quality and relevance (z=-1.63, p=0.1031).

4.2 Report
These six variables relate to the quality of the usability report that
was the tangible result of the usability evaluations, see Table 5.

Table 5. Results for the usability reports. Boldface numbers indicate significant differences between
the student and professional teams.

Report

Teams

Test
description Data quality Clarity of

problem list
Executive
summary

Clarity of
report

Layout of
report

Student
(N=36) 3.03 (0.94) 3.19 (1.33) 2.53 (1.00) 2.39 (0.80) 2.97 (0.84) 2.94 (0.89)

Professional
(N=8) 4.00 (1.31) 2.13 (0.83) 3.50 (0.93) 3.38 (1.06) 4.25 (0.71) 3.25 (0.71)

77

Table 6. Results for the outcome of the usability evaluations. Boldface numbers indicate significant differences between
the student and professional teams.

Results

Team

Number of
problems

Problem
categorization

Practical
relevance

Qualitative
results

overview

Quantitative
results

overview

Use of
literature Conclusion Evaluation

of test

Student
(N=36) 2.56 (0.84) 2.06 (1.22) 3.03 (1.00) 3.03 (1.00) 2.28 (1.14) 3.08 (0.81) 2.64 (0.90) 2.44 (1.08)

Professional
(N=8) 4.13 (1.13) 3.25 (1.75) 4.25 (1.49) 3.75 (1.16) 2.00 (1.51) 3.13 (0.35) 3.88 (0.64) 2.88 (1.13)

The student teams did not perform as well as the professionals on
the description of the test, and this difference is significant (z=-
2.15, p=0.0316). On the other hand, the student teams actually
performed significantly better than the professional teams on the
quality of the data material in the appendices (z=2.07, p=0.0385).
On the clarity of the usability problem list, we found a strong
significant difference in favour of the professional teams (z=-
2.98, p=0.0029). There is also a significant difference on the
teams’ executive summary, where the professionals are better (z=-
2.27, p=0.0232), and a strong significant difference on the clarity
of the entire report (z=-3.15, p=0.0016). Finally, no significant
difference was found for the layout of the report (z=-1.02,
p=0.3077) although the number for the professional teams is
slightly higher.

4.3 Results
The pivotal result of the usability reports was the usability
problems that were identified and the descriptions of them. There
are eight variables on this category, see Table 6.
On the number of problems identified, the student and
professional teams performed rather differently. The student
teams were on average able to identify 7.9 usability problems (in
the marking scale: Mean 2.56, SD 0.84) whereas the professional
teams on average identified 21.0 usability problems (in the
marking scale: Mean 4.13, SD 1.13). A Mann-Whitney U Test
confirms strong significant difference between the student and
professional teams on this variable (z=-3.09, p=0.002). It is,
however, interesting that the professional teams actually
performed very dissimilar on this variable, as they identified from
7 to 44 usability problems. Thus the professional team that
identified the lowest number of usability problems actually
performed worse than the average student team.
The professional teams performed better than the student teams
on categorization of the usability problems that were identified,
but the difference is not significant (z=-1.84, p=0.0658). On the
practical relevance of the identified usability problems, the
professional teams performed better, and this difference is
significant (z=-2.56, p=0.0105).
On the overview of the qualitative results, the professional teams
did significantly better than the students (z=-1.99, p=0.0466). On
the other hand, the student teams provided better overview of the
quantitative results, but this difference is not significant (z=0.90,
p=0.3681).
There is no significant difference on the use of literature (z=-0.05,
p=0.9601). The conclusions are better in the usability reports from
the professional teams, and this difference is strong significant

(z=-3.13, p=0.0017). No significance was found for the teams’
own evaluations of the test procedure they employed (z=-1.00,
p=0.3173).

4.4 Usability Problem Correlations
The strong differences between the student teams and the
professionals in the production of results, e.g. the usability
problem identified, made us conduct a more detailed analysis of
potential causes.
A Spearman Rank Correlation shows a weak positive correlation
between the way the evaluation was conducted and the number of
identified usability problems, but this correlation is not significant
(marking (r2=0.061, p>0.718), actual (r2=0.089, p>0.599)). The
same can be concluded for the correlation between the quality and
relevance of the tasks and the number of identified usability
problems (marking (r2=0.239, p>0.157), actual (r2=0.235,
p>0.165)). Thus, our study indicates that the student’s
competence in planning and conducting a usability test does not
necessarily influence the outcome of the evaluation in terms of
the number of usability problems identified.
When looking at the corresponding variables for the professional
teams, we find that there is a high correlation between the quality
and relevance of the tasks and the number of identified usability
problems for the professional teams and this correlation is
significant (r2=0.741, p<0.05). Furthermore, a weak correlation
exists between the way the evaluation was conducted and the
number of identified usability problems, but this correlation is not
significant (r2=0.336, p>0.374).
Introducing more test subjects in usability evaluations will usually
(at least in theory) generate a higher number of identified
usability problems. In our study, the average number of test
subject was 3.6 (SD=0.65), ranging from one team using only two
test subjects to one team using five test subjects. However, we
found only a negligible positive correlation between the number
of test subjects and the number of identified usability problems, as
this correlation was not significant (marking (r2=0.247, p>0.143),
actual (r2=0.238, p>0.159)). The test subjects had a rather varied
experience with www.hotmail.com, but there is no significant
correlation between the number of novice subjects and the
number of identified problems (marking (r2=0.119, p>0.482),
actual (r2=0.119, p>0.481)).
Correlations between the length of the tests and the number of
identified usability problems for the 36 teams (grading and actual
numbers) are illustrated in Figure 1. Considering the total time
spent on all tests in each team, we identify a great variation
ranging from 56 minutes to 225 minutes (mean=113.26 minutes,

78

SD=65.59 minutes). A minor correlation exists between the total
time spent on the test and the number of identified problems, but
the correlation is not significant (r2=0.280, p>0.098). This is also
the case when looking at the actual number of problems against
time spent (r2=0.329, p>0.051). This correlation is, however,
close to being significant.

1

2

3

4

5

0 50 100 150 200 250

Total minutes

0

5

10

15

20

No. Problems (grade) No. Problems (actual)

Figure 1. Correlation between the length of all tests in the 36

teams and the number of identified usability problems
(reported as grading 1-5). Six teams did not report the time

spent on the tests.
As a complementary perspective, we analyzed the basic skills of
the students and their performances in other university activities
in the same semester. We examined the correlation between the
combined grade obtained by each of the 36 teams (based on the
individual grades of team members) in other major coursework
and the number of identified usability problems.

1

2

3

4

5

0 2 4 6 8 10

Grade

0

5

10

15

20

Practical relevance of problems No. of problems (actual)

Figure 2. Correlation between the team grading (reported as
zero to nine) and the number of identified usability problems
(reported as grading 1-5 and the actual number identified).

The grade is reported on a scale from zero (not satisfactory) to
nine (outstanding). A Spearman Rank Correlation Test shows

only a slight positive correlation between the grade of the students
and the number of identified usability problems (marking
(r2=0.103 p>0.542), actual (r2=0.130, p>0.441)). This correlation
between grades and identified number of usability problems is
illustrated in Figure 2.

5. DISCUSSION
As emphasized in the introduction, several studies have found that
many websites suffer from low usability [17]. The purpose of our
study was to explore to what extent people working with software
development and design but with no formal training in usability
engineering could be trained to conduct website usability
evaluations of a reasonable quality. If that was possible, such a
training programme could help designers and developers face the
challenges of and reduce the amount of usability problems on the
websites they produce.
One of our key findings concerns identification and categorization
of usability problems. The student teams identified significantly
fewer problems than the professional teams. On average, the
student teams found 7.9 usability problems, whereas the
professional teams on average found 21 usability problems. This
difference is important since uncovering of usability problems is a
key purpose of a formative usability evaluation. The student
teams did, however, perform rather differently on this variable.
One student team identified no problems at all. This team might
have misunderstood the assignment, but we cannot tell from their
usability report, which was the basis for our analysis. The best
performing students were two teams that identified 16 problems.
Most of the student teams identified no more than 10 problems.
The professional teams also performed rather differently. It has
been shown before that usability evaluators find different
problems; this has been denoted as the evaluator effect [5]. Yet
we also found a substantial difference in terms of the number of
problems identified, and this is perhaps more surprising. One
professional team identified 44 usability problems whereas
another team identified only seven problems. The latter is actually
rather disappointing for a professional team. We have analyzed
the problems they found in more detail. The professional teams
identified several critical problems on the website, but some of
the critical problems were identified by relatively more student
teams than professionals. For example, it was discovered by
relatively more student teams that test subjects were unable to
locate the functionality to change password. Thus, even though
the student teams identified significantly fewer problems, they
still identified some of the most severe problems on the website.
Another variable that exhibits a remarkable difference is the
practical relevance of the problem list. This variable measures the
extent to which the descriptions of the usability problems
identified are useful for a software developer that will solve the
problem. The student teams are almost evenly distributed on the
five marks of the scale, and their average is 3.2. When we
compare this to the professional teams, there is a clear difference.
The professionals score an average of 4.6, and 6 out of 8 teams
score the top mark. This difference can, at least partly, be
explained from the experience that the professionals have
acquired in describing usability problems in a way that make
them relevant to their customers.
Another reason for the differences between student teams and
professionals in identifying and describing usability problems

79

may be the specific design of the training course. We might have
focused too little on discussing the nature of a usability problem
and provided too few examples. We could also have treated this
in more detail by presenting specific examples of relevant and
irrelevant problems. Our analysis of the reports from the student
teams clearly suggests that this topic received too little attention.

6. CONCLUSION
This article has presented the results from a study of a course that
was employed to train software developers and designers in
conducting usability evaluations of a website. The idea behind
this effort was that if developers can conduct their own usability
evaluations, the gap between usability evaluation and software
design will disappear.
The course was based on a simple approach to usability testing
that quickly teaches fundamental usability skills. Whether this
approach is effective has been explored through a large empirical
study where 36 student teams from the first year of software
development and design-oriented educations were trained in and
applied the approach to evaluate the usability of the Hotmail
website.
The overall conclusion is that the student teams were able to
conduct usability evaluations and produce usability reports of a
reasonable quality and with relevant results. However, when
compared to professional evaluator teams, there were clear
differences. The student teams performed well in defining good
tasks for the test subjects, and the data material in their reports
was significantly better than the professionals. They were less
successful on several of the other variables, and they performed
clearly worse when it came to the identification of problems,
which is a main purpose of a usability test. It was also difficult for
them to express the problems found in a manner that would be
relevant to a software developer working in practice.
Time pressure is a key reason why established knowledge and
methodologies are ignored in many website development projects
[2]. Website developers experience a strong push for speed and
users of websites rapidly change preferences and patterns of use,
and new ideas for design and functionality emerge constantly.
This makes customers and management demand development
cycles that are considerably shorter than in traditional software
development [1][4]. The aim of the training course we have
presented in this paper is to enable software developers and
designers to conduct their own website usability evaluations. The
students who were trained in the approach gained a significant
step towards the level of expert evaluators. However, they still
lacked competence in some of the key areas. Thus we see the
training course as a relevant complement to classical usability
testing conducted in a formalized manner in advanced
laboratories by highly specialized experts.
Our study is limited in a number of ways. First, the environment
in which the evaluations were conducted was in many ways not
optimal for the usability test sessions. In some cases, the students
were faced with slow Internet access that might have influenced
the results. Second, motivation and stress factors could prove
important in this study. None of the teams volunteered for the
course and the study, and none of them received any payment or
other kind of compensation. All teams participated in the course
because it was a mandatory part of their curriculum, but they did
not have to pass an exam in the course itself. This implies that

students did not have the same kinds of incentives for conducting
the usability test sessions as the evaluators from the professional
usability laboratories. Thirdly, the demographics of the test
subjects are not varied with respect to age and education. Most
test subjects were approximately 21 years of age with
approximately the same school background and recently started
on an IT or design-oriented education.
The use of university students as a substitute for real software
developers and designers working in practice has often, and
rightly, been criticized. Yet in this case, it is less questionable.
With a group of software developers from practice, it would be
difficult to distinguish between their experience and the effect of
the training course. With students who have basic knowledge
about software development but no practical experience, that
empirical problem vanishes.
Having said that, it could still be very interesting to conduct a
similar study with real website developers and designers. This
might be combined with a longitudinal study of the long-term
effect on the quality of the websites developed. The main
shortcoming that came up in our analysis was the students’ lack of
skill in identifying and describing usability problems. A different
study could be based on a training course that was changed to
focus directly on identification of usability problems.

7. ACKNOWLEDGMENTS
We would like to thank the students for their participation in the
study.

8. REFERENCES
[1] Anderson, R. I. (2000) Making an E-Business

Conceptualization and Design Process More “User”-
Centered. interactions, 7(4) (July-August):27-30.

[2] Baskerville, R., and Pries-Heje, J. (2001) Racing the E-
Bomb: How the Internet is Redefining Information Systems
Development Methodology. In N. Russo et al. (eds.),
Realigning Research and Practice in Information Systems
Development, Kluwer, 49-68.

[3] Blandford, A., Buckingham Shum, S. J., and Young, R. M.
(1998) Training software engineers in a novel usability
evaluation technique. International Journal of Human-
Computer Studies, 49(3):245-279.

[4] Broadbent, S., and Cara, F. (2000) A Narrative Approach to
User Requirements for Web Design. interactions, 7(6):31-35
(November-December).

[5] Hertzum, M. and Jacobsen, N. E. (2003) The Evaluator
Effect: A Chilling Fact About Usability Evaluation Methods.
International Journal of Human Computer Interaction,
15(1):183-204.

[6] Hornbæk, K. and Stage, J. (2006) The Interplay Between
Usability Evaluation and User Interaction Design.
International Journal of Human-Computer Interaction,
21(2):117-124.

[7] Høegh, R. T., Nielsen, C. M., Overgaard, M., Pedersen, M.
B. and Stage, J. (2006) The Impact of Usability Reports and
User Test Observations on Developers’ Understanding of
Usability Data: An Exploratory Study. International Journal
of Human-Computer Interaction, 21(2):173-196.

80

[8] John, B. E. (1996) Evaluating usability evaluation
techniques. ACM Computing Surveys, 28(4es):139
(December).

[9] Karat, J. and Dayton, T. (1995) Practical education for
improving software usability. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI’95), 162-169. ACM Press.

[10] Molich, R. (undated) Comparative Usability Evaluation
Reports. Available at http://www.dialogdesign.dk/cue.html.

[11] Molich, R., Ede, M. R., Kaasgaard, K. and Karyukin, B.
(2004) Comparative Usability Evaluation. Behaviour &
Information Technology, 23(1):65-74.

[12] Molich, R., and Nielsen, J. (1990) Improving a Human-
Computer Dialogue. Communications of the ACM, 33(3):
338-348.

[13] Nielsen, J. (1992) Finding Usability Problems Through
Heuristic Evaluation. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems
(CHI’92), 373-380. ACM Press.

[14] Nielsen, J. (1993) Usability Engineering. Morgan Kaufmann
Publishers.

[15] Rubin, J. (1994) Handbook of Usability Testing. How to
Plan, Design, and Conduct Effective Tests. John Wiley &
Sons.

[16] Spool, J. M., Scanlon, T., Schroeder, W., Snyder, C., and
DeAngelo, T. (1999) Website Usability. A Designer’s Guide.
Morgan Kaufmann Publishers.

[17] Sullivan, T., and Matson, R. (2000). Barriers to Use:
Usability and Content Accessibility on the Web’s Most
Popular Sites. Proceedings of Conference on Universal
Usability, 139-144. ACM Press.

81

European Science Foundation provides and manages the scientific and technical secretariat for COST

COST is supported by the EU RTD Framework Programme

	Front-Cover-Proceedings of I-USED-p1.pdf
	Front-Cover-I-USED-Proceedings-p2.pdf
	Acknowledgements.pdf
	Introduction-I-USED.pdf
	Table of Contents.pdf
	Main-body-I-USED-Proc.pdf
	P0-Constantine-I-USED'08-Keynote.pdf
	I-USED-Merged-Papers-v2.pdf
	1. INTRODUCTION
	2. RESEARCH PROBLEM AND HYPOTHESIS
	3. METHOD
	4. RESULTS
	5. DISCUSSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	1. INTRODUCTION
	2. OVERCOMING THE CHALLENGES FOR USABILITY
	2.1 Defining the Challenges
	2.2 Creating Motivation
	2.3 Overcoming the Lack of Resources

	3. USABILITY IMPLEMENTATION
	4. REFERENCES
	1. INTRODUCTION
	2. BACKGROUND
	3. A PATTERN LANGUAGE FOR USAPs
	4. DELIVERING A SINGLE USAP TO SOFTWARE ARCHITECTS
	5. DELIVERING MULTIPLE USAPS TO SOFTWARE ARCHITECTS
	6. CURRENT STATUS AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES
	1. INTRODUCTION
	2. PERSONAS TECHNIQUE
	3. PERSONAS TECHNIQUE MODIFICATIONS
	4. PERSONASE TECHNIQUE
	5. INTEGRATION OF THE PERSONASE TECHNIQUE INTO THE SOFTWARE REQUIREMENTS ANALYSIS PROCESS
	6. CONCLUSION
	7. REFERENCES
	1. MOTIVATION
	2. WHY TO CONTINUE THE “FIVE USERS” DEBATE
	3. BEYOND “CHASING THE HE”
	4. CONCLUSION
	5. REFERENCES
	KEYWORDS
	1. INTRODUCTION
	2. USABILITY AS HYGIENE FACTOR
	3. TRENDS AND BRANDS
	4. THE TIMING COMPONENT
	5. UX AND PREVAILING SD PROCESSES
	6. POLICING UX
	7. DISCUSSION
	8. CONCLUSIONS
	9. ACKNOWLEDGEMENTS
	We wish to thank Gary Denman from UIQ Technology AB for providing valuable support and insights. This work was partly funded by Vinnova (a Swedish Governmental Agency for Innovation Systems) under a research grant for the project WeBIS [5].
	10. REFERENCES
	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Individual Problem Extraction

	3. RESULTS
	4. DISCUSSION
	5. REFERENCES
	1. INTRODUCTION
	2. METRICS IN HCI
	3. USER EXPERIENCE METRIC
	4. INDEX OF INTEGRATION
	5. METRICS EVALUATION
	5.1 Findings

	6. DISCUSSIONS
	7. FUTURE WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES
	1. INTRODUCTION
	2. USER EXPERIENCE AND THE DEVELOPMENT PROCESS
	2.1 Development Process
	2.2 Evaluation
	2.3 Design Improvement

	3. THE UCD MANAGEMENT PLUG-IN
	3.1 The Project
	3.2 Using the UCD Management Plug-in
	3.3 Evaluating the Plug-in

	4. CONCLUSION
	5. ACKNOWLEDGMENTS
	6. REFERENCES
	1. POSITION PAPER
	2. SUMMARY
	3. ACKNOWLEDGMENTS
	4. REFERENCES
	
	ABSTRACT
	1. RISKS IN SYSTEMS DEVELOPMENT
	2. HUMANCENTRED DESIGN ACTIVITIES
	3. SELECTING HUMAN CENTRED DESIGN METHODS
	4. CONCLUSIONS
	5. REFERENCES
	1. INTRODUCTION
	2. ARCHITECTURE AND USE
	2.1 Active Surfaces

	3. SPECIAL NEEDS AND USERS’ PRACTICES
	3.1 Key Practices

	4. RESEARCH METHODOLOGY
	5. ARCHITECTURAL QUALITIES
	6. EXPERIMENTING WITH THE SOFTWARE ARCHITECTURE
	6.1 Architectural Prototypes
	6.2 Performance Testing

	7. RESULTS
	8. CONCLUSION
	9. ACKNOWLEDGMENTS
	10. REFERENCES
	1. INTRODUCTION
	2. DIMENSIONS FOR REMOTE PARTICIPATION
	3. FURTHER ASPECTS
	3.1 Reducing the Participation Barrier
	2.1 Linking User Input to Software Artifacts

	4. CONCLUSION AND OUTLOOK
	5. REFERENCES

	P21-Paterno-I-USED.pdf
	P22-Stage-I-USED.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. METHOD
	3.1 Training Course
	3.2 Website
	3.3 Participants
	3.4 Setting
	3.5 Procedure
	3.6 Data Collection
	3.7 Data Analysis

	4. RESULTS
	4.1 Evaluation
	4.2 Report
	4.3 Results
	4.4 Usability Problem Correlations

	5. DISCUSSION
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	I-USED- proceedings-back cover.pdf

