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Abstract. In this paper we use automata-theoretic techniques tdytigharacterize the
worst-case complexity of the knowledge base satisfialpliopblem for the very expres-
sive Description Logics (DLSULC QTb}t, andSRI Q. The logicALC QTb, extends
ALC with qualified number restrictions, inverse roles, safe IBao role expressions,
regular expressions over roles, and concepts of the #irBelf in the style ofSRZ O,

a well known DL closely related to the new Semantic Web Steth@WL 2. By reduc-
ing its knowledge base satisfiability problem to the empinest of an automaton on
infinite trees, we show that all these additions do not irswehe worst case complex-
ity of ALC and provide a decision procedure for one of the most exwee§3iis that
have been shown to be decidable in exponential time. We kdse the open question of
the precise complexity of reasoningdRZ Q, exploiting a reduction from th6 RZQ
knowledge base satisfiability problem into tH&C Q7b;f,, one.

1 Introduction

Description Logics [1] are a well-established branch ofidéegor knowledge representation
and reasoning, and the premier formalisms for modelinglogies that describe application
domains in terms otoncepts(classes of objects) andles (binary relationships between
classes). They have gained increasing attention in ateaddita and information integration,
peer-to-peer data management and ontology-based datssaasewell as in the Semantic
Web, where they provide the basis for the standard Web Ogydlanguages (OWL) [6].
Recent research in DLs has usually focused on the logicsecddkcalledSH family. In
particular, the DLSHZQ is closely related to OWL-Lite and extends the ‘basitCC (the
minimal propositionally closed DL capable of capturing/ IME-hard problems) withn-
verse rolesandnumber restrictiongcounting), as well as withole inclusionsandtransitive
roles The DL known asSHOZQ, underlying OWL-DL, further extendSHZ Q with nomi-
nals SHZQ andSHOZQ are EXPTIME and NEXPTIME complete, respectively.
Recently SHZ Q andSHOZ Q were enhanced witregular role hierarchiesn which the
composition of a chain of roles may imply another role. Thid ather smaller features were
included in their extensions known &R7ZQ andSROZQ respectively; the latter underlies
the new OWL 2 standard. For reasoning in them, adaptatiotiseafableaux algorithms for
SHIQ andSHOZQ were proposed [7, 8], where in a pre-processing stage, thkcations
between roles given by the role hierarchy are captured in af$mite state automata, at the
price of exponential blow-up in the size of the represeatatif the KB. It was recently shown
that this exponential blow-up is unavoidable, and tF&Z Q andSROZQ are 2EXPTIME
and 2NEPTIME hard respectively. Even in the light of these results, nbttigopper bounds
emerged from [7, 8], as they build on tableaux algorithms &éna known not to be optimal
in the worst case. For example, the algorithm in [10] and xtersion in [7] may require
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non-deterministic double exponential time even in therieted case ofSHZQ KBs. For
SROZQ, an optimal 2NEPTIME upper bound could be established by reducing it (with an
exponential blow-up) to the two variable fragment of Firstl@ Logic with counting, but the
tight complexity ofSRZ Q remained open [11].

In this paper, we introduce an extension of the lagi€C QZb,., previously considered
in [2,4]. Like SHZQ, SRZQ and other ‘main stream’ DLSALC QZb,., extendsALC with
inverses and counting. The main difference is that, instéaole inclusions and other axioms
asserting properties of roled,LC QZb,., supports regular expressions over roles. They allow
ALCQOTb,., to simulate the role hierarchies 6fHZQ and SRZQ and, together with the
presence of (safe) Boolean role constructors, capture oftist features of’RZ Q. Since all
remaining features are related to th&.Self constructor, we add it telLC 9Zb,., and obtain
its extensiondLC QZb;", , which is (at least) as expressive$R 7 Q (although less succinct).

As we show in thisgpaper, thALCQijeg knowledge base satisfiability problem allows
for an elegant reduction to the emptiness test of an autan@atanfinite trees. The reduction
builds on [4] and yields a worst-case optimal, single expiaktime decision procedure. We
also present a reduction of tlR7Z Q knowledge base satisfiability problemtoZC sz;;g
that exponentially increases the size of the input knowddalise; this yields the first -
TIME decision procedure fa8RZQ and a tight characterization of its worst case complexity.

The paper is organized as follows. In Section 2, after intoing the syntax and semantics
of AECQIb;‘;g knowledge bases, we define their syntactic closure, intedunormal form
for them and a canonical form for their models. These allowowsxtend the automata algo-
rithm of [4] to ALC QT in Section 3. In section 4 we show h&8%RZ Q can be reduced to
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ALCQTb,,. Final discussion and conclusions are given in Section 5.

2 TheDL . ALCQZbT
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We introduce the syntax and semantics of the RILCQTbY, , a natural extension of
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ALCOTb,., [2,4] with concepts of the forraS.Self and Boolean role inclusion axioms.

Definition 1 (ALC QIb;;g concepts and roles)We consider fixed, countably infinite alpha-
bets ofconcept name€ (also calledatomic concepldsrole nameR and individual names
I. We assume that the s€tcontains the special concepts(top) and_L (bottom), whileR.
contains the top (universal) rol€ and the bottom (empty) role.

According to the following syntax, we definéL(CQijeg) concepts”, C’, atomic roles

Q, simple rolesS, S/, androlesR, R’, whereA € C, P € RandP # T.
C,0' — A|-C|cnc'|Cul |VR.C|3R.C|>nS.C|<nS.C|3S.Self
Q— P| P
S8 —Q|SNS | SuUS|Sn-s
R,R — T|S|RUR' | RoR' | R* | id(C)

We useS \ " as a shortcut forS N —5". An ALCQTb},, expressionis a concept or a role.

Subconceptsubrolesand subexpressiorare defined in the natural way.

Definition 2 (Knowledge Bases)An (ALCQZb; ) assertioris of the formC(a), S(a,b),
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or a # b, whereC' is a conceptS a simple role and:, b € I. An(ALCQTb ) ABox is a
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set of assertions. AQALC QTb7, ) concept inclusion axiom (CIAj an expressiod = C’

reg

for arbitrary concepts” and C’. AnBoolean role inclusion axiom (BRIAs an expression
S C S for simple rolesS and.S’. An ALCQZb}, TBoxis a set of CIAs and BRIAs.
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An (AECQIbTeq) knowledge baséB) is a pairk = (A, 7) whereT is an ALC Qb
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TBox andA is a non- empt%ﬁCQijeg ABox.We denote b§ . the set of atomic concepts
occurring inK, by R the set of roles names occurringfiy byRx the seRx U{P~ | P €
R}, and byl ¢ the individuals inkC.

Definition 3 (Semantics).An interpretationZ = (AZ,.%) consists of a non-emptjomain
AT and avaluation function-Z that maps each individual €I to an element? ¢ AZ,

each concept namd € C to a setA? C AZ, and each role nam& < R to a set of pairs
RT C AT x A%, in such away that = = AZ 1T =0, T? = AT x AT andB” = (). The
function-Z is inductively extended to all concepts and roles as follows

(~C)*=A%\c* (P ={(y,2) | (z,y) € P'}
ECﬂcg =ctnc? ERngf RTNR?*
cucHr=ctuc?* RUR)Y=RTUR"?

(VR.O) ={z | Vy.(x,y) € RT —y e C*} (=R)* = (AT x AT)\ R*
(3R.C) ={z | Jy.(z,y) e R* Ay € C*} (RoRY =RToR?
(>nSC§ ={z|{y| (z,y) € STAyeCT} =n} (R*)" = (R")"

R)

(<nS.CO)f={z | {y| (z,y) € STAy e CT} <n}  (id(C))" ={(z,2) |z € CT}

(3s.self)*={z | (z,z) € S*}
wheren, U and\ are overridden to denote the standard set-theoretic op@mnato to denote
composition and* to denote the reflexive transitive closure of a binary relati

7 satisfiesan assertiom, denoted’ |= «, if aZ € AT whena = A(a); (a®,b?) € P
whena = P(a,b); and a? # b* whena = a#b. T is a model of an ABoxA4, denoted
T | Aif it satisfies every assertion id.7 satisfies a CIAor BRI&A C E' if EZ C FZ.T
is a model of a TBoxXZ, denoted’ |= 7 if it satisfies every CIA and BRIA . Finally, Z is
amodelof £ = (T, A), denotedl = K, if Z =7 andZ | A. Given a KBK, Knowledge

base satisfiabilitys the problem of deciding whether there exist&Zasuch thatZ = K.

2.1 Syntactic Closure
We define thgsyntactic) closureof a concept, which contains all the concepts and simple
roles that are relevant for deciding its satisfiabilityslinalogous to the well-known Fischer-
Ladner closure of PDL, and it is exploited by the automatastoiction in Section 3.

In this section, we consider concepts and roles in a DL thataMeALCQIBreq, it is
very similar to.ALC Qb 1q DUt sUpports arbitrary role negatiet instead of role difference
SN-S’.Ifan AL‘CQZB,J;Q expression is equivalent to ahCC Q7Zb;",  one, we call itsafe In-

req
tuitively, since ALC QIBjeq does notimpose safety, it allows for a more flexible manigporea
of Boolean role expressions and a simpler notion of syrdabisure.

In what follows, we usé> to denote eithel: or <. For arole namé € C, we callP~ the
inverse ofP andP the inverse of?—; the inverse of an atomic rol@ is denotednv(Q). For a
simple roleS, Inv(.S) denotes the role obtained by replacing each atomic@odecurring in
S by its inversdnv(Q). For brevity, we assume in this subsection thatndV are expressed
by means, 3 and using-, and that\ andU are expressed usimgand-. As usual,C' and

C’, S andS’ andR and R’ respectively stand for concepts, simple roles and arlpitides.

Definition 4. The closureCi(D) of anAﬁCQIBjeg conceptD is defined as the smallest set
of ALCQTIB;"  expressions such th& ¢ CI(D) and:

reg
if Ce Cl(D) then —C € CI(D) (if Cis not of the form-C")
if —C e Cl(D) then C e CI(D)

if Cnc’ e Cl(D) then C,C" e Cl(D)

if 3IR.C € Cl(D) then C e CI(D)



if I(RUR').C € CI(D) then 3R.C,3R.C € CI(D)
if 3(RoR).C € Cl(D) then IRAR.C € CI(D)

if 3R*.C e CI(D) then IRIR*.C € CI(D)

if 3d(C).C" € CI(D)  then C,C'" e CI(D)

if 35.C € Cl(D) then S e CI(D)

if =2nS.C e Cl(D) then S, C e Ci(D)

if 35.Self € CI(D) then S e CI(D)

if SnS’ e ClD) then S, 5" € CI(D)

if =S e Cl(D) then S e CI(D)

if SeCl(D) then —S e CI(D) (if S is not of the form-5")
if Se Cl(D) then Inv(S) € CI(D)

Note that|CI(D)| is linear in the length ofD and thatCl(D) may contain non safe
ALCQIB; expressions even whdis an ALCQTb} concept.

reg reg
2.2 Normalizing Knowledge Bases

We present now some simple reductions that allow us to toamsf KB into an equiva-
lent one with a more restricted syntactic structure. We icemsA£C Q7b,, KBs as well as
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AL‘CQZB;G ones, which are defined in the natural way.

First of all, we consider the special expressionsL, B andT, and show that they can be
expressed without the need of special symbols. Then we slanekery KB can be trans-
formed into arextensionally reducedne, where all terminological information is expressed

by CIAs. Finally, we consider the well known negation norrieain of KBs.

Universal role and special expressionslhe special concepts and_L can be simulated via
any concept nameS~+ andC, not occurring inC by adding, e.g., CIA® L -C C C+,
-Ct C C, and—C,; C C+ for any concept’. Further, usingl” and L, the empty roleB
can also be easily simulated by a fresh role ndfpédy adding an axionT C VPg.L. Note
that the above holds for every DL containisg’C.

The universal role can be expressedé\iﬁCQIB;;g as—B, but this is not a safe role and
is hence disallowed itALC Q7b,, KBs. In fact, in the absence of thiesymbol, there is no
AKCQij;g role expression that is always equivalenfltoHowever, for each input K&,
there exists a role expressibisuch that the resulting KB has a modealith U? = A7 x AT
wheneverC is satisfiable. This is similar to what occurs in other expresDLs (e.g.SHZ Q)
and sufficient for the problems we consider.

Indeed, since every satisfiablALCQijeg conceptC' has aconnectedmodel, we
can transformC' into an equisatisfiable concept replacing each occurrehCe loy U =
(UQeﬁcQ)*, whereR ¢ denotes the set of all atomic roles occurringinin the presence of
ABoxes, we additionally need to ensure that all pairs of ABwhviduals are in the extension
of the role expression simulating. Hence, given a KBC = (A4, 7), we can eliminate the
universal roleT as follows:

- For a fresh role namd;, an assertiom (a, b) is added ta4 for every paira, b € Ix.
- Each occurrence of in 7 is replaced by the rol&’ = (Ay UUg g, Q)"

Extensionally reduced KBs.Let KB K = (A4,7) be anAﬁCQIBjeg KB. Of the transfor-
mations below, the one w.r.t. to the ABox is well known. Here uge a similar technique to
rewrite by means of CIAs all terminological information et R.Self concepts and BRIAs.
Please note that all the transformations below involve aitiyple roles, hence the result-
ing KB complies to the allowed syntax. Also, since they do inttoduce any non-safe role
expressions, ik is anALC QZbt, KB, it will remain in ALC QTb7,  after the reduction.
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— ABox reduction. K is extensionally reduced w.r.t. the ABidbrnly assertions of the forms
A(a), P(a,b) anda # bwith A € C andP € R occur in/A.
The ABox reduction ofC is the KB {2ag0x(K) obtained as follows:
1. Each assertion of the fori@i(a) in A with C' ¢ C is replaced with an assertion
Ac(a) forafreshAqo € C and an axiomde C C'is added to7 .
2. Each assertiof(a, b) in A with S ¢ R is replaced with an assertidpy (a, b) for a
freshPs € R and an axionPs C S is added td7 .

— Self concepts reductionC is extensionally reduced w.r.t. Self concejit® € R for
every concept of the formP.Self occurring in it.

TheSelf concept reduction éf is the KB (2ser(KC) obtained by replacing each concept of
the form3S5.Self with S ¢ R occurring in7 with a concepBPs.Self for a freshPs € R
and an adding an axioifig C Sto 7.

— BRIA reduction. K is extensionally reduced w.r.t. BRIKsll axioms in7 are CIAs.
TheBRIA reduction ofC is the KB (2gria (K) obtained by replacing iir each BRIA of
the formS C S bya CIA3(S\ §').T C L.

— KB reduction. K is extensionally reducei it is extensionally reduced w.r.t. the ABox,
Self concepts and BRIAs.

Thereduction ofK is the KB 2(K) = 2gria(2sei(2asox(K))).

The above reductions preserve the semantics of the knoe/leasg/C, and 2(C) addi-
tionally constrains the interpretation of some conceptemnot occurring iriC. If we consider
the standard first order translation/6fand 2(K), then the latter is a conservative extension
of the former. With this observation, the proof of the foliogy proposition is straightforward:

Proposition 1. For a givenALCQIBj;g KB K, 2(K) can be obtained in linear time. For
every interpretatiory, Z |= 2(K) impliesZ |= K andZ = K impliesZ’ = 2(K), whereZ’
denotes the interpretation s.£Z = EZ for everyE € Cx U Ry, (A¢)Y = CZ for every

Ac € Cox) \ Ck, and(Pg)%" = S for everyPs € Roc) \ Rk.

Thus deciding the satisfiability d€ can be reduced (in linear time) to used deciding the
satisfiability of 2(XC), and we can restrict or attention to extensionally reducsaivedge
bases. Note that we can also consi®éiC) to decide the entailment of any sentence over the
language ofC; this is useful, e.g., foguery answering?3].

Negation Normal Form. Finally, we transform KBs tmegation normal fornfNNF).
An AL‘CQZB;;Q role R is in NNF form if Q) is atomic for every subrole@ of R. Sim-
ilarly, a conceptC' is in negation normal form(NNF) if A is atomic for every subconcept
-A of C, and all roles occurring i are in NNF. A knowledge base is in NNF if only
expressions in NNF occur in it. For an expressionnf (F) denotes the equivalent expres-
sion in NNF obtained fron¥ using the standard transformations. For a condgptve let

C1" (D) = {nnf(E) | E € CI(D)}. ForaKBK, nnf(K) denotes the KB obtained frofa
by replacing each expressi@hin I by nnf (E).

Proposition 2. For everyAECQIBjeg expressiorE, nnf(E) can be obtained in linear time,
andifEis anAECQIb:;g expression, then so isuf (E). Further, for every KBC and every
interpretationZ, 7 = K iff Z = nnf (K) .

An ALCQTb},, KB K = (A, T) is normalif it is extensionally reduced and in NNF, it

does not contaifi, 1, T andB, and each concept occurring.halso occurs ir7.

! This is w.l.0.g. as we can add 1, e.g.,A C T for eachA € C that occurs ind but not in7.



2.3 Canonical Models and Trees

We have seen that, to decide KB satisfiability, we only neezbtwsider KBs with a restricted
syntax. Now we consider some semantic properties by whiehstiape of the considered
interpretations can also be conveniently restricted.

In what follows, we consider onldLC Q7b,, KBs; the results of this section do not hold
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for AL‘CQZB,J;Q in generaf Like many DLs, ALCQTb}, has some form of thizee model
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property. every satisfiable TBox (or similarly, every satisfiable concept) has a model
that can be seen as a tree with possible additional loopsvat sodes, say a ‘quasi-tree’. A
satisfiableALC QTb,,, KB K = (A, T) has a ‘quasi-forest’ shapednonical modelin which

each ABox individual is the root of a quasi-tree shaped motiél.
Definition 5. LetKC = (7, A) be anALCQTb;,, KB, and letl < n < [Ik|, k > 0. Aninter-
pretationZ = (AZ, ) for K is called acanonical interpretation (with roots and branching
degree) if:

(1) eachi-xz € AT hasi € {1,...,n}andz € {1,...,k}*; if = ¢ theni is called aroot

(2) {e} U A% is prefix closed, i.e., if-c € AZ, thenz € {e} U AZ.

(3) For eacha € Ik there is exactly one rogtsuch thaa? = ;.

(4) For each rootj there is some € I with a” = j.

(5) If (i-w, j-w') € PT for some atomic role? and two rootsi, j, then eitherw = v’ = ¢,
or ¢+ = j and one of the following holdsi)(w = w’, (i) w’ = w-I or (iii) w = w’-1, for
somel <[ <k.

In ALCQTbY, , any TBox7 can be ‘internalized’ into an equivalent concéfs, so that
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the satisfiability of7” can be established by obtaining a modetaf [14].

Proposition 3. Consider an ALCQTZb,., knowledge basell = (A,7), and let
C1r =V(Uger, B)"-Uec,coer("C1 L C2)

For every interpretatiolZ = (AZ,.2), 7 & T iff (Cr)* = AZ. Furthermore, ifZ is a
canonical interpretation, thed = 7 iff i € (C7)* for each rooti of 7.

Now we can establish theanonical model propertgf ALCQijeg; it can be shown by
adapting corresponding proofs for related logics [17, Rejughly, any model of a satisfiable
AL‘CQZb;;g conceptD can be unraveled into a model 6f that is a quasi-tree and that has
branching degrekp = |Cl(D)| x n, wheren is the maximah occurring in a concept of the

form > n S.C'in CI"™™ (D), or 1 if there are no such concepts.

Theorem 1. Every satisfiableALCQTb;,, KB K = (T, .A) has a canonical modef such

thatZ is a canonical interpretation fokC with branchingkc.,, Z = A andi € (C7)* for
each root; of 7.

By Theorem 1, which does not hold f@YL‘CQZBjeg in general, deciding the satisfiability
of an ALC QTb,, KB boils down to deciding whether it has a canonical modeld&oide
the latter, we rely on a representation of canonical intgtions as infinite labeled trees and

define an automaton that decides the existence of such trees.

2 Theorem 1 fails already in the extension4f.C with non-safe Boolean role expressions, see [12].



Definition 6. An (infinite) treeis a prefix-closed sef’ of words over the natural numberbs.
The elements df are callednodesthe empty word is itsroot For everyx € T', the nodes
x-c with ¢ € IN are thesuccessoref z, andx is thepredecessoof eachz-c. By convention,
x-0 = z, and (z-i)-—1 = x. Thebranching degre€d(z) of a nodez is the number of its
successors. H(x) < k for each node: of T, thenT hasbranching degrek. Aninfinite path
7w of T is a prefix-closed set C T where for everyi > 0 there exists a unique nodee P
with || = i. Alabeled tre@ver an alphabef’ (or simply aX-labeled tree) is a pai{T, V),
whereT is a tree andV : T — X maps each node @f to an element of.

In the following, we assume a (fixed) given norméLC Q7b/,, KB K = (A, T). We
denotel by 7 and assume an arbitrary, fixed, enumeration . . , a,,, of the elements of
J. We definePl = {Pij | a;,a; € J andP € R} andPS= {Psef | P € R }. We will
define thetree representation of a canonical interpretatiérior K as a labeled tre®z over
the alphabely = 9CxURkUJU{r}U{d}UPIUPS

To defineTz, we first note that the domain of a canonical interpretatsoalinost a tree;
we only need to add a roeto it. The extensions of the interpretations of individyatmcepts
and roles can be represented as labels over the alphahiata straightforward way. Roughly,
each element of € A%, which is a node of the tree, is labeled with a Bétr) that contains:
(i) the atomic conceptd such thatr € AZ; (i) the atomic roles that connect the predecessor
of x to x, and (i) a special symbaPse for eachP such thatr € (3P.Self)Z. The rootz and
the roots ofZ (which are at the first level of the tréB;) are treated differently. The label of
each root of Z, apart from the atomic concepts to whichelongs, also contains the name of
the individuals in7 which it interprets, and it contains no basic roles. Theti@s between
level one nodes are stored in the label of the rodthe rootz does not represent any object in
AT and is marked with a special identifieand symbols of the forn®i; indicating that the
pair of individuals(a;, a; ) belongs to the extension of the basic r&leFor simplicity, ifZ has
n roots andJ| > n, | 7| —n dummy children labeledd} are added to the roat ensuring
that it has exactly7| children.

Definition 7. LetZ be a canonical interpretation folC with » roots. Thetree representation
of 7 is the labeled treél'; = (T, V) over the alphabefy = 2CxVRcUITU{r}U{d}UPILPS
defined as follows:

T={}uATUu{n+1,...,m}.

V(e)={r} U{Pij| ai,a; € J,P € Cx and(a},al) € P},

foreachl <i <n, V(i) ={a; € J |a] =i} U{A € Cx | a] € A* anda] =i},
foreachn + 1 <i <m, V(i) = {d},

for all other nodes -z of T', V(i-x) = {A € Cx | i-x € AT} U{Q € Rk | (i-w,i-z) €
PT wherex = w-j for somej, 1 < j < ko, } U {Pser | P € Re andi-x € (3P.Self)?}

Note that the branching degree®f; is bounded by 7| at the root and by:,. at all other
levels, so the tree has branching degreex (k¢ , |7]).
3 An Automata Algorithm for ALCOZb
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Automata on infinite trees allow for an elegant reduction @figion problems for temporal
and program logics [5], and have been widely exploited fonyneariants of PDL, theu-
calculus and similar logics [16, 17]. In DLs they have beesdu®r concept satisfiability [15]
and, to a more limited extent, for KB satisfiability [4].



3.1 Preliminaries: Automata on Infinite Trees

We considettwo-way alternating tree automataver infinite trees, introduced in [16]. Let
B(I) be the set of positive Boolean formulas built inductivetyfrtrue, false and atoms from
a given sefl applyingA andv. A setJ C [ satisfiesa formulay € B(I), if assigningtrue to
the atoms inJ andfalseto those in/ \ J makesp true. Atwo-way alternating tree automaton
(2ATA) running over infinite trees with branching degreds a tupleA = (X, Q, d, qo, F),
where X is the inputalphabet ) is a finite set ofstatesd : Q@ x X — B([k] x Q), where
[k] = {-1,0,1,...,k}, is thetransition function ¢y € Q is theinitial state andF C Q is
the (Biichi) acceptance condition

The transition functiord maps a state € @ and an input lettes € X' to a positive
Boolean formulap over atomgk] x Q. Intuitively, if 6(¢, o) = ¢, then each atortr, ¢') in ¢
corresponds to a new copy of the automaton going in the ddregiven byc and starting in
stateg’. E.g., a transition of the formi(q;, o) = (1,92) A (1,43) V (=1, 1) A (0, ¢3) indicates
that if A is in the state;; and reads the node labeled witho, it proceeds by sending off
either two copies, in the states andgs respectively, to the first successoragfor one copy
in the statey, to the predecessor afand one copy in the statg to z itself.

Informally, a run of a 2ATAA over a labeled tre€T’, V) is a labeled tre€T,, r) in which
each node < T, is labeled by an elementy) = (z,q) € T x @ and describes a copy &
that is in the state and reads the nodeof T'; the labels of adjacent nodes must satisfy the
transition function ofA. The run is accepting if in every infinite path at least onéesteom
F occurs infinitely often in the node labels.

Formally, given a 2ATAA = (X, Q,d, qv, F) and aX-labeled tregT, V'), arun of A
over(7T,V)is aT xQ-labeled tre€T,., r) satisfying:

e c €T, andr(e) = (e, qo).

e For eachy € T, with r(y) = (z,q) there is a (possibly empty) sét = {(¢1,¢1) ,- .-,
(cn,qn)} C [k] x @ such thatS satisfiesé(q, V(x)) and for all1 < i < n, we have that
y-i € Ty, x-¢c; is defined and (y-i) = (z-¢;, ;).

Arun (T,,r) over(T,V) is acceptingif for each infinite pathr of 7,. there is some state
gr € Fsuchthatthe sefty € 7 | r(y) = (x, gs) for somex € T} is infinite. A labeled tree
(T, V) is acceptedy A if there is an accepting run &k over (7, V'), andL(A) denotes the
set of ¥-labeled trees accepted iy

Thenon-emptiness problefar 2ATAs is to decide whether, given a 2ATA, the setC(A)
is nonempty. It was shown in [16] that non-emptinesaof= (X, @, J, qo, F) is decidable in
time single exponential ifQ| and polynomial in X|.

3.2 Constructing the Automaton

In the following, we assume a given, fixed, normefC QZb/, KB K = (A, T) and provide

a construction of a 2ATAA ¢ from K that accepts a given treE iff it is the tree repre-
sentation of a canonical model &F. Similar automata constructions have been given in the
literature. In particular, this one is a simple extensiomhaf one in [4] to handle th&S.Self
concepts OMECQIb;;g. In turn, [4] extends to KB satisfiability a previous constiian of

an automaton that decidesCC Q7b,., concept satisfiability [2]. Due to space constraints, we
briefly describeA x = (X, Qk., dx, g0, Fxc) and focus on the extension fratCC QZb,., to

ALCQTbY, ; we refer the reader to [3] for details.
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The alphabet i = 2CxURcUTU{r}U{d}UPIUPS a5 given in Definition 7; note that the
only difference w.r.t. [3] is the presence of the B&



Like in [3], the ‘basic’ states oA i are the role and concept expressions in the closure of
Cr, which are used for checking whether a node of the tree isiexitension of an expression
or marked with some symbol. There are also additional spsizites for verifying some more
involved conditions like the satisfaction of the numbetniegons, the correct representation
of the individuals and the ABox assertions, etc.

More precisely, letS = 7 U PSU {¢,d}. There is a state for each element of the the
setClyyy = CI"™ (C7) U {s,—s | s € S} which we call theS-extended closure af'7. The
extended closure allows us to treat the individual namespadial symbols in the node labels
as well as the atomic expressions in a uniform way. Note thatontrast to [3],Cl..; may
contain concepts of the for@P.Self. The set of states IS = {s0, 51} U Clest U Spum U
S.A_role U S.A-quant U S.A_num U SSeva where the Sets’.A-quant Snumr SA_num andSA_role are
as in [3]. We use the states Bu_guqn: Of the forms(j, 35.C) and(j,VS.C) to respectively
check whether concepts of the forfid).C' andVQ.C' are satisfied by a node representing
some ABox individuak ;. For checking the satisfaction of number restrictions wednthe
statesS,,.., of the form(= n S.C, i, j) that store two counteiisandy, plus the states 4_num
of the form(m, =2 nQC, 1, j), which also store the value of two counters but for a paricul
individuala,,,. For checking whether two ABox individuals, a; are related by a simple role
S, we use states of the for8¥; in S 4_.;.. The only additional states w.r.t. to [3] are the ones
in the setSser = {Sserr | S @ simple role inCl”"f(C’T)}, which we use for decomposing a
simple role and checking whether it links an individual geif. Finally, there is the initial state
so and another special state. As in [3], both are used to verify the satisfaction of gehera
conditions necessary for the input tree to represent a éeslanodel ofKC, e.g., that the root
is the only node labeled, that its label correctly stores the role assertions in tB®X\and
that the ABox individuals are correctly represented by ével one nodes.

Asin [2-4], Fc = {VR*.C' | YR*.C' € CI"™™ (C7)} is the acceptance condition.

The transition function : Sk x X — B([k] x Sk), wherek = mazx(kc,,|T|), IS
defined as follows. First, for eadh in o € X with r € 0 we define a transition(sg, o)
=I A --- A Fg from the initial statesy, which verifies () that the root is the only node
containingr and that the ABox individuals are properly represented leyléwel one nodes
(F1—Fy); (i) that all ABox assertions are satisfieB;(F); and {ii) that every non-dummy
node at level one is the root of a tree representing a modefdfts). F; requires a transition
d(s1,0) fromthe other special state for eachs € Xk, which is necessary far, to correctly
ensure that the symbelonly occurs at the root and the symbolgihonly occur at the first
level of the tree. These transitions are as in [3], to whiehrdader may refer for details.

The transitions that inductively decompose complex cotsceile navigating the tree
are as in [3]; so are the ones that decompose simple rolestidwhlly, for each concept
of the form 3P.Self such thatiP.Self € Sx and for eachv € Y there is a transition
0(3P.Self, o) = (0, Pserr). Special transitions are necessary to decompose the sioipke
for each possible self loop and for each pair of ABox indialiu Thus we have for each
o € X and for eachs € Sseir U Sa_role @ transitiond(s, o) as follows:

6(5 N S/Selfa 0) = (07 SSe|f) A\ (0, S/Self) 6(5 n S/ij, 0) = (0, SZ]) A\ (0, S/Z])

6(5 U S/Selfa 0) = (0, SSe|f) V (0, S/Self) 6(5 U S/ij, 0) = (0, SZ]) V (0, S/Z])
6(Q\ Q'ser ) = (0,Qserr) A (0, 7Q'serr)  3(Q\ Q"ij, o) = (0, Q1)) A (0, -Q"ij)
Informally, given a tree representing an interpretatienplks callpotential neighbors of

all the nodes that could be related to a nadea a simple role. Ifx does not represent an
ABox individual, then its potential neighbors arétself, its predecessor and all its successors.



If = does represent an ABox individual, then instead of its preg®or (which is the dummy
root), all the other nodes representing ABox individuatsotential neighbors aof.

Further transitions in [3] verify whether a node satisfiesiniversal restrictioiv.S.C, an
existential restrictiodlS.C' or a number restrictior n.S.C, for a simple roles; they navigate
all the potential neighbors of a node and test which are adaetviaS and labelled”. We use
similar transitions, but adapt them to take into accourt; ihaan. ALC Q7b;, interpretation,
a node is a potential neighbor of itself. The transitionsfierconcepts of the formS.C and
35.C are given below. The ones for the number restrictions (whgghthe states ifi,,.,,,, and
S A_num t0 €ncode counters) are adapted similarly but omitted heed@space constraints.

Since the potential neighbors of a nadeare different depending on whethe) ¢ is a
level one node, orii() = is a node at any other level, the transitions must differ ediagly.
Hence, for each concept of the forf®.C or VS.C' in Cl""f(CT) with .S simple and each
o€ X, if onN(JU{d}) =0 we define:

6(38.C,0) = ((0, Sserr) A (0,C)) V ((
vlgigch (3, 9) A (5,C)
5(vS.C, ) = ((0, nnf (=Sser)) V (0,C)) A (0, nnf (<Inv(S))) V (~1,C)) A
/\19§ch (4, nnf (=8)) V (i,C))
Otherwise, ifo N (J U {d}) # 0, we have:
5(38.C,0) = ((0, Sser) A (0,C)) V V¢ (1, (7, 35.C))V
Viciche (i 8) A (5, 0))

5(VS'07 0) = ((Oa nnf(ﬁSSEH)) N (07 C)) A /\ajEU(_l’ <]7 VSC» A
/\19‘§ch ((4, nnf (=9)) v (i, C))

The first disjunct/conjunct in these transitions, whichifies whether the current node
reaches itself vig and is labelled”, is not present in the corresponding transitions from [3].
In the last set of transitions (cas® @bove,c N (J U {d}) # 0), the second dis-
junct/conjunct is responsible for sending a copy of the iauation to the root of the tree and
moving to the special statesiu_suqn:, in Order to traverse all the ABox individuals which are
potential neighbors of the current node. The latter is aglies in [4], i.e., for each € Y

and each(j, 35.C) or (4,VS.C) in SA_guant, there is a transition

5((7,39.C),a) =\ (\ ((0,8) A iy ax) A (i, C)))
1<i<|T| 1<k<|T|
6. ¥S.C1o) = N\ N (O mnf (3R V (i =ae) V (i, C)))
1<i<|T| 1<k<|T|
The above transitions decompose all concepts and roldshetireach states correspond-
ing to atomic expressions or (possibly negated) speciabsysnin Pl U PS it is then checked
whether the expression is contained in the node lab&he transitions form the stateg and
s1 may also move to states corresponding to possibly negatelalg in.7 U{r, d}, which are
similarly checked at the node labels. Thus, for each X, eachs € Cx URx U J U {r,d}
and eacht € Pl U PS there are transitions:

0,Inv(S)) A (—1,C)) Vv
)

5(s,0) = TS Meco S, 0) = | TUe s do
false ifsgo false, ifsco
5(t,0) = true, iftcoorinv(t) €co 5(~t,0) = true, ift¢ oandinv(t) € o

false otherwise false, otherwise

wherelnv(t) =Inv(P)ji if t=Pij andInv(t) = InV(P)gy if t = Pser for eachP € Ry.



These transitions extend similar ones in [4] to include §halwls inPS

By a simple adaptation of the proofs in [3], it can be easilsified that, given a canonical
modelZ of IC, its tree representatidli; is accepted by . Furthermore, a modélr of IC
can be constructed from any labeled tfBe= (T, V) accepted byA x.. The domainAZT is
given by the nodes in T with a; € V(x) for some individuak;, and the nodes i that
are reachable from any suehthrough the roles. The extensions of concepts and roles are
determined by the labels of the nodedlinThe only difference w.r.t. [4] is that we also add a
pair (z, z) to PZT for everyz whose label containBsej.

This shows that the automat@dgc can be used to decide the satisfiabilitykaf

Theorem 2. K is satisfiable iff the set of trees accepteddy is nonempty.

Under unary encoding of numbers in restrictions, the nurobstiates ofA i is polynomial
in the size ofC. SinceX'c is single exponential in the size &f, we can exploit the results of
[16] to obtain an KPTIME upper bound for satisfiability oA LC QZb;,, KBs. This is optimal,

as a matching lower bound is known for much weaker DLs [1].

Corollary 1. Satisfiability ofALC Q70 knowledge bases BxPTIME-complete.
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4 Reasoning inSRZQ

The description logiSRZ Q was introduced in [7] as an extension of the BRIZQ [9], which

in turn extends the well knowSHZ Q [10] underlying OWL-Lite. It has gained considerable
attention recently due to its close relationship to theddfiR OZ Q underlying the new OWL

2 standard. The most prominent featureS®RZQ arecomplex role inclusion axiona the
formR;0...0 R, C R. Additionally,in anSRZQ KB itis possible to explicitly state certain
properties of roles like transitivity, (ir)reflexivity andisjointness. Some of these additions
increase the expressivity of the logic, while other are fggttactic sugar’ and are intended to
be useful for ontology engineering. We now recall the deéiniof SRZ Q.

Definition 8 (SRZQ knowledge bases)LetR = RU{R~ | R € R}. EachR € Ris a
(SRZQ) role. As usual,P~ is theinverse ofP, P the inverse oP—, andinv(R) denotes the
inverse of the roleR. A (SRZQ) role inclusion axiom (SRIA)s an expression of the form
Rio...oR, C R,wheren > 1and{Ry,...,R,,R} CR.

A setR), of SRIAs isegularif there exists a partial ordex onR such thatnv(R) < R’
iff R < R’ for everyR, R’ € R, and such that every SRIA My, is of one of the following
forms:

(i) RoRC R,or

(i) Inv(R) C R, or

(i) Ryo...oR,C RandR; < Rforeachl <i <mn,or
(iv) RoRyo...0R, C RandR; < Rforeachl <i<n,or
(V) Rio...oR, 0o RC RandR; < Rforeachl <i <n.

Given a setR;, of SRIAs, leR%, denote the set of roles occurring iRy,. The set of
simple roles inR;, is the minimal se6R(R;,) C R, containing each rolek such that {)
there are no SRIAs of the forRy o...o R, C Rin Ry, and (i) if n = 1 andR; € SR(R;)
for every SRIA of the forR; o ... o R, C Rin Ry, thenR € SR(Ry,).



Arole assertioiis an expression of the forSym(R), Ref (R), Irr(R), or Dis(R, R’), where
R,R' € R:23 AnRBox R is a finite set of SRIAs and role assertions such fhat SR(R;,)
for each R occurring in a role assertion of the forRef(R), Irr(R) or Dis(R, R’) in R,
whereR;, denotes the set of SRIAsST We say thaR is regularif R, is regular, and define
SR(R) = SR(Rp,).

Similarly as inALC QTb7,,, (SRZQ) conceptL, C’ obey the following syntax
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C,C'— A|-C|CNC' |CUC |YRC | 3IR.C |>nS.C|<nS.C|3S.Self,

whered € C andR, S € R. A(SRZQ) concept inclusion axiom (SCIA} an expression
C C ' for arbitrary SRZQ concepts” andC’. A (SRZQ) TBox s a set of SCIAs. For an
RBoxR, a conceptC' is R-simpleif S € SR(R},) for eachS occurring in a subconcept @
of the form> n S.C’, < n S.C’ or 35.Self; a TBox7 is R-simpleif all concepts occurring
in the SCIAs of are R-simple.

An (SRZQ) assertionis an expressioi(a), R(a,b), =S(a,b) or a # b, whereC'is a
SRZQ concept,S, R are SRZQ roles anda, b € 1. An (SRZQ) ABox is a set ofSRZQ
assertions. An ABax is R-simplefor an RBoxR if S € SR(R,) for eachS occurring in an
assertion of the formS(a, b).

An (SRZQ) knowledge basés a tupleX = (A, 7,R) whereR is a regularSRZQ
RBox,4 a non-emptyR-simpleSRZQ ABox and7 an R-simpleSRZQ TBox.

The semantics a§RZQ TBoxes and ABoxes is defined as tdCC Q7b;,,. An interpre-
tation Z satisfies a role assertidym(R), Ref(R) or Irr(R) if RZ is a symmetric, reflexive
or irreflexive relation, respectivelyf satisfiesDis(R, R') if the relations are disjoint, i.e.,
RINR7T = (); T satisfiesa SRIA o...0 R, C Rif Rfo...0 RZ C RZ, where again we
override the symbaob and use it to denote binary role composition. An interpretef is a
model of an RBox, in symbol8 = R, if it satisfies all SRIAs and role assertionsi Mod-
elhood of a KB is restricted in the natural way to the modelhefRBox, i.e.Z = (A, 7, R)

iff Zl=A, 7T andZ = R.

4.1 ReducingSRZQ to ALCQTH
The restriction to regular RBoxes, which is crucial for treeidiability of SRZ Q, ensures that
all implications between roles can be captured by a set aflaegxpressions. This will allow
us to reduce reasoning 8IRZ Q to reasoning inALC Q7b;,,, and to show that the algorithm
we have presented is also an optimal decision procedut®RarQ KB satisfiability.

If R is a regular RBox, then for every rolg¢ € R there is a regular expressipg, such
that a wordw = R; o... o R,, overR is in the language ofy iff w? C R” in every model
7 of R. This was shown in [9] foRZ Q and its generalization t§RZ Q is straightforward.

Proposition 4. Given a regular RBosR, for eachR € R there is a regular expressiopr
such thatR? = (pr)* for every modef of R.

Reducing TBoxesEach regular expressigng is an AECQIb;‘;g role. Further, if a roleS
is simple inR, thenpg is the regular expressier(S,ES)eR S’, which is in fact a simple
ALCQTb,, role. As a consequence, if we replaBedy pr is anySRZQ concept, the re-

sulting expression is aALCQijeg concept. This allows for a natural translation$iRZ Q
concepts and TBoxes intdLC QT b,
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% 1n [7] also role assertions of the forifra(R), asserting thaR is transitive, are allowed. We omit
them since this can be equivalently expressed with an SRtAR C R.
4 1t follows also from [7] and the equivalence of finite statécamata and regular expressions.



Definition 9. Let R be a regular RBox. For eack € R, pr denotes a (fixed, arbitrary)
regular expression such tha&? = (pz)? for every modef of R. For anySRZQ concepC,
we denote by® the ALCQTb;,, concept that results from replacing each rdtein C with
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pr- Similarly, for anySRZQ TBox7 , we defineg ® = {CR C D* |CC D € T}.

Proposition 5. Let R be a regularSRZQ RBox andZ a model ofR. ThenR? = (pg)* for
everySRZQ role R andC? = (C™)? for everySRZQ concepC, andZ = 7 iff T = T*®.

Reducing ABoxesNow we consider ABoxes. First, we remove the negative raderdions,
which are not allowed itdLCQTbY, , as follows.
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Definition 10. Given anSRZQ ABox A, let A" contain all negative role assertions
-S(a,b), and letAP°sbe obtained by replacing each assertiof(a, b) in A"%by P_g(a,b),
whereP_g is a fresh role name. Further, |62 be the set oIAECQIb;;g BRIAS containing
P_snNS C Bforeach—S(a,b)in A.

If an ABox contains an assertion in which a non-simple rBleccurs,pr is not a sim-
ple ALCQOZbY,, role and hence we can not replaBewith it. Instead, we explicitly add as
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assertions all relations between individuals that are imaddby the RBox.

Definition 11. Let 4 and R be aSRZQ ABox and aSRZQ RBox respectively. ThR-
extension of4, denoted4”?, is the minimal set of assertions containidgsuch that, if there
areindividualsay, . ..,a,4+1 € Ix anda SRIAR; o.. .0R,, C RinR suchthatR;(a;,a; 1) €
AR foreachl <i < n,thenR(a1,a,+1) € A®.

Reducing RBoxesAs for the RBox, the satisfaction of the SRIAs is ensured tgyrdggular
expressions added to the TBox and the assertions addedA®the We only have to ensure
the satisfaction of the role assertions, which is easyii€ QZb;"
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Definition 12. Let R be a regularSRZQ RBox and lefR’ denote the set of role assertions
in R. We denote bR ? the set of BRIAs and CIAs that contains:

R C R’ forevery SRIAR C R’ in R such thatR’ € SR(R),

R C Inv(R) andInv(R) C R for every assertio®ym(R) in R/,

T C 3R.Self for every assertioRef(R) in R/,

JR.Self C L for every assertioffrr(R) in R’, and

RN R’ C Bforevery assertio®is(R, R') in R’'.

Reducing KBs.Now we can reduce any give$iRZQ KB I = (4,7, R) into an equivalent
ALCQTb/,, KB K = (A, T) as follows.

Definition 13. LetK = (A, 7, R) be aSRZ Q knowledge base. We denotetsy= (A", 7’)
the following ALC Q7b,, KB:

e The ABoxA’ is A, whereA = (A \ A9 U AP,

e The TBoXZ'isTR URAURPE.

For any interpretatioff, Z = K impliesZ | K’'. The converse holds in a slightly weaker
form. While a model ok’ need not be closed under the RBox and it may not be a modgl of
the models ofC" and K may only differ in the interpretation of some ‘implied’ raleAdding
them to a model oK”’, we obtain a model of.



For amodeT of K/, theextension of to R is the interpretatiod® such that\Z” = AZ;
(A)IR = (A)T for every atomic concept; and for every atomic rolé> occurring inR, if
(z,y) € (pp)% or (y,2) € (pp-)%, then(z,y) € (P)X". It can be easily verified that if
T = K', thenI® = K. Hence, we can reduce the satisfiability problem for &RZQ
knowledge bases to satisfiability of aCOZb ! one.
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Proposition 6. Let £ = (A, 7,R) be aSRZQ knowledge base. Théa is satisfiable iff’
is satisfiable.

As a consequence, the automata algorithm in Section 3 casdakta decide the satisfia-
bility of SRZQ knowledge bases.

Furthermore, it is worst case optimal. All steps are clepdiynomial in the size ofd, 7
andexp(R). However, the size afxp(R) can be exponential in the size Bf[9].

Theorem 3. The satisfiability of alsRZQ KB K = (A, 7, R) is decidable in time exponen-
tial in the combined sizes @f, A andexp(R), and double exponential in the sizefof

It was recently shown th&RZQ is 2EXPTIME hard [11], hence our bound is optimal.
Corollary 2. The satisfiability oSRZQ knowledge bases BEXPTIME-complete.

Note that the blow-up in complexity W.r.t4£CQijfeg is due to the size adxp(R), and
that the algorithm is single exponential whenewgs(R) is polynomial inR; this includes,
for example, the so-callesimple role hierarchiedefined in [9]. Our algorithm compares well
to theSRZ Q algorithm in [7], which may require non-deterministic déeibxponential time

even for such restricted cases.
5 Conclusions

We have shown that the DJAKCQijeg fully captures the DLSRZ Q. Although the latter
is exponentially more succinct, reasoning is also (proxedtponentially harder in the worst
case. The syntax odLC Q7b;,, allows for additional constructions not supported¥) 7 Q,
like Boolean role expressions and inclusions between ti8nte these additional features
can be useful for modeling KBs and for ontology engineerih8],[it seems reasonable to
considerALC Q7b},, as a suitable alternative f&*RZ Q. It would even be possible to mod-
ify the syntax ofALCQij‘Eg and make it more similar t6 RZQ from the perspective of
ontology engineering. For example, instead of using theleggexpressions in concepts as
in ALCQTb,,, a special set of defined role names could be used, and assertions of the
form pr C ri added to the KB. Provided that the defined ratgsare not used as atomic
roles in complex role expressions, reasoning could be datiethe techniques described
here. The resulting logic would be a very simple and natutresion ofSRZQ and would
avoid the effort of recognizing whether a given role hiehgris regular and of transforming
it into a set of finite automata or regular expressions. No&t the language of the regular
expressions supported in (such a variationAt)CQij;g could also be extended to be ex-
ponentially more succinct (e.g. by allowing squaring ofregsions), resulting in a logic that
may be comparable t8§RRZ Q in terms of succinctness.

In order for ALC Q70 to become a suitable alternativeS®RZQ in practice, the main
challenge that remains ahead is to explore alternativgwréaticable algorithms for this kind
of logics, and to implement them in actual reasoners. Uanfately, DLs that support transi-

tive closure, or more generally, regular expressions adesrin the style of PDL, have largely



been displaced by the better known alternative of role hidias on which implemented rea-
soners have focused. While it is often claimed that the dgreknt systems that support such
logics is problematic, to our knowledge there have been nomagtempts to do it. Regular
expressions are nevertheless worth exploring, as theyateimderstood and widely used in
computer science, and are likely to be useful for ontologyiregering.

Another natural alternative is to exteS®RZQ with more constructors from LC QZb,., .
In particular, one can consid&¥RZQ,, the extension ofSRZQ with safe Boolean role
expressions; similar extensions of closely related DLe 8#{Z7Q and SROZQ were al-
ready considered in [13]. It is easy to verify that aifRZQ; KB can be transformed into
an ALCQTb;,, one with the reduction above, and the results givenSRZQ extend to
SRIQ, as well. Our results also show theaR7Z Q andSRZQ,, can be easily extended with
a universalrole (which is already supported BIROZ Q) as long as it is considered to be
non-simple. Note that relaxing this restriction and allegvthe universal role in the Boolean
role expressions G§RZ Q;, makes reasoning NEPTIME hard, see [12].

Finally, we point out that with the techniques given here, tfuery answering problem
for SRZQ can be reduced td LC QIb;“eg, showing that answeringvo-way positive regular

path queriesas defined in [4] oveSRZ QO andSRZQ;, knowledge bases is decidable.
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