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Abstract. In this paper we use automata-theoretic techniques to tightly characterize the
worst-case complexity of the knowledge base satisfiabilityproblem for the very expres-
sive Description Logics (DLs)ALCQIb+

reg andSRIQ. The logicALCQIb+
reg extends

ALC with qualified number restrictions, inverse roles, safe Boolean role expressions,
regular expressions over roles, and concepts of the form∃P.Self in the style ofSRIQ,
a well known DL closely related to the new Semantic Web Standard OWL 2. By reduc-
ing its knowledge base satisfiability problem to the emptiness test of an automaton on
infinite trees, we show that all these additions do not increase the worst case complex-
ity of ALC and provide a decision procedure for one of the most expressive DLs that
have been shown to be decidable in exponential time. We also close the open question of
the precise complexity of reasoning inSRIQ, exploiting a reduction from theSRIQ
knowledge base satisfiability problem into theALCQIb+

reg one.

1 Introduction

Description Logics [1] are a well-established branch of logics for knowledge representation
and reasoning, and the premier formalisms for modeling ontologies that describe application
domains in terms ofconcepts(classes of objects) androles (binary relationships between
classes). They have gained increasing attention in areas like data and information integration,
peer-to-peer data management and ontology-based data access, as well as in the Semantic
Web, where they provide the basis for the standard Web Ontology Languages (OWL) [6].

Recent research in DLs has usually focused on the logics of the so-calledSH family. In
particular, the DLSHIQ is closely related to OWL-Lite and extends the ‘basic’ALC (the
minimal propositionally closed DL capable of capturing EXPTIME-hard problems) within-
verse rolesandnumber restrictions(counting), as well as withrole inclusionsandtransitive
roles. The DL known asSHOIQ, underlying OWL-DL, further extendsSHIQ with nomi-
nals. SHIQ andSHOIQ are EXPTIME and NEXPTIME complete, respectively.

Recently,SHIQ andSHOIQ were enhanced withregular role hierarchiesin which the
composition of a chain of roles may imply another role. This and other smaller features were
included in their extensions known asSRIQ andSROIQ respectively; the latter underlies
the new OWL 2 standard. For reasoning in them, adaptations ofthe tableaux algorithms for
SHIQ andSHOIQ were proposed [7, 8], where in a pre-processing stage, the implications
between roles given by the role hierarchy are captured in a set of finite state automata, at the
price of exponential blow-up in the size of the representation of the KB. It was recently shown
that this exponential blow-up is unavoidable, and thatSRIQ andSROIQ are 2EXPTIME

and 2NEXPTIME hard respectively. Even in the light of these results, no tight upper bounds
emerged from [7, 8], as they build on tableaux algorithms that are known not to be optimal
in the worst case. For example, the algorithm in [10] and its extension in [7] may require

⋆ This work was partially supported by the Austrian Science Fund (FWF) grant P20840 and the Mexi-
can National Council for Science and Technology (CONACYT) grant 187697.



non-deterministic double exponential time even in the restricted case ofSHIQ KBs. For
SROIQ, an optimal 2NEXPTIME upper bound could be established by reducing it (with an
exponential blow-up) to the two variable fragment of First Order Logic with counting, but the
tight complexity ofSRIQ remained open [11].

In this paper, we introduce an extension of the logicALCQIbreg previously considered
in [2, 4]. Like SHIQ, SRIQ and other ‘main stream’ DLs,ALCQIbreg extendsALC with
inverses and counting. The main difference is that, insteadof role inclusions and other axioms
asserting properties of roles,ALCQIbreg supports regular expressions over roles. They allow
ALCQIbreg to simulate the role hierarchies ofSHIQ andSRIQ and, together with the
presence of (safe) Boolean role constructors, capture mostof the features ofSRIQ. Since all
remaining features are related to the∃R.Self constructor, we add it toALCQIbreg and obtain
its extensionALCQIb+

reg , which is (at least) as expressive asSRIQ (although less succinct).
As we show in this paper, theALCQIb+

reg knowledge base satisfiability problem allows
for an elegant reduction to the emptiness test of an automaton on infinite trees. The reduction
builds on [4] and yields a worst-case optimal, single exponential time decision procedure. We
also present a reduction of theSRIQ knowledge base satisfiability problem toALCQIb+

reg

that exponentially increases the size of the input knowledge base; this yields the first 2EXP-
TIME decision procedure forSRIQ and a tight characterization of its worst case complexity.

The paper is organized as follows. In Section 2, after introducing the syntax and semantics
of ALCQIb+

reg knowledge bases, we define their syntactic closure, introduce a normal form
for them and a canonical form for their models. These allow usto extend the automata algo-
rithm of [4] toALCQIb+

reg in Section 3. In section 4 we show howSRIQ can be reduced to
ALCQIb+

reg . Final discussion and conclusions are given in Section 5.

2 The DL ALCQIb
+
reg

We introduce the syntax and semantics of the DLALCQIb+
reg , a natural extension of

ALCQIbreg [2, 4] with concepts of the form∃S.Self and Boolean role inclusion axioms.

Definition 1 (ALCQIb+
reg concepts and roles).We consider fixed, countably infinite alpha-

bets ofconcept namesC (also calledatomic concepts), role namesR and individual names
I. We assume that the setC contains the special concepts⊤ (top) and⊥ (bottom), whileR
contains the top (universal) roleT and the bottom (empty) roleB.

According to the following syntax, we define (ALCQIb+
reg) conceptsC, C′, atomic roles

Q, simple rolesS, S′, androlesR, R′, whereA ∈ C, P ∈ R andP 6= T.

C, C′ −→ A | ¬C | C ⊓ C′ | C ⊔ C′ | ∀R.C | ∃R.C |> n S.C |6 n S.C | ∃S.Self

Q −→ P | P−

S, S′ −→ Q | S ∩ S′ | S ∪ S′ | S ∩ ¬S′

R, R′ −→ T | S | R ∪ R′ | R ◦ R′ | R∗ | id(C)

We useS \ S′ as a shortcut forS ∩ ¬S′. AnALCQIb+
reg expressionis a concept or a role.

Subconcepts, subrolesandsubexpressionsare defined in the natural way.

Definition 2 (Knowledge Bases).An (ALCQIb+
reg ) assertionis of the formC(a), S(a, b),

or a 6= b, whereC is a concept,S a simple role anda, b ∈ I. An (ALCQIb+
reg) ABox is a

set of assertions. An(ALCQIb+
reg) concept inclusion axiom (CIA)is an expressionC ⊑ C′

for arbitrary conceptsC andC′. An Boolean role inclusion axiom (BRIA)is an expression
S ⊑ S′ for simple rolesS andS′. AnALCQIb+

reg TBox is a set of CIAs and BRIAs.



An (ALCQIb+
reg ) knowledge base(KB) is a pairK = 〈A, T 〉 whereT is anALCQIb+

reg

TBox andA is a non-emptyALCQIb+
reg ABox.We denote byCK the set of atomic concepts

occurring inK, byRK the set of roles names occurring inK, byRK the setRK∪{P− | P ∈
RK}, and byIK the individuals inK.

Definition 3 (Semantics).An interpretationI = (∆I , ·I) consists of a non-emptydomain
∆I and a valuation function·I that maps each individuala∈ I to an elementaI ∈ ∆I ,
each concept nameA∈C to a setAI ⊆ ∆I , and each role nameP ∈R to a set of pairs
RI ⊆ ∆I × ∆I , in such a way that⊤I = ∆I , ⊥I = ∅, TI = ∆I × ∆I andBI = ∅. The
function·I is inductively extended to all concepts and roles as follows:

(¬C)I=∆I \CI (P−)I = {(y, x) | (x, y) ∈ P I}
(C ⊓ C′)I=CI ∩ C′I (R ∩ R′)I = RI ∩ R′I

(C ⊔ C′)I=CI ∪ C′I (R ∪ R′)I = RI ∪ R′I

(∀R.C)I={x | ∀y.(x, y) ∈ RI → y ∈ CI} (¬R)I = (∆I × ∆I) \ RI

(∃R.C)I={x | ∃y.(x, y) ∈ RI ∧ y ∈ CI} (R ◦ R′)I = RI ◦ R′I

(> n S.C)I={x | |{y | (x, y) ∈ SI ∧ y ∈ CI}| ≥ n} (R∗)I = (RI)∗

(6 n S.C)I={x | |{y | (x, y) ∈ SI ∧ y ∈ CI}| ≤ n} (id(C))I = {(x, x) | x ∈ CI}

(∃S.Self)I={x | (x, x) ∈ SI}

where∩, ∪ and\ are overridden to denote the standard set-theoretic operations,◦ to denote
composition and·∗ to denote the reflexive transitive closure of a binary relation.

I satisfiesan assertionα, denotedI |= α, if aI ∈ AI whenα = A(a); 〈aI , bI〉 ∈ P I

whenα = P (a, b); and aI 6= bI whenα = a 6≈ b. I is a model of an ABoxA, denoted
I |= A if it satisfies every assertion inA.I satisfies a CIA or BRIAE ⊑ E′ if EI ⊆ E′I . I
is a model of a TBoxT , denotedI |= T if it satisfies every CIA and BRIA inT . Finally, I is
a modelof K = 〈T ,A〉, denotedI |= K, if I |= T andI |= A. Given a KBK, Knowledge
base satisfiabilityis the problem of deciding whether there exists anI such thatI |= K.

2.1 Syntactic Closure
We define the(syntactic) closureof a concept, which contains all the concepts and simple
roles that are relevant for deciding its satisfiability. It is analogous to the well-known Fischer-
Ladner closure of PDL, and it is exploited by the automata construction in Section 3.

In this section, we consider concepts and roles in a DL that wecall ALCQIB+
reg ; it is

very similar toALCQIb+
reg but supports arbitrary role negation¬S instead of role difference

S∩¬S′. If anALCQIB+
reg expression is equivalent to anALCQIb+

reg one, we call itsafe. In-
tuitively, sinceALCQIB+

reg does not impose safety, it allows for a more flexible manipulation
of Boolean role expressions and a simpler notion of syntactic closure.

In what follows, we use≷ to denote either> or6. For a role nameP ∈ C, we callP− the
inverse ofP andP the inverse ofP−; the inverse of an atomic roleQ is denotedInv(Q). For a
simple roleS, Inv(S) denotes the role obtained by replacing each atomic roleQ occurring in
S by its inverseInv(Q). For brevity, we assume in this subsection that⊔ and∀ are expressed
by means⊓, ∃ and using¬, and that\ and∪ are expressed using∩ and¬. As usual,C and
C′, S andS′ andR andR′ respectively stand for concepts, simple roles and arbitrary roles.

Definition 4. The closureCl(D) of anALCQIB+
reg conceptD is defined as the smallest set

ofALCQIB+
reg expressions such thatD ∈ Cl (D) and:

if C ∈ Cl(D) then ¬C ∈ Cl(D) (if C is not of the form¬C′)
if ¬C ∈ Cl(D) then C ∈ Cl(D)
if C ⊓ C′ ∈ Cl(D) then C, C′ ∈ Cl(D)
if ∃R.C ∈ Cl (D) then C ∈ Cl(D)



if ∃(R ∪ R′).C ∈ Cl(D) then ∃R.C, ∃R′.C ∈ Cl(D)
if ∃(R ◦ R′).C ∈ Cl(D) then ∃R.∃R′.C ∈ Cl(D)
if ∃R∗.C ∈ Cl(D) then ∃R.∃R∗.C ∈ Cl(D)
if ∃id(C).C′ ∈ Cl(D) then C, C′ ∈ Cl(D)
if ∃S.C ∈ Cl(D) then S ∈ Cl(D)
if ≷ n S.C ∈ Cl(D) then S, C ∈ Cl(D)
if ∃S.Self ∈ Cl (D) then S ∈ Cl(D)
if S ∩ S′ ∈ Cl(D) then S, S′ ∈ Cl(D)
if ¬S ∈ Cl(D) then S ∈ Cl(D)
if S ∈ Cl(D) then ¬S ∈ Cl(D) (if S is not of the form¬S′)
if S ∈ Cl(D) then Inv(S) ∈ Cl (D)

Note that|Cl(D)| is linear in the length ofD and thatCl(D) may contain non safe
ALCQIB+

reg expressions even whenD is anALCQIb+
reg concept.

2.2 Normalizing Knowledge Bases
We present now some simple reductions that allow us to transform a KB into an equiva-
lent one with a more restricted syntactic structure. We considerALCQIb+

reg KBs as well as
ALCQIB+

reg ones, which are defined in the natural way.
First of all, we consider the special expressions⊤, ⊥, B andT, and show that they can be

expressed without the need of special symbols. Then we show how every KB can be trans-
formed into anextensionally reducedone, where all terminological information is expressed
by CIAs. Finally, we consider the well known negation normalform of KBs.

Universal role and special expressions.The special concepts⊤ and⊥ can be simulated via
any concept namesC⊤ andC⊥ not occurring inK by adding, e.g., CIAsC ⊔ ¬C ⊑ C⊤,
¬C⊤ ⊑ C⊥ and¬C⊥ ⊑ C⊤ for any conceptC. Further, using⊤ and⊥, the empty roleB
can also be easily simulated by a fresh role namePB by adding an axiom⊤ ⊑ ∀PB.⊥. Note
that the above holds for every DL containingALC.

The universal role can be expressed inALCQIB+
reg as¬B, but this is not a safe role and

is hence disallowed inALCQIb+
reg KBs. In fact, in the absence of theT symbol, there is no

ALCQIb+
reg role expression that is always equivalent toT. However, for each input KBK,

there exists a role expressionU such that the resulting KB has a modelI with UI = ∆I×∆I

wheneverK is satisfiable. This is similar to what occurs in other expressive DLs (e.g.,SHIQ)
and sufficient for the problems we consider.

Indeed, since every satisfiableALCQIb+
reg conceptC has a connectedmodel, we

can transformC into an equisatisfiable concept replacing each occurrence of T by U =
(
⋃

Q∈RC
Q)∗, whereRC denotes the set of all atomic roles occurring inC. In the presence of

ABoxes, we additionally need to ensure that all pairs of ABoxindividuals are in the extension
of the role expression simulatingT. Hence, given a KBK = 〈A, T 〉, we can eliminate the
universal roleT as follows:
- For a fresh role nameAU , an assertionAU (a, b) is added toA for every paira, b ∈ IK.
- Each occurrence ofT in T is replaced by the roleU = (AU ∪

⋃
Q∈RK

Q)∗.

Extensionally reduced KBs.Let KB K = 〈A, T 〉 be anALCQIB+
reg KB. Of the transfor-

mations below, the one w.r.t. to the ABox is well known. Here we use a similar technique to
rewrite by means of CIAs all terminological information in the∃R.Self concepts and BRIAs.
Please note that all the transformations below involve onlysimple roles, hence the result-
ing KB complies to the allowed syntax. Also, since they do notintroduce any non-safe role
expressions, ifK is anALCQIb+

reg KB, it will remain in ALCQIb+
reg after the reduction.



– ABox reduction.K is extensionally reduced w.r.t. the ABoxif only assertions of the forms
A(a), P (a, b) anda 6= b with A ∈ C andP ∈ R occur inA.
TheABox reduction ofK is the KBΩABox(K) obtained as follows:
1. Each assertion of the formC(a) in A with C 6∈ C is replaced with an assertion

AC(a) for a freshAC ∈ C and an axiomAC ⊑ C is added toT .
2. Each assertionS(a, b) in A with S 6∈ R is replaced with an assertionPS(a, b) for a

freshPS ∈ R and an axiomPS ⊑ S is added toT .
– Self concepts reduction.K is extensionally reduced w.r.t. Self conceptsif P ∈ R for

every concept of the form∃P.Self occurring in it.
TheSelf concept reduction ofK is the KBΩSelf(K) obtained by replacing each concept of
the form∃S.Self with S 6∈ R occurring inT with a concept∃PS .Self for a freshPS ∈ R

and an adding an axiomPS ⊑ S to T .
– BRIA reduction. K is extensionally reduced w.r.t. BRIAsif all axioms inT are CIAs.

TheBRIA reduction ofK is the KBΩBRIA(K) obtained by replacing inT each BRIA of
the formS ⊑ S′ by a CIA∃(S \ S′).⊤ ⊑ ⊥.

– KB reduction. K is extensionally reducedif it is extensionally reduced w.r.t. the ABox,
Self concepts and BRIAs.
Thereduction ofK is the KBΩ(K) = ΩBRIA(ΩSelf(ΩABox(K))).

The above reductions preserve the semantics of the knowledge baseK, andΩ(K) addi-
tionally constrains the interpretation of some concept names not occurring inK. If we consider
the standard first order translation ofK andΩ(K), then the latter is a conservative extension
of the former. With this observation, the proof of the following proposition is straightforward:

Proposition 1. For a givenALCQIB+
reg KB K, Ω(K) can be obtained in linear time. For

every interpretationI, I |= Ω(K) impliesI |= K andI |= K impliesI ′ |= Ω(K), whereI ′

denotes the interpretation s.t.EI′

= EI for everyE ∈ CK ∪ RK, (AC)I
′

= CI for every
AC ∈ CΩ(K) \ CK, and(PS)I

′

= SI for everyPS ∈ RΩ(K) \ RK.

Thus deciding the satisfiability ofK can be reduced (in linear time) to used deciding the
satisfiability ofΩ(K), and we can restrict or attention to extensionally reduced knowledge
bases. Note that we can also considerΩ(K) to decide the entailment of any sentence over the
language ofK; this is useful, e.g., forquery answering[3].

Negation Normal Form. Finally, we transform KBs tonegation normal form(NNF).
An ALCQIB+

reg role R is in NNF form if Q is atomic for every subrole¬Q of R. Sim-
ilarly, a conceptC is in negation normal form(NNF) if A is atomic for every subconcept
¬A of C, and all roles occurring inC are in NNF. A knowledge base is in NNF if only
expressions in NNF occur in it. For an expressionE, nnf (E) denotes the equivalent expres-
sion in NNF obtained fromE using the standard transformations. For a conceptD, we let
Clnnf (D) = {nnf (E) | E ∈ Cl(D)}. For a KBK, nnf (K) denotes the KB obtained fromK
by replacing each expressionE in K by nnf (E).

Proposition 2. For everyALCQIB+
reg expressionE, nnf (E) can be obtained in linear time,

and ifE is anALCQIb+
reg expression, then so isnnf (E). Further, for every KBK and every

interpretationI, I |= K iff I |= nnf (K) .

An ALCQIb+
reg KB K = 〈A, T 〉 is normal if it is extensionally reduced and in NNF, it

does not contain⊤, ⊥, T andB, and each concept occurring inA also occurs inT .1

1 This is w.l.o.g. as we can add toT , e.g.,A ⊑ ⊤ for eachA ∈ C that occurs inA but not inT .



2.3 Canonical Models and Trees

We have seen that, to decide KB satisfiability, we only need toconsider KBs with a restricted
syntax. Now we consider some semantic properties by which the shape of the considered
interpretations can also be conveniently restricted.

In what follows, we consider onlyALCQIb+
reg KBs; the results of this section do not hold

for ALCQIB+
reg in general.2 Like many DLs,ALCQIb+

reg has some form of thetree model
property: every satisfiable TBoxT (or similarly, every satisfiable conceptC) has a model
that can be seen as a tree with possible additional loops at some nodes, say a ‘quasi-tree’. A
satisfiableALCQIb+

reg KB K = 〈A, T 〉 has a ‘quasi-forest’ shapedcanonical model, in which
each ABox individual is the root of a quasi-tree shaped modelof T .

Definition 5. LetK = 〈T ,A〉 be anALCQIb+
reg KB, and let1 ≤ n ≤ |IK|, k ≥ 0. An inter-

pretationI = (∆I , ·I) for K is called acanonical interpretation (withn roots and branching
degreek) if:

(1) eachi·x ∈ ∆I hasi ∈ {1, . . . , n} andx ∈ {1, . . . , k}∗; if x = ε theni is called aroot.
(2) {ε} ∪ ∆I is prefix closed, i.e., ifx·c ∈ ∆I , thenx ∈ {ε} ∪ ∆I .
(3) For eacha ∈ IK there is exactly one rootj such thataI = j.
(4) For each rootj there is somea ∈ IK with aI = j.
(5) If (i·w, j·w′) ∈ P I for some atomic roleP and two rootsi, j, then eitherw = w′ = ε,

or i = j and one of the following holds: (i) w = w′, (ii ) w′ = w·l or (iii ) w = w′·l, for
some1 ≤ l ≤ k.

In ALCQIb+
reg , any TBoxT can be ‘internalized’ into an equivalent conceptCT , so that

the satisfiability ofT can be established by obtaining a model ofCT [14].

Proposition 3. Consider an ALCQIbreg knowledge baseK = 〈A, T 〉, and let
CT = ∀(

⋃
R∈RK

R)∗.
⊔

C1⊑C2∈T (¬C1 ⊔ C2)

For every interpretationI = (∆I , ·I), I |= T iff (CT )I = ∆I . Furthermore, ifI is a
canonical interpretation, thenI |= T iff i ∈ (CT )I for each rooti of I.

Now we can establish thecanonical model propertyof ALCQIb+
reg ; it can be shown by

adapting corresponding proofs for related logics [17, 15].Roughly, any model of a satisfiable
ALCQIb+

reg conceptD can be unraveled into a model ofD that is a quasi-tree and that has
branching degreekD = |Cl(D)| × n, wheren is the maximaln occurring in a concept of the
form > n S.C in Clnnf (D), or 1 if there are no such concepts.

Theorem 1. Every satisfiableALCQIb+
reg KB K = 〈T ,A〉 has a canonical modelI such

that I is a canonical interpretation forK with branchingkCT
, I |= A and i ∈ (CT )I for

each rooti of I.

By Theorem 1, which does not hold forALCQIB+
reg in general, deciding the satisfiability

of anALCQIb+
reg KB boils down to deciding whether it has a canonical model. Todecide

the latter, we rely on a representation of canonical interpretations as infinite labeled trees and
define an automaton that decides the existence of such trees.

2 Theorem 1 fails already in the extension ofALC with non-safe Boolean role expressions, see [12].



Definition 6. An (infinite) treeis a prefix-closed setT of words over the natural numbersIN.
The elements ofT are callednodes, the empty wordε is its root. For everyx ∈ T , the nodes
x·c with c ∈ IN are thesuccessorsof x, andx is thepredecessorof eachx·c. By convention,
x·0 = x, and (x·i)·−1 = x. Thebranching degreed(x) of a nodex is the number of its
successors. Ifd(x) ≤ k for each nodex of T , thenT hasbranching degreek. An infinite path
π of T is a prefix-closed setπ ⊆ T where for everyi ≥ 0 there exists a unique nodex ∈ P

with |x| = i. A labeled treeover an alphabetΣ (or simply aΣ-labeled tree) is a pair(T, V ),
whereT is a tree andV : T → Σ maps each node ofT to an element ofΣ.

In the following, we assume a (fixed) given normalALCQIb+
reg KB K = 〈A, T 〉. We

denoteIK by J and assume an arbitrary, fixed, enumerationa1, . . . , am of the elements of
J . We definePI = {Pij | ai, aj ∈ J andP ∈ RK} andPS= {PSelf | P ∈ RK}. We will
define thetree representation of a canonical interpretationI for K as a labeled treeTI over
the alphabetΣK = 2CK∪RK∪J∪{r}∪{d}∪PI∪PS.

To defineTI , we first note that the domain of a canonical interpretation is almost a tree;
we only need to add a rootε to it. The extensions of the interpretations of individuals, concepts
and roles can be represented as labels over the alphabetΣK in a straightforward way. Roughly,
each element ofx ∈ ∆I , which is a node of the tree, is labeled with a setV (x) that contains:
(i) the atomic conceptsA such thatx ∈ AI ; (ii ) the atomic roles that connect the predecessor
of x to x, and (iii ) a special symbolPSelf for eachP such thatx ∈ (∃P.Self)I . The rootε and
the roots ofI (which are at the first level of the treeTI ) are treated differently. The label of
each rooti of I, apart from the atomic concepts to whichi belongs, also contains the name of
the individuals inJ which it interprets, and it contains no basic roles. The relations between
level one nodes are stored in the label of the rootε. The rootε does not represent any object in
∆I and is marked with a special identifierr and symbols of the formPij indicating that the
pair of individuals(ai, aj) belongs to the extension of the basic roleP . For simplicity, ifI has
n roots and|J | > n, |J |−n dummy children labeled{d} are added to the rootε, ensuring
that it has exactly|J | children.

Definition 7. Let I be a canonical interpretation forK with n roots. Thetree representation
of I is the labeled treeTI = (T, V ) over the alphabetΣK = 2CK∪RK∪J∪{r}∪{d}∪PI∪PS

defined as follows:

• T = {ε} ∪ ∆I ∪ {n + 1, . . . , m}.
• V (ε) = {r} ∪ {Pij | ai, aj ∈ J , P ∈ CK and〈aI

i , aI
j 〉 ∈ P I},

• for each1 ≤ i ≤ n, V (i) = {aj ∈ J | aI
j = i} ∪ {A ∈ CK | aI

j ∈ AI andaI
j = i},

• for eachn + 1 ≤ i ≤ m, V (i) = {d},
• for all other nodesi·x of T , V (i·x) = {A ∈ CK | i·x ∈ AI} ∪ {Q ∈ RK | (i·w, i·x) ∈

P I wherex = w·j for somej, 1 ≤ j ≤ kCT
} ∪ {PSelf | P ∈ RK andi·x ∈ (∃P.Self)I}

Note that the branching degree ofTI is bounded by|J | at the root and bykCT
at all other

levels, so the tree has branching degreemax(kCT
, |J |).

3 An Automata Algorithm for ALCQIb
+
reg

Automata on infinite trees allow for an elegant reduction of decision problems for temporal
and program logics [5], and have been widely exploited for many variants of PDL, theµ-
calculus and similar logics [16, 17]. In DLs they have been used for concept satisfiability [15]
and, to a more limited extent, for KB satisfiability [4].



3.1 Preliminaries: Automata on Infinite Trees

We considertwo-way alternating tree automataover infinite trees, introduced in [16]. Let
B(I) be the set of positive Boolean formulas built inductively fromtrue, false, and atoms from
a given setI applying∧ and∨. A setJ ⊆ I satisfiesa formulaϕ ∈ B(I), if assigningtrue to
the atoms inJ andfalseto those inI \J makesϕ true. A two-way alternating tree automaton
(2ATA) running over infinite trees with branching degreek, is a tupleA = 〈Σ, Q, δ, q0, F 〉,
whereΣ is the inputalphabet; Q is a finite set ofstates; δ : Q × Σ → B([k] × Q), where
[k] = {−1, 0, 1, . . . , k}, is thetransition function; q0 ∈ Q is theinitial state; andF ⊆ Q is
the(Büchi) acceptance condition.

The transition functionδ maps a stateq ∈ Q and an input letterσ ∈ Σ to a positive
Boolean formulaϕ over atoms[k]×Q. Intuitively, if δ(q, σ) = ϕ, then each atom(c, q′) in ϕ

corresponds to a new copy of the automaton going in the direction given byc and starting in
stateq′. E.g., a transition of the formδ(q1, σ) = (1, q2)∧ (1, q3)∨ (−1, q1)∧ (0, q3) indicates
that if A is in the stateq1 and reads the nodex labeled withσ, it proceeds by sending off
either two copies, in the statesq2 andq3 respectively, to the first successor ofx, or one copy
in the stateq1 to the predecessor ofx and one copy in the stateq3 to x itself.

Informally, a run of a 2ATAA over a labeled tree(T, V ) is a labeled tree(Tr, r) in which
each nodey ∈ Tr is labeled by an elementr(y) = (x, q) ∈ T ×Q and describes a copy ofA
that is in the stateq and reads the nodex of T ; the labels of adjacent nodes must satisfy the
transition function ofA. The run is accepting if in every infinite path at least one state from
F occurs infinitely often in the node labels.

Formally, given a 2ATAA = 〈Σ, Q, δ, q0, F 〉 and aΣ-labeled tree(T, V ), a run of A
over(T, V ) is aT×Q-labeled tree(Tr, r) satisfying:
• ε ∈ Tr andr(ε) = (ε, q0).
• For eachy ∈Tr with r(y) = (x, q) there is a (possibly empty) setS = {(c1, q1) , . . . ,

(cn, qn)} ⊆ [k] × Q such thatS satisfiesδ(q, V (x)) and for all1 ≤ i ≤ n, we have that
y·i ∈ Tr, x·ci is defined andr(y·i) = (x·ci, qi).

A run (Tr, r) over(T, V ) is accepting, if for each infinite pathπ of Tr there is some state
qf ∈ F such that the set{y ∈ π | r(y) = (x, qf ) for somex ∈ T } is infinite. A labeled tree
(T, V ) is acceptedby A if there is an accepting run ofA over(T, V ), andL(A) denotes the
set ofΣ-labeled trees accepted byA.

Thenon-emptiness problemfor 2ATAs is to decide whether, given a 2ATAA, the setL(A)
is nonempty. It was shown in [16] that non-emptiness ofA = 〈Σ, Q, δ, q0, F 〉 is decidable in
time single exponential in|Q| and polynomial in|Σ|.

3.2 Constructing the Automaton

In the following, we assume a given, fixed, normalALCQIb+
reg KB K = 〈A, T 〉 and provide

a construction of a 2ATAAK from K that accepts a given treeT iff it is the tree repre-
sentation of a canonical model ofK. Similar automata constructions have been given in the
literature. In particular, this one is a simple extension ofthe one in [4] to handle the∃S.Self
concepts ofALCQIb+

reg . In turn, [4] extends to KB satisfiability a previous construction of
an automaton that decidesALCQIbreg concept satisfiability [2]. Due to space constraints, we
briefly describeAK = 〈ΣK, QK, δK, q0, FK〉 and focus on the extension fromALCQIbreg to
ALCQIb+

reg ; we refer the reader to [3] for details.

The alphabet isΣK = 2CK∪RK∪J∪{r}∪{d}∪PI∪PS as given in Definition 7; note that the
only difference w.r.t. [3] is the presence of the setPS.



Like in [3], the ‘basic’ states ofAK are the role and concept expressions in the closure of
CT , which are used for checking whether a node of the tree is in the extension of an expression
or marked with some symbol. There are also additional special states for verifying some more
involved conditions like the satisfaction of the number restrictions, the correct representation
of the individuals and the ABox assertions, etc.

More precisely, letS = J ∪ PS∪ {c, d}. There is a state for each element of the the
setClext = Clnnf (CT ) ∪ {s,¬s | s ∈ S} which we call theS-extended closure ofCT . The
extended closure allows us to treat the individual names andspecial symbols in the node labels
as well as the atomic expressions in a uniform way. Note that,in contrast to [3],Clext may
contain concepts of the form∃P.Self. The set of states isSK = {s0, s1} ∪ Cl ext ∪ Snum ∪
SA role ∪ SA quant ∪ SA num ∪ SSelf, where the setsSA quant Snum , SA num andSA role are
as in [3]. We use the states inSA quant of the forms〈j, ∃S.C〉 and〈j, ∀S.C〉 to respectively
check whether concepts of the form∃Q.C and∀Q.C are satisfied by a node representing
some ABox individualaj . For checking the satisfaction of number restrictions we need the
statesSnum of the form〈≷ n S.C, i, j〉 that store two countersi andj, plus the statesSA num

of the form〈m, ≷ nQC, i, j〉, which also store the value of two counters but for a particular
individualam. For checking whether two ABox individualsai, aj are related by a simple role
S, we use states of the formSij in SA role . The only additional states w.r.t. to [3] are the ones
in the setSSelf = {SSelf | S a simple role inClnnf (CT )}, which we use for decomposing a
simple role and checking whether it links an individual to itself. Finally, there is the initial state
s0 and another special states1. As in [3], both are used to verify the satisfaction of general
conditions necessary for the input tree to represent a canonical model ofK, e.g., that the root
is the only node labeledr, that its label correctly stores the role assertions in the ABox and
that the ABox individuals are correctly represented by the level one nodes.

As in [2–4],FK = {∀R∗.C | ∀R∗.C ∈ Clnnf (CT )} is the acceptance condition.

The transition functionδ : SK × ΣK → B([k] × SK), wherek = max(kCT
, |J |), is

defined as follows. First, for eachσ in σ ∈ΣK with r∈σ we define a transitionδ(s0, σ)
=F1 ∧ · · · ∧ F8 from the initial states0, which verifies (i) that the root is the only node
containingr and that the ABox individuals are properly represented by the level one nodes
(F1–F4); (ii ) that all ABox assertions are satisfied (F5–F7); and (iii ) that every non-dummy
node at level one is the root of a tree representing a model ofCT (F8). F4 requires a transition
δ(s1, σ) from the other special states1 for eachσ ∈ ΣK, which is necessary forF4 to correctly
ensure that the symbolr only occurs at the root and the symbols inJ only occur at the first
level of the tree. These transitions are as in [3], to which the reader may refer for details.

The transitions that inductively decompose complex concepts while navigating the tree
are as in [3]; so are the ones that decompose simple roles. Additionally, for each concept
of the form∃P.Self such that∃P.Self ∈ SK and for eachσ ∈ ΣK there is a transition
δ(∃P.Self, σ) = (0, PSelf). Special transitions are necessary to decompose the simpleroles
for each possible self loop and for each pair of ABox individuals. Thus we have for each
σ ∈ ΣK and for eachs ∈ SSelf ∪ SA role a transitionδ(s, σ) as follows:

δ(S ∩ S′
Self, σ) = (0, SSelf) ∧ (0, S′

Self) δ(S ∩ S′ij, σ) = (0, Sij) ∧ (0, S′ij)
δ(S ∪ S′

Self, σ) = (0, SSelf) ∨ (0, S′
Self) δ(S ∪ S′ij, σ) = (0, Sij) ∨ (0, S′ij)

δ(Q \ Q′
Self, σ) = (0, QSelf) ∧ (0,¬Q′

Self) δ(Q \ Q′ij, σ) = (0, Qij) ∧ (0,¬Q′ij)

Informally, given a tree representing an interpretation, let us callpotential neighbors ofx
all the nodes that could be related to a nodex via a simple role. Ifx does not represent an
ABox individual, then its potential neighbors arex itself, its predecessor and all its successors.



If x does represent an ABox individual, then instead of its predecessor (which is the dummy
root), all the other nodes representing ABox individuals are potential neighbors ofx.

Further transitions in [3] verify whether a node satisfies anuniversal restriction∀S.C, an
existential restriction∃S.C or a number restriction≷ nS.C, for a simple roleS; they navigate
all the potential neighbors of a node and test which are reachable viaS and labelledC. We use
similar transitions, but adapt them to take into account that, in anALCQIb+

reg interpretation,
a node is a potential neighbor of itself. The transitions forthe concepts of the form∀S.C and
∃S.C are given below. The ones for the number restrictions (whichuse the states inSnum and
SA num to encode counters) are adapted similarly but omitted here due to space constraints.

Since the potential neighbors of a nodex are different depending on whether (i) x is a
level one node, or (ii ) x is a node at any other level, the transitions must differ accordingly.
Hence, for each concept of the form∃S.C or ∀S.C in Cl

nnf (CT ) with S simple and each
σ ∈ ΣK, if σ ∩ (J ∪ {d}) = ∅ we define:

δ(∃S.C, σ) = ((0, SSelf) ∧ (0, C)) ∨ ((0, Inv(S)) ∧ (−1, C)) ∨∨
1≤i≤kCT

((i, S) ∧ (i, C))

δ(∀S.C, σ) = ((0,nnf (¬SSelf)) ∨ (0, C)) ∧ ((0,nnf (¬Inv(S))) ∨ (−1, C)) ∧∧
1≤i≤kCT

((i,nnf (¬S)) ∨ (i, C))

Otherwise, ifσ ∩ (J ∪ {d}) 6= ∅, we have:

δ(∃S.C, σ) = ((0, SSelf) ∧ (0, C)) ∨
∨

aj∈σ(−1, 〈j, ∃S.C〉)∨∨
1≤i≤kCT

((i, S) ∧ (i, C))

δ(∀S.C, σ) = ((0,nnf (¬SSelf)) ∨ (0, C)) ∧
∧

aj∈σ(−1, 〈j, ∀S.C〉) ∧∧
1≤i≤kCT

((i,nnf (¬S)) ∨ (i, C))

The first disjunct/conjunct in these transitions, which verifies whether the current node
reaches itself viaS and is labelledC, is not present in the corresponding transitions from [3].

In the last set of transitions (case (i) above,σ ∩ (J ∪ {d}) 6= ∅), the second dis-
junct/conjunct is responsible for sending a copy of the automaton to the root of the tree and
moving to the special states inSA quant , in order to traverse all the ABox individuals which are
potential neighbors of the current node. The latter is achieved as in [4], i.e., for eachσ ∈ ΣK

and each〈j, ∃S.C〉 or 〈j, ∀S.C〉 in SA quant , there is a transition

δ(〈j, ∃S.C〉, σ) =
∨

1≤i≤|J |

(
∨

1≤k≤|J |

((0, Sjk) ∧ (i, ak) ∧ (i, C)))

δ(〈j, ∀S.C〉, σ) =
∧

1≤i≤|J |

(
∧

1≤k≤|J |

((0,nnf (¬Sjk)) ∨ (i,¬ak) ∨ (i, C)))

The above transitions decompose all concepts and roles until they reach states correspond-
ing to atomic expressions or (possibly negated) special symbols inPI ∪ PS; it is then checked
whether the expression is contained in the node labelσ. The transitions form the statess0 and
s1 may also move to states corresponding to possibly negated symbols inJ ∪{r, d}, which are
similarly checked at the node labels. Thus, for eachσ ∈ ΣK, eachs ∈ CK∪RK∪J ∪{r, d}
and eacht ∈ PI ∪ PS, there are transitions:

δ(s, σ) =

(

true, if s ∈ σ

false, if s 6∈ σ
δ(¬s, σ) =

(

true, if s 6∈ σ

false, if s ∈ σ

δ(t, σ) =

(

true, if t ∈ σ or Inv(t) ∈ σ

false, otherwise
δ(¬t, σ) =

(

true, if t 6∈ σ andInv(t) 6∈ σ

false, otherwise

whereInv(t)= Inv(P )ji if t =Pij and Inv(t) = Inv(P )Self if t =PSelf for eachP ∈RK.



These transitions extend similar ones in [4] to include the symbols inPS.
By a simple adaptation of the proofs in [3], it can be easily verified that, given a canonical

modelI of K, its tree representationTI is accepted byAK. Furthermore, a modelIT of K
can be constructed from any labeled treeT = (T, V ) accepted byAK. The domain∆IT is
given by the nodesx in T with ai ∈ V (x) for some individualai, and the nodes inT that
are reachable from any suchx through the roles. The extensions of concepts and roles are
determined by the labels of the nodes inT. The only difference w.r.t. [4] is that we also add a
pair (x, x) to P IT for everyx whose label containsPSelf.

This shows that the automatonAK can be used to decide the satisfiability ofK.

Theorem 2. K is satisfiable iff the set of trees accepted byAK is nonempty.

Under unary encoding of numbers in restrictions, the numberof states ofAK is polynomial
in the size ofK. SinceΣK is single exponential in the size ofK, we can exploit the results of
[16] to obtain an EXPTIME upper bound for satisfiability ofALCQIb+

reg KBs. This is optimal,
as a matching lower bound is known for much weaker DLs [1].

Corollary 1. Satisfiability ofALCQIb+
reg knowledge bases isEXPTIME-complete.

4 Reasoning inSRIQ

The description logicSRIQ was introduced in [7] as an extension of the DLRIQ [9], which
in turn extends the well knownSHIQ [10] underlying OWL-Lite. It has gained considerable
attention recently due to its close relationship to the logicSROIQ underlying the new OWL
2 standard. The most prominent feature ofSRIQ arecomplex role inclusion axiomsof the
form R1 ◦ . . .◦Rn ⊑ R. Additionally, in anSRIQ KB it is possible to explicitly state certain
properties of roles like transitivity, (ir)reflexivity anddisjointness. Some of these additions
increase the expressivity of the logic, while other are just‘syntactic sugar’ and are intended to
be useful for ontology engineering. We now recall the definition of SRIQ.

Definition 8 (SRIQ knowledge bases).Let R = R ∪ {R− | R ∈ R}. EachR ∈ R is a
(SRIQ) role. As usual,P− is theinverse ofP , P the inverse ofP−, andInv(R) denotes the
inverse of the roleR. A (SRIQ) role inclusion axiom (SRIA)is an expression of the form
R1 ◦ . . . ◦ Rn ⊑ R, wheren ≥ 1 and{R1, . . . , Rn, R} ⊆ R.

A setRh of SRIAs isregularif there exists a partial order≺ onR such thatInv(R) ≺ R′

iff R ≺ R′ for everyR, R′ ∈ R, and such that every SRIA inRh is of one of the following
forms:

(i) R ◦ R ⊑ R, or
(ii) Inv(R) ⊑ R, or
(iii) R1 ◦ . . . ◦ Rn ⊑ R andRi ≺ R for each1 ≤ i ≤ n, or
(iv) R ◦ R1 ◦ . . . ◦ Rn ⊑ R andRi ≺ R for each1 ≤ i ≤ n, or
(v) R1 ◦ . . . ◦ Rn ◦ R ⊑ R andRi ≺ R for each1 ≤ i ≤ n.

Given a setRh of SRIAs, letRRh
denote the set of roles occurring inRh. The set of

simple roles inRh is the minimal setSR(Rh) ⊆ RRh
containing each roleR such that (i)

there are no SRIAs of the formR1 ◦ . . . ◦ Rn ⊑ R in Rh, and (ii ) if n = 1 andR1 ∈ SR(Rh)
for every SRIA of the formR1 ◦ . . . ◦ Rn ⊑ R in Rh, thenR ∈ SR(Rh).



A role assertionis an expression of the formSym(R), Ref(R), Irr(R), or Dis(R, R′), where
R, R′ ∈ R.3 An RBoxR is a finite set of SRIAs and role assertions such thatR ∈ SR(Rh)
for eachR occurring in a role assertion of the formRef(R), Irr(R) or Dis(R, R′) in R,
whereRh denotes the set of SRIAs inR. We say thatR is regularif Rh is regular, and define
SR(R) = SR(Rh).

Similarly as inALCQIb+
reg , (SRIQ) conceptsC, C′ obey the following syntax

C, C′ −→ A | ¬C | C ⊓ C′ | C ⊔ C′ | ∀R.C | ∃R.C |> n S.C |6 n S.C | ∃S.Self,

whereA ∈ C andR, S ∈ R. A (SRIQ) concept inclusion axiom (SCIA)is an expression
C ⊑ C′ for arbitrary SRIQ conceptsC andC′. A (SRIQ) TBox is a set of SCIAs. For an
RBoxR, a conceptC isR-simpleif S ∈ SR(Rh) for eachS occurring in a subconcept ofC
of the form> n S.C′, 6 n S.C′ or ∃S.Self; a TBoxT is R-simpleif all concepts occurring
in the SCIAs ofT areR-simple.

An (SRIQ) assertionis an expressionC(a), R(a, b), ¬S(a, b) or a 6= b, whereC is a
SRIQ concept,S, R are SRIQ roles anda, b ∈ I. An (SRIQ) ABox is a set ofSRIQ
assertions. An ABoxA isR-simplefor an RBoxR if S ∈ SR(Rh) for eachS occurring in an
assertion of the form¬S(a, b).

An (SRIQ) knowledge baseis a tupleK = 〈A, T ,R〉 whereR is a regularSRIQ
RBox,A a non-emptyR-simpleSRIQ ABox andT anR-simpleSRIQ TBox.

The semantics ofSRIQ TBoxes and ABoxes is defined as forALCQIb+
reg . An interpre-

tationI satisfies a role assertionSym(R), Ref(R) or Irr(R) if RI is a symmetric, reflexive
or irreflexive relation, respectively;I satisfiesDis(R, R′) if the relations are disjoint, i.e.,
RI ∩R′I = ∅; I satisfies a SRIAR1 ◦ . . . ◦Rn ⊑ R if RI

1 ◦ . . . ◦RI
n ⊆ RI , where again we

override the symbol◦ and use it to denote binary role composition. An interpretation I is a
model of an RBox, in symbolsI |= R, if it satisfies all SRIAs and role assertions inR. Mod-
elhood of a KB is restricted in the natural way to the models ofthe RBox, i.e.,I |= 〈A, T ,R〉
iff I |= A, I |= T andI |= R.

4.1 ReducingSRIQ to ALCQIb
+
reg

The restriction to regular RBoxes, which is crucial for the decidability ofSRIQ, ensures that
all implications between roles can be captured by a set of regular expressions. This will allow
us to reduce reasoning inSRIQ to reasoning inALCQIb+

reg , and to show that the algorithm
we have presented is also an optimal decision procedure forSRIQ KB satisfiability.

If R is a regular RBox, then for every roleR ∈ R there is a regular expressionρR such
that a wordw = R1 ◦ . . . ◦ Rn overR is in the language ofρR iff wI ⊆ RI in every model
I of R. This was shown in [9] forRIQ and its generalization toSRIQ is straightforward.4

Proposition 4. Given a regular RBoxR, for eachR ∈ R there is a regular expressionρR

such thatRI = (ρR)I for every modelI of R.

Reducing TBoxes.Each regular expressionρR is anALCQIb+
reg role. Further, if a roleS

is simple inR, thenρS is the regular expression
⋃

(S′⊑S)∈R S′, which is in fact a simple
ALCQIb+

reg role. As a consequence, if we replaceR by ρR is anySRIQ concept, the re-
sulting expression is anALCQIb+

reg concept. This allows for a natural translation ofSRIQ
concepts and TBoxes intoALCQIb+

reg .

3 In [7] also role assertions of the formTra(R), asserting thatR is transitive, are allowed. We omit
them since this can be equivalently expressed with an SRIAR ◦ R ⊑ R.

4 It follows also from [7] and the equivalence of finite state automata and regular expressions.



Definition 9. Let R be a regular RBox. For eachR ∈ R, ρR denotes a (fixed, arbitrary)
regular expression such thatRI = (ρR)I for every modelI ofR. For anySRIQ conceptC,
we denote byCR theALCQIb+

reg concept that results from replacing each roleR in C with
ρR. Similarly, for anySRIQ TBoxT , we defineT R = {CR ⊑ DR | C ⊑ D ∈ T }.

Proposition 5. LetR be a regularSRIQ RBox andI a model ofR. ThenRI = (ρR)I for
everySRIQ role R andCI = (CR)I for everySRIQ conceptC, andI |= T iff I |= T R.

Reducing ABoxes.Now we consider ABoxes. First, we remove the negative role assertions,
which are not allowed inALCQIb+

reg , as follows.

Definition 10. Given anSRIQ ABox A, let Aneg contain all negative role assertions
¬S(a, b), and letApos be obtained by replacing each assertion¬S(a, b) in Aneg byP¬S(a, b),
whereP¬S is a fresh role name. Further, letRA be the set ofALCQIb+

reg BRIAs containing
P¬S ∩ S ⊑ B for each¬S(a, b) in A.

If an ABox contains an assertion in which a non-simple roleR occurs,ρR is not a sim-
ple ALCQIb+

reg role and hence we can not replaceR with it. Instead, we explicitly add as
assertions all relations between individuals that are implied by the RBox.

Definition 11. Let A and R be aSRIQ ABox and aSRIQ RBox respectively. TheR-
extension ofA, denotedAR, is the minimal set of assertions containingA such that, if there
are individualsa1, . . . , an+1 ∈ IK and a SRIAR1◦. . .◦Rn ⊑ R in R such thatRi(ai, ai+1) ∈
AR for each1 ≤ i ≤ n, thenR(a1, an+1) ∈ AR.

Reducing RBoxes.As for the RBox, the satisfaction of the SRIAs is ensured by the regular
expressions added to the TBox and the assertions added to theABox. We only have to ensure
the satisfaction of the role assertions, which is easy inALCQIb+

reg .

Definition 12. LetR be a regularSRIQ RBox and letR′ denote the set of role assertions
in R. We denote byRB the set of BRIAs and CIAs that contains:
• R ⊑ R′ for every SRIAR ⊑ R′ in R such thatR′ ∈ SR(R),
• R ⊑ Inv(R) andInv(R) ⊑ R for every assertionSym(R) in R′,
• ⊤ ⊑ ∃R.Self for every assertionRef(R) in R′,
• ∃R.Self ⊑ ⊥ for every assertionIrr(R) in R′, and
• R ∩ R′ ⊑ B for every assertionDis(R, R′) in R′.

Reducing KBs.Now we can reduce any givenSRIQ KB K = 〈A, T ,R〉 into an equivalent
ALCQIb+

reg KB K = 〈A, T 〉 as follows.

Definition 13. LetK = 〈A, T ,R〉 be aSRIQ knowledge base. We denote byK′ = 〈A′, T ′〉
the followingALCQIb+

reg KB:
• The ABoxA′ is AR, whereA = (A \ Aneg) ∪ Apos.
• The TBoxT ′ is T R ∪RA ∪RB .

For any interpretationI, I |= K impliesI |= K′. The converse holds in a slightly weaker
form. While a model ofK′ need not be closed under the RBox and it may not be a model ofK,
the models ofK′ andK may only differ in the interpretation of some ‘implied’ roles. Adding
them to a model ofK′, we obtain a model ofK.



For a modelI of K′, theextension ofI toR is the interpretationIR such that∆IR

= ∆I ;
(A)I

R

= (A)I for every atomic conceptA; and for every atomic roleP occurring inR, if
(x, y) ∈ (ρP )I or (y, x) ∈ (ρP−)I , then(x, y) ∈ (P )I

R

. It can be easily verified that if
I |= K′, thenIR |= K. Hence, we can reduce the satisfiability problem for anySRIQ
knowledge bases to satisfiability of anALCQIb+

reg one.

Proposition 6. LetK = 〈A, T ,R〉 be aSRIQ knowledge base. ThenK is satisfiable iffK′

is satisfiable.

As a consequence, the automata algorithm in Section 3 can be used to decide the satisfia-
bility of SRIQ knowledge bases.

Furthermore, it is worst case optimal. All steps are clearlypolynomial in the size ofA, T
andexp(R). However, the size ofexp(R) can be exponential in the size ofR [9].

Theorem 3. The satisfiability of anSRIQ KBK = 〈A, T ,R〉 is decidable in time exponen-
tial in the combined sizes ofT , A andexp(R), and double exponential in the size ofK.

It was recently shown thatSRIQ is 2EXPTIME hard [11], hence our bound is optimal.

Corollary 2. The satisfiability ofSRIQ knowledge bases is2EXPTIME-complete.

Note that the blow-up in complexity w.r.t.ALCQIb+
reg is due to the size ofexp(R), and

that the algorithm is single exponential wheneverexp(R) is polynomial inR; this includes,
for example, the so-calledsimple role hierarchiesdefined in [9]. Our algorithm compares well
to theSRIQ algorithm in [7], which may require non-deterministic double exponential time
even for such restricted cases.

5 Conclusions

We have shown that the DLALCQIb+
reg fully captures the DLSRIQ. Although the latter

is exponentially more succinct, reasoning is also (provably) exponentially harder in the worst
case. The syntax ofALCQIb+

reg allows for additional constructions not supported bySRIQ,
like Boolean role expressions and inclusions between them.Since these additional features
can be useful for modeling KBs and for ontology engineering [13], it seems reasonable to
considerALCQIb+

reg as a suitable alternative forSRIQ. It would even be possible to mod-
ify the syntax ofALCQIb+

reg and make it more similar toSRIQ from the perspective of
ontology engineering. For example, instead of using the regular expressions in concepts as
in ALCQIb+

reg , a special set of defined role namesrR could be used, and assertions of the
form ρR ⊑ rR added to the KB. Provided that the defined rolesrR are not used as atomic
roles in complex role expressions, reasoning could be done with the techniques described
here. The resulting logic would be a very simple and natural extension ofSRIQ and would
avoid the effort of recognizing whether a given role hierarchy is regular and of transforming
it into a set of finite automata or regular expressions. Note that the language of the regular
expressions supported in (such a variation of)ALCQIb+

reg could also be extended to be ex-
ponentially more succinct (e.g. by allowing squaring of expressions), resulting in a logic that
may be comparable toSRIQ in terms of succinctness.

In order forALCQIb+
reg to become a suitable alternative toSRIQ in practice, the main

challenge that remains ahead is to explore alternatives forpracticable algorithms for this kind
of logics, and to implement them in actual reasoners. Unfortunately, DLs that support transi-
tive closure, or more generally, regular expressions over roles in the style of PDL, have largely



been displaced by the better known alternative of role hierarchies on which implemented rea-
soners have focused. While it is often claimed that the development systems that support such
logics is problematic, to our knowledge there have been no major attempts to do it. Regular
expressions are nevertheless worth exploring, as they are well understood and widely used in
computer science, and are likely to be useful for ontology engineering.

Another natural alternative is to extendSRIQ with more constructors fromALCQIb+
reg .

In particular, one can considerSRIQb, the extension ofSRIQ with safe Boolean role
expressions; similar extensions of closely related DLs like SHIQ andSROIQ were al-
ready considered in [13]. It is easy to verify that anySRIQb KB can be transformed into
an ALCQIb+

reg one with the reduction above, and the results given forSRIQ extend to
SRIQb as well. Our results also show thatSRIQ andSRIQb can be easily extended with
a universalrole (which is already supported inSROIQ) as long as it is considered to be
non-simple. Note that relaxing this restriction and allowing the universal role in the Boolean
role expressions ofSRIQb makes reasoning NEXPTIME hard, see [12].

Finally, we point out that with the techniques given here, the query answering problem
for SRIQ can be reduced toALCQIb+

reg , showing that answeringtwo-way positive regular
path queriesas defined in [4] overSRIQ andSRIQb knowledge bases is decidable.
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