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Abstract. A novel Information Extraction system able to generate com-
plex instances from free texts available on the Web is presented in this
paper. The approach is based on non monotonical processing over ontolo-
gies, and makes use of entity recognizers and disambiguators in order to
adequately extract and combine instances and relations between them.
Experiments conducted over the archaeological research domain provide
satisfactory results and suggest that the tool is suitable for its application
on Semantic Web resources.

1 Introduction

The Semantic Web is a form of web conceived for allowing human users and
software tools to process and share the same sources of information. It builds on
a set of standards which ensure syntactic consistency and semantic value. Large
communities are participating in its development, producing as a result huge
domain ontologies with very rich lexicons. Consequently, the problem of identi-
fying possible instances of these ontologies, usually called semantic annotation,
ontology population or instance extraction, has become crucial.

The formalization of a framework for the consistent generation of complex
instances for the Semantic Web is the main contribution of this paper. A complex
instance is an ontological instance involving several levels of aggregation between
the entities mentioned in the document. Complex instances can also consist
of summaries of sets of instances (i.e. generalized instances) and can include
negative properties in their definition. To the best of our knowledge, no published
work deals with this kind of instances, although many methods are available for
extracting plain facts from text chunks.

Our system is able to collect complex instances and their relationships across
the whole document, using the structure of the document and the relations
between concepts expressed through the ontology. A non monotonic processing
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through an initial set of instances allows one to update the initial knowledge
base according to the semantic descriptions of the ontology. Contradictory or
inconsistent data can be instead removed from the knowledge base.

Section 2 of this paper reviews the current approaches for automatic ontol-
ogy population. Section 3 provides a global description of our approach, which
is formalized in Sections 4 and 5. Section 6 describes the practical process of
instance extraction, which experimental results are presented in Section 7.

2 Related research

Semantic annotation methods can be classified into two fundamental types [1,
2]: based on patterns and based on machine learning. Pattern-based methods
can be further divided into two subgroups: those in which extraction rules arise
from an initial set of tagged entities [3–5], and those in which extraction rules
are manually defined [6, 7]. On the other hand, probabilistic machine learning
methods rely on statistical models to predict the location of entities in texts [9–
12], while inductive machine learning methods deduce entity recognition rules
from the syntactical analysis of texts [13–17].

Most annotation methods require a complete syntactic analysis, and in some
cases a semantic analysis too, including co-reference and anaphora resolutions.
Current syntactic parsers are error prone and their performance is often not
satisfactory even for medium-size document collections. These methods are thus
generally not suitable for the large scale analysis required by the Semantic Web
(with the exception of probabilistic methods, which avoid syntactic analysis).
Methods based on manual definition of rules require moreover a constant updat-
ing and a customized adjustment to each scenario.

The use of training corpora, such as in machine learning methods, is another
source of complexity. In fact, corpora creation is a very resource consuming task,
and learned models depend heavily on corpora, which are usually restricted to a
few application domains. External linguistic tools and repositories (which con-
sist of databases of named entities, dictionaries, thesauri and general purpose
searchers like Google) are a good alternative. Regarding the nature of the infor-
mation to extract, only a few methods [18, 10, 5] deal with aggregated instances
and relations between entities, and the discovered associations only involve one
relation, i.e., the extracted instances only have one aggregation level. The method
proposed in this paper is designed to improve information extraction especially
for what concerns the efficient identification of complex instances, as explained
in the following section.

3 A new approach to multi-level semantic annotation of

ontological instances

A schema of the approach we propose for Semantic Web population is shown in
Figure 1. The information stored in natural language has to be extracted follow-
ing strategies similar to those employed in information extraction systems. As



a first step, a (web) document is parsed by a wrapper in order to determine its
syntactical structure (chapters, sections, paragraphs, etc.). At this stage, each
text segment is associated to a scope definition, that indicates which other seg-
ments can be related to it according to the hierarchical document structure. The
focus of this paper is on the following step, the instance extractor web service.
The extractor makes use of OWL ontologies, which define concepts and relations
between them. We assume the existence of lexicons, which can be expressed in
OWL language, and describe lexical rules to identify concepts and relations in
the ontologies. Considering such lexicons, a parsed document can be processed
to extract the ontology entities mentioned in the document, by using similarity
functions between text fragments and lexical descriptions.

Extracted entities are used to define an initial instance set. Then, by apply-
ing several inference rules (which take into account the knowledge contained in
the ontology) and the segment scope definitions, new relations can be added to
connect instances in the initial set, and instances representing a unique object
are properly joined. This process is performed non monotonically, as new in-
stances are formed but others are deleted from the knowledge base in case of
contradiction. As a result, the system generates a set of complex instances that
semantically describe the whole content of the document, according to the given
domain ontology. This approach has the advantage of being independent from
the ontology representation formalism (e.g. frames versus Description Logic).

Fig. 1. Proposal for ontology population

A formal definition of our proposal for the process of instance extraction is
provided in the next sections. In Section 4, the basic definitions concerning on-
tologies, lexicon, instances and operations over relations defined on ontologies are
given. Operations for joining and aggregating instances and the transformations
these operations imply over all the knowledge base are described in Section 5.



4 Formal conceptualization

Description Logic is considered as the logical framework that better adapts to the
requirements of the Semantic Web, and OWL has been defined as the language
for implementing ontologies. Different reasoners, which read the specifications
in OWL format and infer the complete meaning of concepts, have been imple-
mented. Any kind of reasoner (weak or strong, according to the set of tested
semantic restrictions) allows the recovering of two kinds of relation between
concepts: hierarchical and aggregational ones . This is the minimum useful infor-
mation needed for an information extraction process. Here, we assume the avail-
ability of a reasoner to extract this essential information. An extended Tableau
algorithm for extract such information for ontologies in SHOIQ(D) languages is
described in [2].

The basic definitions required by our framework for operating over instances
are introduced next. An ontology (Definition 4) is defined by: a) the semantic
specification of a set of concepts and their relations, the abstract ontology (Def-
inition 1); and b) the description of the valid data for each concept, the lexicon
(Definition 3). These definitions are adapted from the work of Maedche [19].

Operations of specialization and abstraction over a relation of an ontology
(Definition 2) allow to move through the relation hierarchy, recognizing the most
specific relation associated to a given concept and the initial relation itself. In
this way, relations R|c associated to a concept c can be derived. An instance
(Definition 5) is defined by the set of relations and data associated to it.

Definition 1. (Abstract ontology). An abstract ontology is a structure O=
(C,≤C , R, σ, card,≤R, IR) consisting of:

– two disjoint sets C and R whose elements are called concepts and relations,
respectively,

– a partial order ≤C on C, called concept hierarchy or taxonomy,

– a function σ : R→ C × 2C , called signature,

– a cardinality function, card : R → N0 × N , that represents the minimum
and maximum cardinality of each relation, where N0 and N are the sets of
natural numbers including or not zero, respectively,

– a partial order ≤R on R, called relation hierarchy, where r ≤R r′ implies
that

∏

1(σ(r)) ≤C

∏

1(σ(r′)), for r, r′ ∈ R,

The function dom : R→ C with dom(r) =
∏

1(σ(r)) gives the domain of r,
the function range : R→ 2C with range(r) =

∏

2(σ(r)) gives its range. We
call the set of datatypes TC = {c/c ∈ C,∀c′, c′ ≤C c,¬∃r ∈ R, dom(r) = c′},
TC ⊆ C.

As an example, the central fragment of the archaeology ontology which will
be used in the rest of the paper to explain concepts and experimental tests is
represented in Figure 2.
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Fig. 2. Fragment of the application ontology. Arrows denote concept relationships,
thick arrows denote is-a relationships (≤C), whereas dotted arrows denote the ≤R

taxonomy. Shadow ovals are the entry concepts of the different parts of the ontology.

Definition 2. (Specialization of a relation) We define the specialization of a
relation r with respect to a concept c′, c′ ≤C dom(r), denoted with e |c′ (r), the
relation:

e |c′ (r) = r′|r′ ≤R r, c′ ≤C dom(r′) ≤C dom(r),¬∃!r′′, r′′ <R r′ ≤R r,
c′ ≤C dom(r′′) ≤C dom(r′) ≤C dom(r)

The specialization of a relation r with respect to a concept c′, called r′, is
the unique and most specific relation for which the domain of r is an abstract
concept of the domain of r′, and the latter is an abstract concept of c′. Thanks
to the reflexivity in partial orders, r′ is relation r itself if no other more specific
relations of r satisfy the conditions.

For example, given the ontology of Figure 2, the following is a specialization
of a relation:

e |Bone Bed (Working Area.id) = Bone Bed.BB id
In this way, we can define the set of relations associated to a class c as the set:

∪c≤Cc′{e |c (r)|dom(r) = c′}, which is called relation set of c and it is denoted as
R|c . For example, R|Bone Bed = {Bone Bed.BB id,Working Area.partOf}.

The abstraction of a relation r, a |c′ (r), can be defined in a similar way:
a |Level (Bone Bed.BB id) = Working Area.id.

It is easy to prove that r ∈ R|c, r
′ ∈ R|c′ ⇒ (r′ = e|c′(r)⇔ r = a|c(r

′)).

In order to bridge an abstract ontology with its related lexical terms, we
introduce the concept of lexicon.

Definition 3. (Lexicon). A lexicon for an abstract ontology O is the structure
L= (SC , SR, RefC , RefR, Insts) consisting of:



– two sets SC and SR whose elements are called signs (lexical entities with
specific semantics) for concepts and relations, respectively,

– two relations RefC ⊆ SC × C, RefR ⊆ SR × R called lexical reference
assignment for concepts and relations, respectively,

– a set of instances, Insts : Literal→ C×2Literal×R×SR∪Literal, where Literal
denotes the set of possible strings that can be used to nominate instances
(see Definition 5).

Besides, based on RefC and RefR, we define:
RefC(s) = {c ∈ C|(s, c) ∈ RefC},

Ref−1
C (c) = {s ∈ Sc|(s, c) ∈ RefC},

RefR(s) and Ref−1
R (r) are analogously defined and,

AllRef−1
C = ∪c′≤CcRef−1

C (c′) and AllRef−1
R = ∪r′≤RrRef−1

R (r′)

In most cases, SC and SR are intentionally defined (i.e. through logical
clauses); for example, “BoneBed1′′ ∈ Ref−1

C (BB id), “South of Texas′′ ∈
Ref−1

C (Location) and “situated′′ ∈ Ref−1
R (Arch Site.located).

Definition 4. (Ontology) A (concrete) ontology is a pair (O,L) where O is an
abstract ontology and L a lexicon for O.

From now on, all definitions refer to the concept of concrete ontology. Besides,
we will assume the existence of the function NewLit that returns a new literal,
not used on Insts, that can be used to nominate a new instance.

Definition 5. (Instance) We define an instance named o of class c ∈ C − TC
or simply instance, the set I|co = {(o, r, o′)|r ∈ R|c}. Function Inst(o) = (c, I|co)
defines the relation between the name of an instance and its most specific con-
cept and description. We call dc(o) the direct class associated to o: dc(o) =
∏

1(Inst(o)) = c. If I|co = ∅, then o is an empty3 instance of class c.

Using the previous example, the following sets are examples of instances:
I|Arch site

o1
= {(o1, Arch site.name, “Bonfire Shelter′′),

(o1, Arch site.located, “South of Texas′′)}

I|Bone Bed
o2

= {(o2, Bone Bed.BB id, “Bone Bed 1′′),
(o2, Working Area.partOf, o1)}

I|Stratigraphy
o3

= {(o3, Stratigraphy.partOf, o2),
(o3, Stratigraphy.found, o4), (o3, Stratigraphy.found, o5)}

I|Bone
o4

= ∅ I|Clovis
o5

= {(o5, Artifact.belongsTo, o6)} I|paleolithic
o6

= ∅

Notice that o4 and o6 are empty instances.

3An empty instance is an anonymous instance of which nothing is known.



5 Instance Operations

In knowledge modeling, operations between concepts (or classes) like union, in-
tersection, difference, complement, etc. are formally defined. However, this is not
the case for the same set of operations between instances. In the Logic paradigm
the description of all axioms associated with an instance is enough to represent it
semantically, and a reasoning process has to be performed in order to retrieve a
complete and compact description of an instance. In the Object-Oriented (OO)
paradigm, the independence of instances based on their identifiers (name, phys-
ical direction, etc.) is assumed. Regarding the Logic paradigm, the proposed
instance operations allow to maintain in the knowledge base a complete and com-
pact description of all instances, avoiding repetitive simple reasoning for those
cases in which the ontology can capture the structure of all possible instances
(for example in most Description Logics Languages). For what concerns the OO
paradigm, the proposal gives a formal definition for instance transformation.

In this section we introduce a set of definitions for transforming ontological
instances of a concrete ontology through specialization, abstraction or combina-
tion operations, since they are the relevant ones for the present paper. These
operations are used after concepts and relations mentioned in texts have been
identified in order to construct complex instances (see Section 6).

Definition 6. (Specialization of an instance) We call specialization of instance
I|co into class c′, c′ ≤C c, denoted with I|c→c′

o→(NewLit=o′), the instance I|c
′

o′ defined
by the set:
{(o′, r′, x′)|(o, r, x) ∈ I|co, e|c′(r) = r′, range(r′) = {c′′}, ∃I|dc(x)→c′′

x→(NewLit=x′) = I|c
′′

x′ } ∪

∪ {(o′, r′, x)|(o, r, x) ∈ I|co, e|c′(r) = r′, ∃c′′ ∈ range(r′), dc(x) ∈ TC, x ∈ SC(c′′)}.

The specialization of an instance is the replacement of each description
(o, r, x) of o with the specialized description (o′, r′, x′), where r′ is the specialized
relation of r respect to c′ and x′ the specialized instance of x according to the
range of r′. Notice that o → (NewLit = o′) renames the instance I|co with the
new literal o′ obtained by using NewLit. Additionally, if I|co is an empty instance,
I|c

′

o′ will be an empty instance too, the specialization process only modifies its
name and the actual concept associated with it.

For example, the specialization of the instance:
I|Working Area

o = {(o, Working Area.id, “Bone Bed 1”),

(o, Working Area.partOf, o1)} to the class Bone Bed is:
I|Bone Bed

Bb 1 = I|Working Area→Bone Bed
o→Bb 1 = {(Bb 1, Bone Bed.BB id, “Bone Bed 1′′),

(Bb 1, Working Area.partOf, o1)}.

Definition 7. (Specialization of an instance without missing information) We
call specialization of instance I|co to class c′ without missing information, c′ ≤C c,
denoted by I|c→̂c′

o→̂(NewLit=o′) the instance:

I|c
′

o′ = I|c→c′

o→(NewLit=o′) ∪ {(o
′, r, x)|(o, r, x) ∈ I|co, e|c′(r) = r′, |range(r′)| > 1}.

This definition includes also those descriptions whose relations can not be
specialized by a unique concept. Definitions concerning abstraction of an instance
with or without missing information can be similarly derived.



Definition 8. (Union of instances) We call union of instances I|co and I|c
′

o′ ,

denoted by I|co∪̂I|c
′

o′ = I|c
′

NewLit=o′′ , the instance I|c
′

o′′ whose description can be
computed by:

I|c→c′

o→o′′ ∪ I|c
′

o′→o′′ − ∪{d|(d, d′)or(d′, d) ∈ cd} ∪ {Un(x1, x2)|((o
′′, r, x1), (o

′′, r, x2)) ∈ cd}
such that ∀((o′′, r, x1), (o

′′, r, x2)) ∈ cd, Un(x1, x2) 6= undef ,

cd = {((o′′, r, x1), (o
′′, r, x2))|(o

′′, r, x1) ∈ I|c→c′

o→o′′ , (o′′, r, x2) ∈ I|c
′

o′→o′′ ,
∏

2(card(r)) = 1}

Un(x1, x2) =







x1 x1, x2 ∈ TC, x1 = x2

undef ∈ TC, x1 6= x2

I|dc(x1)
x1

∪̂I|dc(x2)
x2

otherwise

cd represents the pairs of descriptions that should be unified in one value,
employing the Un operation. In this way, the union of two instances is a new
instance whose description is specialized to the most specific concept (between
the joined instances), and where the pairs of functional relations are joined re-
cursively by using the same union definition.

For example, instances: I|Arch Site
o = {(o,Arch Site.name, “Bonfire Shelter′′)}

and I|Arch Site
o′ = {(o,Arch Site.located, “South of Texas′′)} can be joined in

instance:

I|Arch Site
o′′ = {(o′′, Arch Site.name, “Bonfire Shelter′′)},

(o′′, Arch Site.located, “South of Texas′′)} supposing that
o′′ is the new literal returned by NewLit function.

The last operation to formalize is the aggregation between instances. Its goal
is to connect instances by using a set of relations and concepts semantically
linked. For this reason, the notion of path between concepts is first introduced.

Definition 9. (Path between concepts) The list (r1, c1), ..., (rn, cn) is a path of
an ontology O if:

– ∀ck, k ∈ {1, ..., n}, ck ≤C c∗, c∗ ∈ range(rk)
– ∀ck, k ∈ {1, ..., n− 1}, ck ≤C dom(rk+1)

A path of an ontology is an ordered list of pairs (relation, concept) through
which a concept (cn) can be reached from an other concept (dom(r1)) by using
the definitions of the ontology.

For example, p = (Arch site.has Stratigraphy, Stratigraphy),
(Stratigraphy.found, bottle) is a path between archaeological site and artifacts
concepts, whereas p1 = (Bone Bed.BB id,BB id) is a path between Bone Bed
concept and the label used by archaeologists to indicate the exact place.

Definition 10. (Aggregation of instances) We call aggregation of instance I|c
′

o′

to instance I|co, through path p = (r1, c1), ..., (rn, cn), c0 = dom(r1) ≤C c, cn ≤C



c′, denoted by I|co
p
← I|c

′

o′ , the instance I|c0

o′′ if its description can be computed
by:



































{(o′′, r′, x) ∈ I|c→c0
o→o′′ |r

′ 6= r}∪

{(o′′, r1, x
′

1)|∃I|
c1

x
′

1

= I|dc(x)
x ∪̂I|c1x1

}
if

∏

2 card(r1) = 1, ∃(o, r, x) ∈ I|co, r1 ≤R r,
∏

2 card(r) = 1, ∃I|dc(x)
x ∪̂I|c1x1

{(o′′, r′, x) ∈ I|c→c0
o→o′′} ∪ {(o

′′, r1, x1)}
if

∏

2 card(r1) > 1, ∀r, r1 ≤R r where
∃(o′′, r′, x) ∈ I|c→c0

o→o′′ ,

|{(o′′, r∗, v)|r∗ ≤R r}| <
∏

2 card(r)

and where x1, x2, ..., xn are new instances described by:

Inst(xi) = (ci, {(xi, ri, xi+1)}), i ∈ 1, ..., n− 1,

Inst(xn) = (cn, {(xn, rn, o∗)}) and I|cn

o∗ = I|c
′→cn

o′→o∗ .

For example, instance I|bottle
o′ = ∅ can be aggregated to I|Arch Site

o = ∅ by
using path p of the previous example. I|Acrh Site

o′′ = {(o′′, has Stratigraphy, os)},
I|Stratigraphy

os = {(os, Stratigraphy.found, o∗)} and I|bottle
o∗ = I|bottle

o′→o∗ are new
instances generated by the aggregation process.

Finally, the following two definitions establish the conditions to guarantee
the consistence of the union and aggregation processes in a concrete ontology.

Definition 11. (Complementary instances) Two instances I|co and I|c
′

o′ of classes

c and c′ respectively, c′ ≤C c, are complementary, denoted with I|co ◦ I|
c′

o′ , if they
satisfy at least one of the following conditions:

– at least one of instances I|co or I|c
′

o′ is empty,

– for all relations in I|c→̂c′

o→̂o′ ∪̂I|c
′

o′ , i.e. the instance union of instances I|co and

I|c
′

o′ specialized into c′ without missing information, cardinality restrictions
imposed by the ontology (through card function) are satisfied.

Two non-empty instances are complementary if their union, considering their
non missing information specialization, maintains the cardinality property for all
its relations. Notice that their union only contains the relations in R|c′ .

For example, I|Arch Site
o = {(o,Arch Site.name, “Bonfire Shelter′′)} and

I|Arch Site
o′ = {(o,Arch Site.located, “South of Texas′′)} are complementary,

and can be joined as in the previous example. However, I|Arch Site
o is not com-

plementary to I|Arch Site
o′′ = {(o′′, Arch Site.name, “Bolomor Cove′′)}. In this

case relation Arch Site.name is biyective (so, its maximal cardinality is one).
Instances I|Bone

o4
and I|Colvis

o5
are also not complementary because their concepts

can not be ordered through the ≤C relationship.

Definition 12. (Aggregable instances) We say that instance I|c
′

o′ is aggregable

to I|co if one and only one path, p, exists between concepts c∗ and c
′∗

, c∗ ≤C c

and c
′∗

≤C c′ and I|co
p
← I|c

′

o′ can be computed.



For example, instance I|Arch Site
o1

can be aggregated to instance I|Stratigraphy
o =

{(o, Stratigraphy.found, o4), (o, Stratigraphy.found, o5)}, producing:
I|Stratigraphy

o = I|Stratigraphy
o ∪{(o, Stratigraphy.PartOf, o7)} where

I|Working Area
o7

= {(o7,Working Area.PartOf, o1)}

Definitions 11 and 12 allow us to introduce the following transformation

rules of a concrete ontology , which define the transformations on the set of
Insts functions during the union and aggregation operations. Given a concrete
ontology, (O,L), it can be transformed to (O,L′) by the following:

TR-Union to join two instances o, o′ ∈ Insts
if I|co ◦ I|c

′

o′ then L′ = (SC , SR, RefC , RefR, Insts′), where

Insts′ = Insts− {(o, dc(o), I|dc(o)
o ), (o′, dc(o′), I|dc(o′)

o′ )} ∪ {(o′′, c′, I|co∪̂I|c
′

o′)}

and o′′ is the new literal generated during the union process.

else prevent Contradiction.

TR-Aggreg to aggregate o′ to o, o, o′ ∈ Insts
if o′ is aggregable to o then L′= (SC , SR, RefC , RefR, Insts′), where

Insts′ = Insts− {(o, dc(o), I|dc(o)
o ), (o′, dc(o′), I|dc(o′)

o′ )} ∪ {(o′′, c′, I|co
p
← I|c

′

o′),

(o∗, dc(o∗), I|
c′→dc(o∗)

o′→o∗ ), (xi, dc(xi), I|
dc(xi)
xi

)|i ∈ {1, ..., n}}, p is the unique

aggregation path from concept c to c′ ; o′′, x1, ..., xn are the new literals generated

during the aggregation process as defined in Definition 10.

else prevent Contradiction.

The TR-Union and TR-Aggreg transformation rules allow to perform a non
monotonic processing on the knowledge base. With prevent Contradiction the
caller process verifies if the transformation results are as expected. Given a pair
of instances of the Insts set (the knowledge base) which have to be joined or
aggregated, the caller process could delete both of them in case of contradiction,
and/or adequately update the knowledge base. Therefore, incremental grow of
the database is not guaranteed, but rather depends on the restrictions defined
by the ontology used during the processes of union and aggregation. The whole
instance extraction process, which uses the above rules to generate the set of
complex instances described in a text, is explained next.

6 Extracting instances from texts

An initial instance set has to be obtained from a text before the transformation
rules can be applied. Therefore, the text has to be analyzed and the fragment
texts related to ontological entities have to be extracted. The solution we propose
in [2] for executing this step considers entity name recognition, negation scope
computing, generalized instance description identification, and a disambiguation
step to recognize entities (fragments of the text) semantically associated to an
ontology (called ontological entities), based on a morphological analysis of the
text.

We consider texts with a syntactical division in chapters, sections, subsec-
tions, etc., and such division defines the scope (initial and final paragraphs)
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Section 1
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Fig. 3. Partitioning a structured document. T=Section title; P=paragraph.

of the subject of each particular part (as represented in Figure 3). Hence, the
descriptive fragment texts (i.e. those fragments that describe ontology entities)
are used to form the initial set of instances and each of these instances is also
associated to the semantic scope of the text partition where the entity has been
found. The scope of an instance delimits the instances that can be joined or
aggregated with it: those whose scope overlap with it. Then, instances in the ini-
tial set are combined following the concepts for joining and aggregating instances
introduced in Sections 4 and 5.

Algorithm 1 formally describes the process of complex instance extraction.
The first step, the construction of the initial set of instances, considers all rec-
ognized entities and define a new instance for each of them: if the recognized
entity is a concept or a relation and it is possible to infer an unique class having
this relation, a new instance of the (inferred) concept is created and a scope
is properly associated to it. During the second step, instances whose scope are
overlapped are combined in the order in which these instances appears, while
no contradictions are obtained with the application of the TR-Union and TR-
Aggreg rules. The final result of all this process is a set of complex instances
representing the information related to the ontology which is contained in the
text.

7 Experimental results

In spite of the importance and the number of different approaches dedicated
to information extraction, no universally recognized test datasets are available
for comparing the results of different systems. Available test data are reduced
to entities, or to very simple concepts with few levels of aggregability. These
datasets are of very little use in this case, as our work is especially focused on
the capability of using relevant entities to create complex instances, selecting in
each case appropriate pair of instances to be joined or aggregated. Hence, until
datasets suitable for comparison become available, we have to test our approach
on custom test data. We present here the experimental results obtained applying
our approach to a set of paragraphs extracted randomly from nine archaeological
memories written in Spanish.

Figure 4 shows a screenshot of our information extractor system. A paragraph
on an archaeological site memory has been selected, and the complex instances



Algorithm 1 Complex instance extraction

Require: (O,L), T

{(O,L), ontology}
{T , text of the ontology domain.}

Ensure: Insts′

{Insts′, a set of new instances extracted from T .}

Let EO be the ontological entities recognized in the text.
Construction of initial set of instances.

cmbInsts = ∅; Insts′ = ∅
for all e ∈ EO do

o← NULL

if e ∈ C (if e is a concept) then

o← NewLit; Insts′ ← Inst′ ∪ {(o, e, ∅)}
else

if ∃!p, path(c, c′) that contains the relation e (if e is a relation and exists a
unique path that contain it) then

o←NewLit; Inst′←Inst′∪{(o, c, ∅)}; o′←NewLit; Inst′←Inst′∪{(o′, c′, ∅)}
Apply TR-Aggreg to aggregate o′ to o

if o 6= NULL then

cmbInsts = cmbInsts ∪ {o}
Associate to o the scope of e (as explained in the Section 6, the scope is defined
considering the syntactical division of the text and the position where e has
been found.)

Combining entities.

for all {o} ∈ cmbInsts do

if o has not been joined neither aggregated to other instance then

for all {o′} ∈ cmbInsts after e, where o and o′ scopes are overlapped do

if dc(o) ≤C dc(o′) ∨ dc(o′) ≤C dc(o) then

Apply TR-Union to unify o and o′

else

Apply TR-Aggreg to aggregate o to o′ or o′ to o

Interchange o and o′ if o′ has been aggregated to o.
if Contradiction has been produced in this iteration then

break (o can not be extended any more)

extracted from it are shown and highlighted on the text, and transcribed in the
main window. In this example, the complexity of the process and the capacity
of the system to infer instances with a high aggregations depth (in this example,
five levels of aggregation have been inferred) can be appreciated.

The ontology is composed by 194 classes and 131 relations. It is not very large,
but complex enough in order to obtain non-trivial specialization and aggregation
depths (nine and five levels respectively). Current semantic annotation tools
usually deal with much simpler ontologies. The lexicon is composed of synonyms
and contexts for the concepts and relations of the ontology. Besides, a set of
28 named entities (e.g. archaeological sites and stratigraphic unit names, weight



Fig. 4. Screenshot of the instance extractor system.

and dimensions of materials, percentages, etc.) were defined and the EEON
(acronym of named entities extractor, in Spanish) module [2] allows their correct
extraction, with over 90% of precision and recall4 for all entities.

A characterization of the sample texts, according to the number of para-
graphs, instances and relations in them, as well as the number of correct and
incorrect extractions obtained by the system, the precision and recall for each
sample text and for the overall dataset are shown in Table 1. The results allow
to compare the correctness of: 1) the class associated to each part, 2) the re-
lations associated to each identified instance, and 3) both elements in complex
instances.A retrieved complex instance is correct if it belongs to the same class
and describes an overlapped segment text of a target complex instance. A re-
trieved relation is correct if it belongs to a correct instance and the same relation
(name and associated value) appears in the corresponding target instance.

The text samples contain 96% of the ontology entities, and a precision of
around 99% was achieved in the extraction of these entities. This good result
constitutes the ideal starting point for the manipulation and combination of
initial instances into more complex ones.

All precision measures obtained for complex instances are over 90%, suggest-
ing that the great majority of extracted instances are correct. It is important to

4Precision and recall are classical measures of Information Retrieval Systems. Pre-
cision is associated with the capacity of extracting entities correctly, while the recall is
associated with the capacity of extracting entities as much as posible.
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1 15 26 222 25 2 199 6 0,93 0,96 0,97 0,90 0,97 0,90
2 5 8 56 6 0 19 0 1 0,75 1 0,34 1 0,39
3 6 9 26 8 0 25 0 1 0,89 1 0,96 1 0,94
4 1 1 2 1 0 2 0 1 1 1 1 1 1
5 55 68 85 54 6 75 19 0,9 0,79 0,79 0,88 0,84 0,84
6 13 28 105 22 0 82 4 1 0,78 0,95 0,78 0,96 0,78
7 5 5 3 5 0 2 1 1 1 0,67 0,67 0,875 0,875
8 2 4 21 3 0 20 3 1 0,75 0,87 0,95 0,88 0,92
9 2 4 18 3 0 18 1 1 0,75 0,95 1 0,95 0,95

Total 104 153 538 127 8 442 34 0,94 0,83 0,93 0,82 0,93 0,82

Table 1. Results for sample texts. IP = CI/(CI+II); IR = CI/I; RP = CR/(CR+IR);
RR = CR/R; CIP = (CI+CR)/(CI+II+CR+IR); CIR = (CI+CR)/(I+R).

highligth that they are complex instances: this implies that not only the lexical
definitions and the disambiguation process allow to retrieve the correct entities,
but also that aggregation operations are correctly performed on the right in-
stances. On the other hand, at least 75% of all complex instances in a sample
text were correctly extracted. This relatively low value of recall is due to the use
of lists and/or very complex explanations to describe instance sets. This kind
of expressions lead the system to wrong decisions, creating a single complex in-
stance instead of several ones. This error decreases the recall values for both
instances and relations (see results for texts 2 and 6), and the same problem
affects relation extraction precision, as can be observed for texts 5 and 7.

The overall precision of the system is around 93%, with a recall of 82%. These
results are very satisfactory and promising in comparison with other systems
available in the literature [18, 10, 5]. For a brief comparison with others methods,
a few conclusions can be drawn:

1. The systems explained in [10], [9], [11] and [12] do not perform any syntactic
analysis. In the first case, the precision is similar to ours, but in the second
one, the precision and the recall are lower. The system in [12] obtains the
best results, but the type of instances to be extracted are less complex.

2. The works in [15], [20], [7], [13] and [17] have better results than ours, but
requires a complete syntactic analysis and a learning process. Besides, except
in [13], in which instance of one level are generated, the other methods do
not consider the problem of constructing complex instances.



3. Systems like [8], [13], [5] and [18], which can extract complex instances (the
three first systems consider only one level of aggregation), require a complete
syntactic analysis. In some cases, a semantic and/or learning processing is
also needed. The third of these systems obtains precision and recall com-
parable to ours, the first has a precision nearly to ours but the recall is a
40% lower to the obtained by our system. In the case of [13] the results
are visibly higher, but they use a complete syntactic and semantic analysis,
even for reconstructing instances with a few aggregation levels. Finally, [18]
does consider a very complex domain. They use a complete syntactic and
semantic analysis, but results both in precision and recall are lower.

4. The analyzed methods do not consider OWL ontology formalism, and thus
cannot infer aggregation paths that are no explicitly described.

Summarizing, our proposal provides good results in complex situations, but
it is highly dependent on the quality of the entity recognition process, that is,
the quality of the lexicon, and how well the text fragments can be associated
to the correct ontological entities. In restricted knowledge domains (like arche-
ology, bioinformatics, etc.) the use of the appropriate entity recognizers and a
good, controlled vocabulary allow to discover complex instances with high val-
ues of precision and recall. On the other hand, in open domains a syntactic and
semantic analysis of the texts might be required.

8 Conclusions

Information extraction systems are more and more essential for maintaining,
using and interchanging information, especially in huge, unstructured and ever-
growing environments such as the web. We presented here a novel system to
extract complex ontological instances and relations. Experimental results, al-
though not exhaustive yet, are very promising, and the system design considers
some critical issues such as OWL-awareness and scalability, that make it a useful
tool for populating and updating data in the Semantic Web. The approach is
based on non monotonical processing, and makes use of an ontology and entity
recognizers and disambiguators in order to combine adequately an initial set
of instances. Exhaustive analysis and experimentation of the proposal is being
performed in a variety of application scenarios.
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