
P-stable models of Strong kernel programs

Jose Luis Carballido1 and Claudia Zepeda2

1 Universidad Politécnica de Puebla
Tercer Carril del Ejido“Serrano”,

San Mateo Cuanalá s/n.,
Juan C. Bonilla, Puebla, México

jlcarballido7@gmail.com,
2 Benemérita Universidad Atónoma de Puebla

Facultad de Ciencias de la Computación,
Puebla, Puebla, México
czepedac@gmail.com

Abstract Currently non-monotonic reasoning (NMR) is a promising
approach to model features of common sense reasoning. In order to for-
malize NMR the research community has applied monotonic logics. The
present paper furthers the study of one of the semantics useful in this
formalization called p-stable. We introduce three different formats for
normal programs: Negative normal programs, Restricted negative normal
programs and Strong kernel programs. This forms helps to simplify the
search of p-stable models of the original program. One of the main re-
sults of this paper indicates that the p-stable semantics for strong-kernel
programs agrees with the stable semantics for kernel programs as defined
in [2]. In this way all the applications based on stable semantics of ker-
nel programs can also be based on p-stable semantics of strong kernel
programs.
Keywords: Logic programming, p-stable semantics, stable semantics,
kernel programs.

1 Introduction

Currently non-monotonic reasoning (NMR) is a promising approach to model
features of common sense reasoning. In order to formalize NMR the research
community has applied monotonic logics. The present paper furthers the study
of one of the semantics useful in this formalization called p-stable.

In [7] was suggested the use of Autoepistemic Logic (AL) as an alternative
formalization of NMR to avoid the problems encountered with standard modal
logics. Later Gelfond and Lifschitz defined the stable model semantics [4] based
on an interpretation of ¬a. This interpretation characterizes perfect models of
stratified logic programs in terms of the extensions of the corresponding au-
toepistemic theory. More recently, in [1] is described how the stable semantics of
disjunctive programs can be characterized in terms of AL via Gelfond’s transla-
tion.

Additionally Pearce in [12] presented a characterization of the stable model
semantics in terms of a collection of logics. He proved that a formula is “entailed
by a disjunctive program in the stable model semantics if and only if it belongs to
every intuitionistically complete and consistent extension of the program formed
by adding only negated atoms”. He also showed that in place of intuitionistic
logic, any proper intermediate logic can be used. The strongest intermediate
logic is Goedel’s 3-valued logic G3. The construction used by Pearce is called a
weak completion. Based on the work of Pearce in [12], the authors of [9] express
the logic G3 in terms of Lukaciewicz L3-logic and gave a new characterization
of stable models based on Lukaciewicz L3-logic. In [9] is also introduced a very
similar 3-valued logic based in the Lukaciewicz L3-logic: the G′3 logic. Later, in
[10] a new semantics, based on weak completions, is defined with the G′3 logic.

In [8] the authors generalize to disjunctive programs what was done in [10].
They introduce the p-stable semantics for normal programs by using a transfor-
mation similar to the one used by Gelfond and Lifschits [4]. This new semantics
for disjunctive programs agrees with semantics defined in terms of weak com-
pletions for the paraconsistent logics studied in [10]. The authors also present
some results that give conditions under which the concepts of stable and p-stable
models agree. They show that the p-stable model semantics for normal programs
is powerful enough to express any problem that can be expressed with the stable
model semantics for disjunctive programs. It is important to mention that p-
stable semantics, which can be defined in terms of paraconsistent logics, shares
several properties with the stable semantics, but is closer to classical logic. For
example, the following program P does not have stable models.

a ← ¬b.
a ← b.
b ← a.

However the set {a, b} could be considered the intended model for P in
classical logic. Moreover, it is the p-stable model of P .

In [11] is described a schema for the implementation of p-stable semantic
using two well known open source tools: Lparse and Minisat. In [11] is also
presented a prototype written in Java of a tool based on that schema.

The present paper furthers the study of p-stable semantics. We introduce
three different formats for normal programs: Negative normal programs, Re-
stricted negative normal programs and Strong kernel programs. This forms helps
to simplify the search of p-stable models of the original program. Besides we
show that the p-stable semantics for strong kernel programs agrees with the
stable semantics for kernel programs as defined in [2]. In this way all the ap-
plications based on stable semantics of kernel programs can also be based on
p-stable semantics of strong kernel programs.

In [2] is introduced the definition of kernel programs and it is shown that any
propositional logic program P admits an equivalent—w.r.t. stable semantics—
program in a format called kernel. Currently there are applications based on this

2

kind of programs (see [2,5,3]). Moreover, kernel programs are useful since they
allow us to express well known problems as the 3-coloring problem (see [5]).

This paper is structured as follows. In section 2 we introduce the general
syntax of the logic programs used in this paper. We also provide the definition
of stable semantics, p-stable semantics, and kernel programs. In section 3 we give
the definition of the three different formats for normal programs: negative normal
programs, restricted negative normal programs, and strong kernel programs.
We also show the different results about the stable semantics and the p-stable
semantics of programs in these formats. Finally in section 4 we present some
conclusions.

2 Background

In this section we summarize some basic concepts and definitions used to under-
stand this paper.

2.1 Logic programs

A signature L is a finite set of elements that we call atoms, or propositional
symbols. The language of a propositional logic has an alphabet consisting of
proposition symbols: p0, p1, . . . ; connectives: ∧, ∨,←, ¬; and auxiliary symbols: (,
). Where ∧, ∨,← are 2-place connectives and ¬ is a 1-place connective. Formulas
are built up as usual in logic. A literal is either an atom a, or the negation of
an atom ¬a. The formula F ≡ G is an abbreviation for (F ← G) ∧ (G ← F). A
clause is a formula of the form H ← B (also written as B → H), where H and
B, arbitrary formulas in principle, are known as the head and body of the clause
respectively. The body of a clause could be empty, in which case the clause is
known as a fact and can be denoted just by: H ←. In the case when the head
of a clause is empty, the clause is called a constraint and is denoted by: ← B.

A disjunctive clause is a clause of the form H ← B+ ∪ ¬B− where H is a
disjunction of atoms h1∨h2∨. . .∨hs, B+ is a conjunction of atoms b1∧b2∧. . .∧bn,
and ¬B− is a conjunction of negated atoms ¬bn+1 ∧ ¬bn+2 ∧ . . . ∧ ¬bm. H, B+,
and B− could be empty sets of atoms. When the set H contains exactly one
element the clause is called normal. A definite program is a normal program
whose rules do not have negations in their bodies.

Finally, a program is a finite set of clauses. If all the clauses in a program are
of a certain type, we say the program is also of that type. For instance a set of
disjunctive clauses is an disjunctive program, a set of normal clauses is a normal
program and so on.

Finally we give two definitions useful to understand the definitions of stable
and p-stable semantics for normal programs.

Let P be a normal program and M be a set of atoms. We define: RED(P, M) =
{H ← B+,¬(B− ∩M) | H ← B+,¬B− ∈ P}.

For any program P , the positive part of P , denoted by POS(P) is the pro-
gram consisting exclusively of those rules in P that do not have negated literals.

3

2.2 Stable and P-stable semantics

From now on we assume that the reader is familiar with the notion of classical
minimal model [6].

Now we give the definition of stable semantics for normal programs.

Definition 1. [8] Let P be a normal program and let M ⊆ LP . Let us put
PM = POS(RED(P,M)) then we say that M is a stable model of P if M is a
minimal classical model) of PM .

Here we define the p-stable semantics for normal programs.

Definition 2. [8] Let P be a normal program and M be a set of atoms. We say
that M is a p-stable model of P if

1. M is a classical model of P (i.e. a model in classical logic), and
2. the conjunction of the atoms in M is a logical consequence in classical logic

of RED(P, M) (denoted as RED(P, M) |= M).

Example 1. Let P be the normal program:

b ← ¬a.
a ← ¬b.
p ← ¬a.
p ← ¬p.

We can verify that M1 = {a, p} and M2 = {b, p} model the rules of P . From
the definition of the RED transformation we find

RED(P, M1) = {b ← ¬a, a ←, p ← ¬a, p ← ¬p}

RED(P, M2) = {b ←, a ← ¬b, p ←, p ← ¬p}
And it is clear that RED(P,M1) |= M1 and RED(P,M2) |= M2. Hence M1 and
M2 are p-stable models for P .

2.3 Kernel programs

In [2] the authors show that any propositional logic program P admits an
equivalent—w.r.t. stable semantics—program in a format called kernel. They
indicate that a program in kernel format is useful to studying the existence and
number of stable models. Here we present the definition of kernel programs as
defined in [2]. We also mention some applications of this kind of programs.

A kernel program is composed of the atoms which are undefined in the Well-
founded semantics, which are those that directly affect the existence of answer
sets. The body of rules is composed of negative literals only.

Definition 3. [2] A logic program P is a kernel program if the following con-
ditions hold:

4

1. P is WFS-irreducible, i.e., the well-founded model of P is empty, WFS(P) =
〈∅, ∅〉 (see [13]);

2. every rule has its body composed of negative literals only;
3. every atom in P occurs in the body of some rule.

It is important to note that kernel programs are useful and interesting since
they allow us to express well known problems as the 3-coloring problem. In [5]
you can see an stable encoding of the 3-coloring problem.

In [2] is also showed how to check consistency of kernel programs in terms of
colorings of the Extended Dependency Graph (EDG) program representation.
The EDG program representation has a regular and simple structure. Moreover
this representation gives the first purely-syntactic and complete characterization
of consistent logic programs w.r.t. stable semantics.

The authors of [5] also consider programs in kernel form. In [5] is presented
a distributed version of the adjSolver algorithm for computing stable models of
logic programs in kernel form. The intrinsic parallelism of the branch-and-bound
structure of adjSolver is exploited to control, with a centralized architecture,
the delegation of promising search subspaces to distributed handling agents.
AdjSolver was designed to solve the problem of computing stable models through
the search for admissible 2-colorings of the EDG representing the logic program.
The adjSolver search strategy is different from the semantics-based coloring-
propagation strategy adopted in literature for stable models computation by
graph coloring.

The authors of [3] define various notions of coherence, that establish what
relation there should be between the stable models of the original programs, and
the stable models of the programs resulting from update/modification. They
introduce significant sufficient conditions for coherence on the class of kernel
programs. They also indicate that logic programs in kernel form allow one to
distinguish the elements the program is composed of, namely cycles and han-
dles, and thus to reason more easily about what happens when the program is
modified.

3 Negative normal programs and Restricted negative
normal programs

In this section we give the definition of three different formats for normal pro-
grams: Negative normal programs, Restricted negative normal programs and
Strong kernel programs. One of the main results indicates that the stable se-
mantics and the p-stable semantics of a restricted negative normal program co-
incide. We also show how the p-stable semantics of a negative normal program
or a kernel program (as defined in [2]) P corresponds to the p-stable semantics of
a particular program associated to P . This new program is a restricted negative
normal program and it is the result of applying a transformation to the program
P .

We start by introducing the definitions of negative normal programs and
restricted negative normal programs. This definitions will be useful to define

5

negative normal programs and restricted negative normal programs with con-
straints.

Definition 4. Let P be a normal program. We say that P is a negative normal
(NN) program if it satisfies the first of the two conditions listed below, and we
say that P is a restricted negative normal (RNN) program if it satisfies both
conditions

1. every rule has its body composed of negative literals only;
2. the head of any rule does not appear in the body of the same rule.

Let us observe that a RNN program is a NN program, and that NN, RNN
and kernel programs have the common characteristic of having the body of every
rule composed of negative literals only.

The following lemma will be useful to show that the stable semantics and the
p-stable semantics of a RNN program coincide. Given a RNN program P , this
lemma gives a characterization for a set M ⊆ LP , to be a p-stable model of P .

Let P be a RNN program, for any M ⊆ LP , we define SM = {a | a ←
¬b1,∧ . . . ∧ ¬bm ∈ P, {b1, . . . , bm} ∩M = ∅}.

Lemma 1. Let P be a RNN program. If M is p-stable model of P then M = SM .

Proof. RED(P, M) = {a ← ¬(B− ∩ M) | H ← ¬B− ∈ P}. By part 1) of
the definition of p-stable model (Definition 2), it follows that SM ⊂ M . Let us
assume that M \SM 6= ∅ and take m ∈ M \SM . Let us define an interpretation:
I : LP → {0, 1} such that I(a) = 1 for each a ∈ LP \ {m} and I(m) = 0.

Now, using the fact that the program P has the property that the head of
each rule does not appear in its body, it follows that I is a classical model for
RED(P, M) but it is not a model for M (Since I(m) = 0) this contradicts 2) in
the definition of a p-stable model (Definition 2) and the lemma is proved. ut

The following theorem indicates that the stable semantics and the p-stable
semantics of a RNN program coincide.

Theorem 1. Let P be a RNN program, then the stable semantics of P coincides
with the p-stable semantics of P .

Proof. If M is a p-stable model of P then M = SM according to the lemma 1, and
from the definition of PM (Definition of a stable model), PM = {a ← | a ∈ SM}
then we conclude that M is a minimal model of PM and then a stable model of
P .

Let us now assume that M is a stable model of P . It follows that M is a
minimal model for PM = {a ← | a ∈ SM}. Therefore M = SM . From the fact
that PM ⊂ RED(P, M), it follows that RED(P, M) |= M .

We still need to show that M is a classical model of P . Let us consider a
rule a ← ¬b1 ∧ ¬b2 ∧ . . . ∧ ¬bs ∈ P , such that a 6∈ M . Then there is at least an
i for which bi ∈ M (otherwise a ∈ SM = M), then the rule is modeled by M .
Therefore M models all of the rules in P as we wanted to show. ut

6

Let us observe that, from the definition, in a NN program the head of any
rule could appear in the body of the same rule.

We shall show how the p-stable semantics of a NN program P corresponds to
the p-stable semantics of a particular program associated to P . This new program
is a RNN program and it is the result of applying the following transformation to
P : For any normal program P , the transformed program, denoted by TRN(P)
is the program that results from P after deleting from the body of each rule the
atom that appears as the head of the same rule. The rules that do not present
this condition remain the same.

Definition 5. For a rule r of the form a ← ¬a∧¬b1 ∧ . . .∧¬bn ∈ P , we define
the transformation TRN as follows: TRN(r) = a ← ¬b1 ∧ . . . ∧¬bn. For a rule
r for which head(r) 6∈ body(r), we define TRN(r) = r. For a normal program P
we define the transformation TRN as follows: TRN(P) = {TRN(r) | r ∈ P}.

Here we show how the p-stable semantics of a NN program P corresponds
to the p-stable semantics of the RNN program TRN(P).

Theorem 2. Let P be a NN program, then the p-stable semantics of P coincides
with the p-stable semantics of the RNN program TRN(P).

Proof. Let us assume that M is a p-stable model of P and let a ← ¬a,¬b1, ...¬bn

be one of the rules in P with the property that the head appears in the body.
Assume that a /∈ M . Since M is a classical model for the rule, then at least
for one i, bi ∈ M , making the rule true according to M ; but then it is clear
that the corresponding rule in TRN(P) is also modeled by M . It follows that a
classical model for P is also a classical model for TRN(P). Next, by hypothesis
we have that RED(P,M) |= M . Now, it is easy to see that for each rule r ∈
P , the rule RED(r,M) is a logical consequence (in classical logic) of the rule
RED(TRN(r),M), Therefore we conclude that RED(TRN(P),M) |= M .

Now, if M is a p-stable model of TRN(P), according to lemma 1, M consists
of those atoms for which there exists a rule r : a ← ¬b1 ∧ . . . ∧ ¬bn such that
bi 6∈ M for all i.

Let us show first that M is a classical model of P . It is enough to examine
the rules in P \ TRN(P):

a ← ¬a ∧ ¬b1 ∧ . . . ∧ ¬bn

In the case for which a ∈ M , there is nothing to prove. In the case for which
a 6∈ M , according to the lemma 1 there must exist bi ∈ M for some i, and then
the rule is modeled by M . So M models P .

Now, it only remains to prove that RED(P, M) |= M . But again, M consists
of those atoms for which there is a rule, a ← ¬b1∧ . . .∧¬bn and bi 6∈ M for all i;
then RED(P,M) contains the rules a ←, for all a ∈ M . The desired conclusion
follows now. ut

We also introduce another format for normal program called Strong Kernel
program. This last format considers the three conditions of a kernel program (as

7

defined in [2]) and also the condition of RNN programs about that the head of
any rule does not appear in the body of the same rule.

Definition 6. Let P be a normal program. We say that P is a strong kernel
(SK) program if the following conditions hold:

1. P is WFS-irreducible, i.e., the well-founded model of P is empty, WFS(P) =
〈∅, ∅〉 (see [13]);

2. every rule has its body composed of negative literals only;
3. every atom in P occurs in the body of some rule.
4. the head of any rule does not appear in the body of the same rule.

Let us observe that SK programs are also RNN programs. Then a corollary
of theorem 1 indicates that the stable semantics of a SK program coincides with
the p-stable semantics of the same program.

Corollary 1. Let P be a SK program, then the stable semantics of P coincides
with the p-stable semantics of P .

Let us observe first, that a kernel program (as defined in [2]) is a NN program,
and also that if we apply the transformation TRN to a kernel program, then we
obtain a SK program. So, a corollary of theorem 2 indicates that the p-stable
semantics of a kernel program P corresponds to the p-stable semantics of the
SK program TRN(P).

Corollary 2. Let P be a kernel program, then the p-stable semantics of P co-
incides with the p-stable semantics of the SK program TRN(P).

As a consequence of corollary 2, all the applications based on stable seman-
tics of kernel programs can also be based on p-stable semantics of strong kernel
programs: to check consistency of kernel programs in terms of colorings of the
Extended Dependency Graph program representation, as described in [2]; a dis-
tributed version of the adjSolver algorithm for computing p-stable models of
logic programs in strong-kernel form, as described in [5]; and to distinguish the
elements that a program is composed of, namely cycles and handles, and thus
to reason more easily about what happens when the program is modified, as
described in [3]. We mentioned this applications at the end of section 2 of this
paper.

We remark that kernel and, in particular strong kernel programs are use-
ful and interesting since they allow us to express well known problems as the
3-coloring problem. Next, we illustrate the p-stable kernel encoding of the 3-
coloring problem over the graph 〈V, E〉 = 〈{1, 2}, {(1, 2)}〉. Let us note that in
this program, when expressed in the p-table semantics, is necessary to implement
three rules for each constraint necessary in the stable semantics. In the encoding
below, those three rules are written below the corresponding constraint in the
stable semantics, which has been commented out. The formal and detailed de-
scription of how to write such constraints in the p-stable semantics, is presented
in [8].

8

%Assignment of colors to vertices

col(1, blue) ← ¬col(1, red),¬col(1, green).
col(2, blue) ← ¬col(2, red),¬col(2, green).
col(1, red) ← ¬col(1, blue),¬col(1, green).
col(2, red) ← ¬col(2, blue),¬col(2, green).
col(1, green) ← ¬col(1, blue),¬col(1, red).
col(2, green) ← ¬col(2, blue),¬col(2, red).

% arc(1,2) cannot join 2 nodes of the same color

% ← ¬col(1,red),¬col(2,red),¬col(1, blue),¬col(2, blue).
x ← ¬y,¬col(1, red),¬col(2, red),¬col(1, blue),¬col(2, blue).
y ← ¬z,¬col(1, red),¬col(2, red),¬col(1, blue),¬col(2, blue).
z ← ¬x,¬col(1, red),¬col(2, red),¬col(1, blue),¬col(2, blue).

% ← ¬col(1,red),¬col(2,red),¬col(1,greeen),¬col(2,green).
x ← ¬y,¬col(1, red),¬col(2, red),¬col(1, green),¬col(2, green).
y ← ¬z,¬col(1, red),¬col(2, red),¬col(1, green),¬col(2, green).
z ← ¬x,¬col(1, red),¬col(2, red),¬col(1, green),¬col(2, green).

% ← ¬col(1,green),¬col(2,green),¬col(1,blue),¬col(2,blue).
x ← ¬y,¬col(1, green),¬col(2, green),¬col(1, blue),¬col(2, blue).
y ← ¬z,¬col(1, green),¬col(2, green),¬col(1, blue),¬col(2, blue).
z ← ¬x,¬col(1, green),¬col(2, green),¬col(1, blue),¬col(2, blue).

There are six p-stable models: {col(1, red), col(2, green)}; {col(2, green),
col(1, blue)}; {col(1, green), col(2, red)}; {col(1, blue), col(2, red)}; {col(1, green),
col(2, blue)}; and {col(1, red), col(2, blue)}. Each of them indicates a coloring for
the given graph.

4 Conclusion

This paper furthers the study of p-stable semantics. We introduced three dif-
ferent formats for normal programs: NN programs, RNN programs and SK pro-
grams. We showed that the stable semantics and the p-stable semantics of a
RNN program coincide; and that the p-stable semantics of a NN program cor-
responds to the p-stable semantics of a particular RNN program associated to
the original program.

Since the SK format considers the three conditions of a kernel program [2]
and also the condition of RNN programs about that the head of any rule does not
appear in the body of the same rule then, is showed that the stable semantics
of a SK program coincides with the p-stable semantics of the same program
and that the p-stable semantics of a kernel program corresponds to the p-stable
semantics of a particular SK program.

We also indicated that all the applications based on stable semantics of kernel
programs can also be based on p-stable semantics of strong kernel programs.

9

We remarked that kernel and, in particular strong kernel programs are useful
and interesting since they allow us to express well known problems as the 3-
coloring problem.

References

1. C. Baral. Knowledge Representation, reasoning and declarative problem solving
with Answer Sets. Cambridge University Press, Cambridge, 2003.

2. S. Constantini and A. Provetti. Normal forms for answer set programming. Journal
of Theory and Practice of Logic Programming, 5:747–760, 2005.

3. S. Costantini, B. Intrigila, and A. Provetti. Coherence of updates in answer set
programming. In Proc. of the IJCAI-2003 Workshop on Nonmonotonic Reasoning,
Action and Change, NRAC03, pages 66–72, 2003.

4. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming,
pages 1070–1080. MIT Press, 1988.

5. G. Grossi, M. Marchi, E. Pontelli, and A. Provetti. Experiments with answer set
computation over parallel and distributed architectures. In Proceedings of 4th In-
ternational Workshop on Answer Set Programming (ASP2007)., September 2007.
To appear an extended version in a special issue of the Journal of Logic and Com-
putation.

6. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, second edition,
1987.

7. R. C. Moore. Autoepistemic logic. In P. Smets, E. H. Mamdani, D. Dubois, and
H. Prade, editors, Non-Standard Logics for Automated Reasoning. Academic Press,
1988.

8. M. Osorio, J. Arrazola, and J. L. Carballido. Logical weak completions of para-
consistent logics. To apper in the Journal of Logic and Computation, 2008.

9. M. Osorio, V. Borja, and J. Arrazola. Three valued logic of ÃLukasiewicz for mod-
eling semantics of logic programs. In Proceedings of IBERAMIA, number 3315 in
Lecture Notes in Computer Science, pages 343–352. Springer, 2004.

10. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Logics with common weak
completions. Journal of Logic and Computation, 16(6):867–890, 2006.

11. S. Pascucci and A. Lopez. Implementing p-stable with simplification capabilities.
Submmited to Inteligencia Artificial, Revista Iberoamericana de I.A., Spain, 2008.

12. D. Pearce. Stable Inference as Intuitionistic Validity. Logic Programming, 38:79–91,
1999.

13. A. van Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

10

