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Abstract We introduce three different formats for normal programs
with constraints. These forms help to simplify the search of p-stable
models of the original program. In this way we further the study of the
p-stable semantics. In this paper we indicate that the p-stable semantics
for one of the normal forms proposed agrees with the Comp semantics.
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1 Introduction

Some approaches used to formalize non-monotonic reasoning (NMR) are based
on the semantics of logic programs. In this work we are interested in furthers
the study of one of the semantics useful in this formalization called p-stable.

In [8] the authors generalize to disjunctive programs what was done in [10].
They introduce the p-stable semantics for normal programs by using a transfor-
mation similar to the one used by Gelfond and Lifschits [4]. It is important to
mention that the p-stable semantics, which can be defined in terms of paracon-
sistent logics, shares several properties with the stable semantics [4], but is closer
to classical logic. For example, let P = {a < —a}. We can verify that P does
not have stable models. However the set {a} could be considered the intended
model for P in classical logic. Moreover, it is the p-stable model of P.

The present paper introduces three different formats for normal programs
with constraints: Negative normal programs, Restricted negative normal programs
and Semi-Negative normal programs. These forms help to simplify the search of
p-stable models of the original program. Besides, for programs in these formats
the p-stable and the stable semantics coincide. This furthers the interest in
developing the p-stable semantics as a tool to help to understand the NMR.

This paper is structured as follows. In section 2 we give some definitions
useful to understand this paper. In section 3 we give the definition of the different
formats for normal programs with constraints: negative normal programs and



restricted negative normal programs. We also show the different results about the
stable semantics and the p-stable semantics of programs in these formats. In this
section we also introduce another format for normal programs with constraints
called Semi-negative normal programs. We show how to obtain the p-stable
models of a Semi-negative normal program with constraints by means of the
completion of a particular restricted negative normal program with constraints.
Finally in section 4 we present some conclusions.

2 Preliminaries

In this section we summarize some basic concepts and definitions used to under-
stand this paper.

A signature L is a finite set of elements that we call atoms, or propositional
symbols. The language of a propositional logic has an alphabet consisting of
proposition symbols: po,p1, . . .; connectives: A, V, <, —; and auxiliary symbols: (,
). Where A, V, « are 2-place connectives and — is a 1-place connective. Formulas
are built up as usual in logic. A literal is either an atom a, called positive literal;
or the negation of an atom —a, called negative literal. The formula F = G is an
abbreviation for (F' «+— G) A (G «+ F). A clause is a formula of the form H «— B
(also written as B — H), where H and B, arbitrary formulas in principle, are
known as the head and body of the clause respectively. The body of a clause
could be empty, in which case the clause is known as a fact and can be denoted
just by: H <. In the case when the head of a clause is empty, the clause is called
a constraint and is denoted by: «— B.

A normal clause is a clause of the form H « BT U —-B~ where H consists
of one atom or can be empty, B" is a conjunction of atoms by A by A ... A by,
and —B~ is a conjunction of negated atoms —b, 11 A =bpi2A...A=b,,. Bt and
B~ could be empty sets of atoms. A finite set of normal clauses P is a normal
program. A finite set of normal clauses P joined with a set of constraints C' is a
normal program with constraints, denoted as (P, C). Since we shall restrict our
discussion to propositional programs, then we take for granted that programs
with predicate symbols are only an abbreviation of the ground program.

Finally we give two definitions useful to understand the definitions of stable
and p-stable semantics for normal programs.

Let P be a normal program and M be a set of atoms. We define: RED(P, M) =
{H+— B*,-(B-NM)|H+ B*,-B~ € P}.

For any program P, the positive part of P, denoted by POS(P) is the pro-
gram consisting exclusively of those rules in P that do not have negated literals.

From now on, we assume that the reader is familiar with the notion of classical
minimal model [6].

Now we give the definition of stable semantics for normal programs as given
in [8].

Definition 1. /8] Let P be a normal program and let M C Lp. Let us put
PM = POS(RED(P, M)), then we say that M is a stable model of P if M is
a minimal classical model of PM.



The stable semantics for normal programs with constraints is defined as fol-
lows [8].

Definition 2. [8] Let (P,C) be a normal program with constraints and let M C
Lp. We say that M is a stable model of (P,C) if M is a stable model of P and
M is a classical model of C'.

Next we define the p-stable semantics for normal programs.

Definition 3. /8] Let P be a normal program and M be a set of atoms. We say
that M is a p-stable model of P if

1. M is a classical model of P (i.e. a model in classical logic), and

2. the conjunction of the atoms in M is a logical consequence in classical logic
of RED(P, M) (denoted as RED(P,M) = M).

The p-stable semantics for normal programs with constraints is defined as
follows [8].

Definition 4. [8] Let (P,C) be a normal program with constraints and let M C
Lp. We say that M is a p-stable model of (P,C) if M is a p-stable model of P
and M is a classical model of C.

We are going to present some transformations for normal programs that
modify a program into another, in general, shorter program; the idea is that
some program transformations may help to reduce the size of a program and
keep at least the same p-stable semantics. These transformations are simple,
and the transformed program is p-stable equivalent to the original program.

Definition 5. Two normal programs P; and P> are p-stable equivalent, if Py
and Py have the same p-stable models. Two normal programs with constraints
(Py,C4) and (Py,Cs) are p-stable equivalent, if (Py,C1) and (P2, C3) have the
same p-stable models.

Definition 6. [2] If P contains the clause a <, and there is also a clause 1 :
A — BY A=B~ such that a € BT, then the transformation Dsuc, , replaces it
by the rule: A — (B* —{a}) A=B~.

Proposition 1. [2] The transformation Dsuc preserves p-stable equivalence for
normal programs.

The transformation Dsuc can also be applied to normal programs with con-
straints.

Definition 7. [2] Let (P,C) be a normal programs with constraints. If P con-
tains the clause a <, and there is also a constraint c € C : «— BT A =B~
such that a € BT, then the transformation Dsuc, . replaces it by the rule:
— (BT —{a}) A-B~.



Proposition 2. [2] The transformation Dsuc preserves p-stable equivalence for
normal programs with constraints.

Now we define the transformation Failure for normal programs.

Definition 8. [2] The transformation Failure deletes a rule ry : A+ BT A—=B~
that contains the atom b, from the program P, whenever b € BT N (Head(P))°.

Proposition 3. [2] The transformation Failure preserves p-stable equivalence
for normal programs.

The transformation Failure can also be applied to normal programs with
constraints.

Definition 9. [2] Let (P,C) be a normal programs with constraints. The trans-
formation Failure deletes a constrain ¢y : <« BT A =B~ that contains the atom
b, from C, whenever b € BT N (Head(P))*.

Proposition 4. [2] The transformation Failure preserves p-stable equivalence
for normal programs with constraints.

Here we present a result that establishes a one-to-one correspondence between
the p-stable models of a tight normal program and the classical models of its
Clark’s completion. This classical models can be obtained by using classical
model generator systems.

Definition 10. [1] Given a normal program P consisting of rules of the form:
a<— aiA...Nay A=by AL . A\=by, its completion Comp(P) is obtained as follows:
For each symbol a, let S(a) denote the set of all clauses with a in the head.
Suppose S(a) is the set: {a «— Bodyx,...,a «— Bodyy} Replace this set with the
single formula, a < Body, V ...V Bodyy If S(a) = 0, then replace it by —a.

Definition 11. [1] A normal program P is said to be tight, if there exists a
function n from Lp to the set of natural numbers, such that for every a <«
A1y ey Ay T Appg 1y - - -, Gy 0 P,oand for every 1 <i<m : n(a) > n(a;).

Proposition 5. [3] For any normal program, if P is tight then M is an stable
model of P if and only if M is a model (in classical logic) of Comp(P).

3 Semi-Negative normal programs

In this section we give the definition of two formats for normal programs with
constraints: Negative normal programs and Restricted negative normal programs.
One of the main results indicates that the stable semantics and the p-stable
semantics of a restricted negative normal program coincide. We also show how
the p-stable semantics of a negative normal program corresponds to the p-stable
semantics of a particular restricted negative normal program.

We start by introducing the definitions of negative normal programs and
restricted negative normal programs without constraints.



Definition 12. Let P be a normal program. We say that P is a negative normal
(NN) program if it satisfies the first of the two conditions listed below, and we
say that P is a restricted negative normal (RNN) program if it satisfies both
conditions

1. every rule has its body composed of negative literals only;
2. the head of any rule does not appear in the body of the same rule.

We also introduce the definitions of negative normal programs and restricted
negative normal programs with constraints.

Definition 13. Let (P,C) be a normal program with constraints. We say that
(P,C) is a NN program with constraints if P is a NN program. We say that
(P,C) is a RNN program with constraints if P is a RNN program.

The following lemma will be useful to show that the stable semantics and the
p-stable semantics of a RNN program coincide. Given a RNN program P, this
lemma gives a characterization for a set M C Lp, to be a p-stable model of P.

Let P be a RNN program, for any M C Lp, we define Sy = {a | a —
=by,A... N\ b, € P, {b1,...,bm}ﬂM=®}.

Lemma 1. Let P be a RNN program. If M is p-stable model of P then M = Sy;.

Proof. RED(P,M) = {a <« =(B-NM) | H «— =B~ € P}. By part 1) of
the definition of p-stable model (Definition 3), it follows that Sy C M. Let us
assume that M\ Sy # 0 and take m € M\ Sys. Let us define an interpretation:
I:Lp — {0,1} such that I(a) =1 for each a € Lp \ {m} and I(m) = 0.

Now, using the fact that the program P has the property that the head of
each rule does not appear in its body, it follows that I is a classical model for
RED(P, M) but it is not a model for M (Since I(m) = 0) this contradicts 2) in
the definition of a p-stable model (Definition 3) and the lemma is proved.

The following theorem indicates that the stable semantics and the p-stable
semantics of a RNN program coincide.

Theorem 1. Let P be a RNN program, then the stable semantics of P coincides
with the p-stable semantics of P.

Proof. If M is a p-stable model of P then M = S} according to the lemma 1, and
from the definition of PM (Definition of a stable model), PM = {a + |a € Sy}
then we conclude that M is a minimal model of PM and then a stable model of
P.

Let us now assume that M is a stable model of P. It follows that M is a
minimal model for PM = {a « | a € Sy;}. Therefore M = Sj;. From the fact
that PM ¢ RED(P, M), it follows that RED(P, M) = M.

We still need to show that M is a classical model of P. Let us consider a
rule a < =b; A =ba A ... A —bs € P, such that a ¢ M. Then there is at least an
i for which b; € M (otherwise a € Sy = M), then the rule is modeled by M.
Therefore M models all of the rules in P as we wanted to show.



The following corollary of theorem 1 indicates that the stable semantics and
the p-stable semantics of a RNN program with constraints also coincide.

Corollary 1. Let (P,C) be a RNN program with constraints, then the stable
semantics of (P,C) coincides with the p-stable semantics of (P, C).

Proof. Straightforward from theorem 1, definition of stable semantics for normal
programs with constraints (definition 2), and definition of p-stable semantics for
normal programs with constraints (definition 4).

Let us observe that, from the definition, in a NN program the head of any
rule could appear in the body of the same rule.

We shall show how the p-stable semantics of a NN program P corresponds to
the p-stable semantics of a particular program associated to P. This new program
is a RNN program and it is the result of applying the following transformation to
P: For any normal program P, the transformed program, denoted by TRN (P)
is the program that results from P after deleting from the body of each rule the
atom that appears as the head of the same rule. The rules that do not present
this condition remain the same.

Definition 14. For a rule r of the form a «<— —aAN—-by A...N=b, € P, we define
the transformation TRN as follows: TRN (r) = a < —by A...A=b,. For a ruler
for which head(r) & body(r), we define TRN (r) = r. For a normal program P we
define the transformation TRN as follows: TRN(P) = {TRN(r)|r € P}. For
a normal program with constraints (P,C) we define the transformation TRN
as follows: TRN((P,C)) = (TRN(P),C).

Here we show how the p-stable semantics of a NN program P corresponds
to the p-stable semantics of the RNN program T RN (P).

Theorem 2. Let P be a NN program, then the p-stable semantics of P coincides
with the p-stable semantics of the RNN program TRN (P).

Proof. Let us assume that M is a p-stable model of P and let a «— —a, —bq,...0b,
be one of the rules in P with the property that the head appears in the body.
Assume that a ¢ M. Since M is a classical model for the rule, then at least
for one i, b; € M, making the rule true according to M; but then it is clear
that the corresponding rule in TRN (P) is also modeled by M. It follows that a
classical model for P is also a classical model for TRN(P). Next, by hypothesis
we have that RED(P, M) |= M. Now, it is easy to see that for each rule r €
P, the rule RED(r,M) is a logical consequence (in classical logic) of the rule
RED(TRN(r), M). Therefore we conclude that RED(TRN(P),M) = M.

Now, if M is a p-stable model of TRN (P), according to lemma 1, M consists
of those atoms for which there exists a rule r : a < —by A ... A —b,, such that
b; & M for all 7.

Let us show first that M is a classical model of P. It is enough to examine
the rules in P\ TRN(P): a < —a A =by A ... A —by.



In the case for which a € M, there is nothing to prove. In the case for which
a & M, according to the lemma 1 there must exist b; € M for some i, and then
the rule is modeled by M. So M models P.

Now, it only remains to prove that RED(P, M) = M. But again, M consists
of those atoms for which there is a rule, a < —by A...A—b, and b; & M for all i;
then RED(P, M) contains the rules a <, for all a € M. The desired conclusion
follows now.

The following corollary of theorem 2 indicates that the p-stable semantics of
a NN program with constraints (P, C) corresponds to the p-stable semantics of
the RNN program T RN ((P,C)).

Corollary 2. Let (P,C) be a NN program with constraints, then the p-stable
semantics of (P,C) coincides with the p-stable semantics of the RNN program
TRN((P,C)).

Proof. Straightforward from theorem 2 and definition of p-stable semantics for
normal programs with constraints (definition 4).

Now we introduce another format for normal programs called Semi-negative
normal programs.

Definition 15. Let P be a normal program. We say that P is a semi-negative
normal (semi-NN) program if for any atom that appears as a positive literal in
the body of a rule, the following condition holds: It does not appear in the head
of any rule unless it appears as a fact.

We also give the definition of Semi-negative normal programs with con-
straints. We say that a positive constraint is a constraint that consists of a
conjunction of positive literals in its body.

Definition 16. Let (P,C) be a normal program with constraints. We say that
(P,C) is a semi-NN program with constraints if P is a semi-NN program and
every constraint in C' is a positive constraint.

The following proposition indicates that each semi-NN program has a p-stable
equivalent NN-program.

Proposition 6. If P is a semi-NN program, then P is p-stable equivalent to an
NN program. If (P,C) is a semi-NN program, then (P,C) is p-stable equivalent
to a NN program with constraints.

Proof. After several applications (if necessary) of the program transformations
Dsuc and Failure, P and (P,C) can be transformed into a NN program or a
NN program with constraints respectively with the same p-stable semantics.

Since NN programs, RNN programs and semi-NN programs without con-
straints are tight (see definition 11), it is possible to show that the p-stable
models of a RNN program P correspond to the classical models of its comple-
tion Comp(P).



Proposition 7. Let P be a RNN program. M is a p-stable model of P if and
only if M is a model (in classical logic) of Comp(P).

Proof. Let M be a pstable model of P. By theorem 1, M is a p-stable model of
P if and only M is a stable model of P. Since P is tight; by proposition 5, M is
an stable model of P if and only if M is a model (in classical logic) of Comp(P).

Moreover, we also can show that the p-stable models of a RNN program
with constraints (P,C) correspond to the classical models of its completion
Comp((P,C)). First we need to introduce two definitions: tight normal programs
with constraints, and completion for a normal program with constraints.

We say that a normal program with constraints (P, C) is tight if P is tight.
Therefore NN programs, RNN programs and semi-NN programs with constraints
are tight.

The definition of completion for a normal program with constraints is based
on the definition of completion for normal programs without constraints (see
definition 10).

Definition 17. For a positive constraint ¢ : < ajAasA. . . a, we define Comp(c) =
—apVoag V...V oay. If C s a set of constraints then Comp(C) = {comp(c)|c €
C'}. For any normal program with constraints tight (P, C), we define Comp((P,C)) =
Comp(P) U Comp(C).

Now we are ready to show that the p-stable models of a RNN program
with constraints (P,C) correspond to the classical models of its completion
Comp((P,C)).

Proposition 8. Let (P,C) be a RNN program with constraints. M is a p-stable
model of (P,C) if and only if M is a model (in classical logic) of Comp({P,C)).

Proof. In particular Comp({P,C)) = Comp(P) U Comp(C).

=) If M is a p-stable model of (P,C) then, by corollary 1, M is a stable
model of (P,C). If M is a stable model of (P,C) then, by definition 2, M is a
stable model of P and M models C' in classical logic. By proposition 5 M is a
classical model of Comp(P) and also a classical model of Comp(C') since C' and
Comp(C) are equivalent in classical logic. Therefore M is a classical model of
Comp((P,C)).

<) Conversely if M is a classical model of Comp(P) U Comp(C), then by
proposition 5, M is a stable model of P. Also M is a classical model of R, since
R and Comp(R) are equivalent in classical logic. Therefore M is a stable model
of (P,C). Again by corollary 1 M is a p-stable model of (P, C).

As a direct consequence of proposition 8 we can see that it is possible to
obtain the p-stable models of a semi-NN program with constraints by means of
the completion of a particular RNN program with constraints. By proposition 6
we showed that if (P,C) is a semi-NN program with constraints, then (P,C)
is p-stable equivalent to an NN program with constraints (P, C)yxy. By corol-
lary 2 we showed that the p-stable semantics of (P,C)yn corresponds to the



p-stable semantics of the RNN program with constraints TRN ((P,C)yn); and
by corollary 1 we showed that the p-stable semantics and the stable semantics of
TRN({P,C)nn) coincide. Finally by proposition 8 we showed that the p-stable
models of TRN ({P,C) yn) correspond to the classical models of its completion,
Comp(TRN ({(P,C)nn)).

4 Conclusion

This paper furthers the study of p-stable semantics. We introduced three dif-
ferent formats for normal programs with constraints. We show that the stable
semantics and the p-stable semantics of a Restricted Negative Normal program
coincide. We also show that the p-stable semantics for Semi-Negative Normal
programs with constraints agrees with the completion of a particular Restricted
Negative Normal program with constraints.
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