
Multi-dimensional Representations of
Conceptual Hierarchies

Peter Becker

Distributed System Technology Centre (DSTC)
Knowledge, Visualization and Ordering Laboratory (KVO)

Griffith University
PMB 50, Gold Coast 9726, Australia

pbecker@dstc.edu.au

Abstract. Dealing with conceptual hierarchies is a fundamental task
when working with conceptual structures. In this paper we present a
projection of the implications underlying such a hierarchy into the n-
dimensional space. This vector representation of the structure allows
more complex mathematical treatment of the conceptual hierarchy.
A first implementation of this idea is an enhanced representation of con-
cept lattices from Formal Concept Analysis (FCA). From this representa-
tion we generate two-dimensional diagrams that respect certain aspects
of the underlying semantics. In addition, manipulation and general in-
teraction with the diagram become much more intuitive to the user. The
experience with this implementation shows that a well-founded repre-
sentation of the conceptual hierarchy improves the usability of a system
based on this hierarchy.

1 Introduction

One of the most important applications of the theory of conceptual structures is
building systems people are able to interact with in an intuitive fashion. When
a system for conceptual structures is built, some theory about the world to be
modeled is stated and some knowledge about dependencies and implications be-
tween concepts or attributes is externalized. For example when defining a system
of conceptual graphs the concept type hierarchy is of fundamental importance,
describing a theory of implications. Likewise the scales of an Conceptual Infor-
mation System as implemented e. g. with Toscana ([VW95]) represent a set of
local theories, describing the world of objects to be treated by the system. For
the scope of this paper we consider concept lattices as conceptual structures in
Conceptual Information Systems, but the ideas described apply likewise to rep-
resentations of concept type hierarchies. We assume the reader knows the basic
concepts of FCA as presented in [GW99].

While developing Cernato, a data analysis tool from Navicon GmbH, we
searched for a representation of concept lattices that allows the user to interact

145

http://www.navicon.de

with the diagrams in a way he intuitively perceives the conceptual structure
inherent in the data. The data analysis performed with Cernato starts with an
empty scaling, i. e. the concept lattice has no attributes and all objects belong
to the one concept displayed. By adding scale attributes (from scales previously
entered) he can then extend the diagram and change the layout by dragging
points around.

The algorithm we required had two main aspects: first, the diagram should
be easily readable after the addition of an attribute. Second, and even more
important, the change of the layout of the diagram when interacting with it
should help the user to understand the conceptual structure of the data. This
latter point is considered even more important than the aesthetics of the diagram
itself. For this reason, the first approach, using the algorithms from the FCA
Library developed by Frank Vogt (cf. [Vo96]) was unsuccessful. These algorithms
are based on geometric and aesthetic considerations and are not intended to
retain semantic information.

Type Color Size

Yoyo cat black small
Samson dog brown large
HAL computer red huge

Table 1. Example context with three multi-valued attributes

animal cat dog

cat × ×
dog × ×
computer

Table 2. A conceptual scale for the multi-valued attribute “Type”

For Cernato we tried to split the ontological implications, i. e. those which
are always true in the model the user defined from those found in the current
data set but that can not be derived from the model. See the context in Table 1
and the scale for the multi-valued attribute “Type” in Table 2 which contain
examples for both types of implications: there are ontological implications like
“every cat is an animal” which can be found in the structure of the scale and
some other implications like “each brown object is an animal” which is supported
by the data set but not generally true. The first implication can be found by
looking at the scale only while the latter needs the context to be found.

146

Cat Brown

Animal

Yoyo Samson

Brown

Animal

Yoyo Samson

SmallCat Dog

Animal

Yoyo Samson

Hal Hal Hal

Fig. 1. Examples of misleading diagrams: identical layout with three alternate
semantics

Fig. 1 presents some examples of line diagrams based on this context that
demonstrate how the diagrams produced by the FCA Library can be easily
misinterpreted – we use a nominal scale for the attributes “Color” and “Size” in
the diagrams. While all three diagrams use the same layout, which is a typical
layout for the FCA Library, they have different meanings. Intuitively, the user
interpretes the fact that the vector pointing to the left attribute is prolongated
as indicating a stronger implication between the left attribute and the one above
in each diagram compared to the implication between the right attribute and
the one above.

This is true only for the diagram in the middle, where “cat” is an onto-
logical refinement of “animal” while a “brown object” could be something else
– although the data used for the diagram does support the implication “each
brown object is an animal” as stated above. The left diagram shows two impli-
cations which are true in general and not only for the given data set, but one
implication is accentuated by the layout. The right diagram shows the opposite
situation where all implications are supported by the data analysed but not by
the model entered by the user. The idea behind Cernato is to create diagrams
that emphasize those implications that are true in general by laying them out in
chains if possible. The information on the model is extracted from the structure
of the conceptual scales defined for the multi-valued attributes.

No knowledge about implications valid in general is used by the FCA Library,
thus it is producing the same diagram layout for all three situations. The layout is
also dependent on the order in which the attributes are treated by the algorithms
– the diagram in the middle could even be created with the left and right point
exchanged, thereby emphasizing the weaker implication.

One of the main goals in the development of Cernato (and thereby in the
algorithms described here) was to use the additional information in the concep-
tual scales to present line diagrams in a more meaningful manner. This relates

147

also to the problem of allowing changes to the diagram layout that repect this
underlying structure – a problem not addressed in tools like Anaconda, where
the user may change the diagram layout, even if the result leads to diagrams
that are easily misinterpreted. The flexible layout of Anaconda was dropped
to get a more stable editing user interface that allows even inexperienced users
to edit the diagrams.

However, it is important to note that the intuitive understanding of the con-
ceptual structure isn’t always inherent in a static diagram produced by Cerna-

to, but mainly in the animated behaviour it shows when the user interacts with
the diagram. While the first layout Cernato creates is often not as aestheti-
cally pleasing as the layout from the FCA Library, it ensures that the semantics
that can be extracted from the scales are displayed and the option of moving
the points allows the user to get a more aesthetically pleasing diagram unless
there is a direct conflict between the aesthetic criteria and the semantics.

2 N -Dimensional Projection of Concept Lattices

To be able to display the semantics in a meaningful manner we project the lattice
into a n-dimensional space first. This gives us the degree of freedom needed to
model complex relations in a diagram, while a two dimensional diagram is not
suited for this. This idea is not dissimilar to the idea of finding the minimal set
of chains on irreducible concepts as done in the FCA Library ([Sk89],[Vo96]),
but there are two main differences in what we do: first we use the order found
on the scales of the multi-valued attributes instead of the order of the context.
Additionally we keep the n-dimensional structure and reuse it when the user
moves points.

The attribute order which we try to respect by our projection is a partial or-
der on the attributes. If the attribute m implies the attribute n, then m is more
specific and we write m ≤ n. As seen in the examples in the previous section,
there are different kinds of dependencies between attributes. Some implications
are ontological (like “cat” implying “animal”), others specific to the data anal-
ysed (like “brown” implying “animal”). The latter implication is not any “less
true”, but it is dependent on the given data set. To make the interaction with
the diagrams in Cernato more intuitive, we consider only the ontological im-
plications given by the user in the scales. Therefore we have m ≤ n if there is
a conceptual scale (GS,MS, IS) in the Information System with m,n ∈ MS and
mIS ⊆ nIS .

The goal for the projection into the n-dimensional space is to respect this
order partially when translating the attributes into Zn. The vectors of Zn are
naturally ordered by the component-wise comparision: If v := (v1, v2, . . . , vn)
and w := (w1, w2, . . . , wn) are vectors of Zn, then we write v ≤ w if and only if
vi ≤ wi for every i = 1, . . . , n.

Some of the attributes of a scale might be just combinations of other at-
tributes such that saying that an object has the attribute m is equivalent to

148

saying that it has the attributes in B ⊆M (m 6∈ B). These attributes are called
reducible:

Definition 1 (reducible). Let (GS,MS, IS) be a scale in a Conceptual Infor-
mation System, m ∈ MS an attribute of this scale and B ⊆ MS with m 6∈ B. If⋂
b∈B b

IS = mIS for any such B the attribute m is called reducible with respect
to the scale.

These are the attributes in scales that are removed when purifying the context
of the scale (cf. [GW99]). Note, that attributes which are reducible with respect
to the partial order on the attributes defined above aren’t necessarily reducible
with respect to the scale. In this paper, “reducible” means reducible with respect
to the corresponding scale. Since reducible attributes don’t provide additional
information we ignore them in our projection by assigning them a zero vector.

Our algorithm to project the conceptual structure into the n-dimensional
space Rn has two parts. The first assigns a vector in Zn to every attribute, the
second calculates the projection for the concepts into Rn based on the results of
the first algorithm and thereby projects the whole lattice.

Algorithm 1. calculateAttributeVectors()
for all Attributes m do
m.vector()← 0
if m is not reducible then

if m has no predecessor or at least one predecessor of m has other successor
then

create new dimension d
m.vector(d)← 1

else
for all predecessors mp of m do

for all existing dimensions d do
if mp.vector(d) = 1 then
m.vector(d)← 1

end if
end for

end for
end if

end if
end for

The basic idea for the projection is to reuse vectors for the chains in the
attribute order as long as two points are not projected onto the same coordinates.
For example we want to project the implication “every cat is an animal” into a
chain, since it is a chain in the attribute order. Since the same is true for the

149

implication “every dog is an animal” we would create the same projection for
two points if we reuse the vector for “animal” for both, “cat” and “dog” in the
diagram in the middle of Fig. 1.

Whenever this happens we add new dimensions into the projection vectors
for all attributes that collide. Since an attribute belongs to a chain in the lattice
if and only if it is a lower neighbour of another, the conflicting situation is the
situation where a predecessor of an attribute has more than one successor – in
this situation Algorithm 1 creates new dimensions for the conflicting attributes.

The resulting vectors for the attributes have only ones and zeroes as coor-
dinates, which can be read as the attribute having a specific semantic content
or not. Of course this means that they have different lengths in the Euclidean
space as well. Since we don’t want to use different lengths in the line diagram
for the lattice, we normalize vectors in the usual manner before using them to
project the concepts.

Algorithm 2. projectConcept(C)
C.vector()← 0
for all m in the intent of C do
C.vector()← C.vector() + m.vector()

||m.vector()||
end for

The projection algorithm for the concepts is shown in Algorithm 2. It simply
sums all normalized vectors for the attributes to calculate a position in Rn, thus
creating an additive drawing of the lattice structure. The vectors are normalized
since the length of the attribute vectors depend on the amount of semantic
content they have, but we don’t want to have different distances in the diagram
created. The results for the diagrams of Fig. 1 are shown in Fig. 2 and the
attribute order with the vectors for the attributes shown in Fig. 3. The attribute
vectors in the examples are not normalized to simplify the values.

As can be seen in the example in the middle of Fig. 3, the chain of attributes
(“Cat” and “Animal” with “Cat”≤”Animal”) is layed out as a chain in the n-
dimensional space while the outer diagrams are using three dimensions – one
for each attribute. Although the user can choose to create chains for the outer
diagrams by dragging points in Cernato, he is not able to break the chain in
the diagram in the middle. This will be discussed in detail in Section 4.

A slightly more complex example shows how two vectors are combined in
the algorithm. In Fig. 4 a context is presented which has numeric intervals as
attributes and numbers as objects. The attribute order is shown with the vectors
for the attributes, using the interval inclusion order. Note that the vector for the
small interval is the combination of both – the effect of this is that the lowest edge
in the diagram (ending at the bottom) is a direct prolongation of the diagonal of

150

Cat Brown

Animal

Yoyo Samson

Brown

Animal

Yoyo Samson

SmallCat Dog

Animal

Yoyo Samson

Hal Hal Hal
(0,0,0) (0,0) (0,0,0)

(1,0,0)

(1,1,0) (1,0,1)

(1,0)

(2,0) (1,1) (1,1,0)

(1,0,0)

(1,0,1)

(1,1,1) (2,1) (1,1,1)

Fig. 2. Examples of vector assignments using the new algorithm (without nor-
malization).

Animal Animal

Animal

Cat CatDog

Brown BrownSmall

(1,0,0)

(0,1,0) (0,0,1)

(1,0)

(1,0)

(0,1) (0,1,0) (1,0,0) (0,0,1)

Fig. 3. The attribute order for the examples and the vectors assigned.

the diamond above, depicted as a dashed line. In this way the diagram presents
the lower edge as a continuation of the combination of the upper two vectors.

[4,10] [1,6]

[5,5]

[4,10]

77

[1,6]

33

66

[5,5]

(1,0) (0,1)

(1,1)

(1,0) (0,1)

(1,1)

(2,2)

Context Attribute order Diagram

33

66

77

[1,6]

XX

XX

[5,5]

XX

XX

[4,10]

Fig. 4. A more complex example, introducing the combination of two vectors.

151

3 Projection Onto the Plane

The process of projecting the n-dimensional structure onto the Cartesian plane
is an ordinary parallel projection. The parallel projection is used since it keeps
the additive drawing of the line diagram that we created in Rn: you can find a
set of vectors in R2 for the infimum irreducible concepts and then find the vector
for each concept in the lattice by adding all vectors for the infimum-irreducible
concepts above. In this way we get the common layout pattern of an additive
diagram which is drawn from top to bottom. Many projects have shown that
this kind of diagram layout is suitable to create diagrams that are easy to read
(see e. g. [Sk89]).

When using parallel projection we have to find a set of vectors in R2 for
the projection base. There needs to be exactly one vector for each infimum-
irreducible concept in the lattice – these are the concepts which introduce new di-
mensions, each concept that can be written as the infimum of two concepts other
than itself is assigned the combination of the vectors of all infimum-irreducible
concepts above it. This is in fact a design issue for the algorithms – if you attach
a dimension to each attribute and thereby to each attribute concept, including
reducible concepts, you get a different layout. This was not wanted for Cer-

nato, as it is less structured. Therefore, we decided to attach dimensions and
thereby base vectors only to infimum-irreducible concepts.

Another aspect that has to be addressed when projecting the diagrams relates
to the reading rules for line diagrams: the diagram is in fact a directed graph
but the edges don’t have any arrows since it is assumed that their direction
is depending on the position of the nodes. This leads to a restriction for the
projection base: all vectors have to point downwards.

Although the basic projection is simple there remains the issue of finding
suitable vectors for the projection base. Since Cernato creates the diagram
incrementally, by adding single attributes into the structure, and the old projec-
tion should be kept to let the user see the incremental change, the problem of
finding the base is reduced to finding a single new base vector.

The existing base vectors might have been changed by the user so the algo-
rithm for finding the new vector can’t assume any knowledge about the existing
base. The first approach was to take all existing vectors and put a new vector into
the biggest free angle – adding two edges to the left and right for ensuring the
downward direction. The first vector created will be the vertical one (assuming
the left and right borders are symmetrically set).

The results of this were not satisfactory. For example it is often possible to
use the same vector for more than one dimension, the most obvious example is a
conceptual lattice that is a chain with respect to the concept order and with the
n-dimensional vectors: (0, 0), (1, 0) and (1, 1). This can be displayed as a chain
if and only if the two dimensions will be projected into one direction, i. e. if they
use the same base vector. Even if it is possible to break this chain later, because
it is not derived from implications that are true in general, it is often convenient

152

to get it in the first layout since it is aesthetically more pleasing. The result of
the simple approach for this diagram would be the vertical downward vector for
the first dimension and a vector close to the diagonal for the second. This is
usually not the diagram one expects and there are further examples where this
approach fails to achieve asthetically pleasing or even easily readable diagrams.

The approach taken for Cernato is only slightly different: instead of using
the whole base for finding the free space we use a smaller set of vectors. This set of
vectors is found by looking at the way the ideal of the attribute concept connects
to the rest of the diagram. Obviously the lines connecting the ideal to the rest of
the diagrams should not use the same directions as other children of the upper
neighbours of the ideal. Since all new points in the ideal are connected to old
points in the rest of the diagram along the new dimension, we do not want to use
directions for the new projection vector that are already used for edges between
upper neighbours of the ideal and their children in the rest of the diagram.

Algorithm 3. findNew2DVector(Concept C)
I ← ideal of C
U ← all upper neighbours of concepts in I that are not in I
V = ∅
for all Cu in U do

for all Cc which are child of Cu but not in I do
V ← V ∪ (coord(Cv)−coord(Cc))

end for
end for
if V = ∅ then

Use vertical downward vector as new projection vector
else

Find downward vector such that the angles to vectors in V are maximized
end if

The algorithm used is presented as Algorithm 3, which takes the new at-
tribute concept as a parameter and assuming that it is a new concept not existing
in the diagram without the new attribute. This algorithm ignores the fact that
there are more directions involved whenever an old concept was only moved
and not duplicated – in this case the direction of its connection to its upper
neighbour outside the ideal will be a combination of the old difference and the
new projection vector. But the implementation in Cernato demonstrates that
the result of this simple algorithm is easily readable in most of the cases and
was sufficient for the purpose of Cernato. There where only slight changes for
avoiding symmetry (which leads to collisions) and using a different weighting,
preferring vertical vectors but stretching the flat ones.

153

4 Moving Points in the Diagram

As stated before we wanted the user to be able to change the layout of the di-
agram without breaking the projection of the underlying semantics. Of course
the first restriction coming from the reading rules of the diagram is easily imple-
mented by ensuring that the vectors in the projection base always point down-
wards. But how can the semantics of the diagram hold while the user is able to
move every point in the diagram1? We re-use the example shown in the middle
of Fig. 1 and show how a movement of each of the points would change the
diagram (see Fig. 5).

Cat Brown

Animal

Yoyo Samson

Hal

Cat Brown

Animal

Yoyo Samson

Hal

Cat Brown

Animal

Yoyo Samson

Hal

Cat Brown

Animal

Yoyo Samson

Hal

bb
11

bb
22

bb
11

bb
22 bb

11
bb

22

bb
11

bb
22

Fig. 5. Examples of algorithm behaviour when individual points are moved

The upper two diagrams show how the movement of a chain is handled:
whenever one of the points in the chain is moved, the base vector for this dimen-
sion is changed so the point is projected to the new position. In the examples
shown only the horizontal coordinates of the points are changed, the chain is
projected into dimension one in the n-dimensional structure and therefore the
1 Except the top which is used as origin for the whole diagram

154

x-coordinate of the projection vector from dimension one onto the plane has to
be changed to move the point to its new position.

This is true for the upper two examples, although the change is related to
the position in the chain: if the lower point is moved, the change in the base
vector is smaller compared to a movement of the upper point – this behaviour is
similar to a lever and is a direct result of the parallel projection used. Another
effect of the parallel projection is the change of all points below – since the other
projection vectors are kept, all points below are also moved.

If the right point is moved (lower left diagram in Fig. 5), the behaviour is
quite similar. This time the point has one connection to an upper neighbour
which is in the direction of dimension two in the n-dimensional diagram. So this
time the projection vector for the second dimension has changed, thus moving
the point itself and the bottom element, which is below the moved point and
has to be moved to keep the parallel projection.

If the bottom element of the example is moved, the situation gets a little
more complex. This time there is no single vector which can be used to find the
projection vectors to change. The algorithm used in Cernato in this situation
is to distribute the movement along the projection vectors of each dimension
in which the point differs from one of its successors. This results in a kind of
shearing of the whole diagram, an effect that is quite welcome in this situation.

A more detailed version of this algorithm can be found in Algorithm 4. The
parameters are the point moved and a vector representing the change in the
plane that the user indicated by dragging the corresponding point.

Algorithm 4. movePoint(Concept C, 2DVector v2d)
let v be a vector in Rn

v ← 0
for all concepts P that are predecessors of C do
v ← v + C.vector()− P.vector()

end for
d← number of dimension in v which are 6= 0
for all dim which are dimensions of the n-dimensional structure do

if v(dim) 6= 0 then
change the projection vector for dim by v2d

d∗C.vector(dim)

end if
end for

The n-dimensional structure stays unchanged while the projection onto the
plane is changed, which can be related to a specific movement of the viewpoint
in the n-dimensional space. This might be a reason why the process of moving
the diagram is experienced as intuitive by users.

155

5 Extending the Diagram

Another important aspect when using FCA interactively is the way diagrams are
expanded when the lattice is refined by adding additional attributes. Although
the space in this paper isn’t sufficient to describe the process used in Cerna-

to in detail, we will try to give the basic idea. Whenever the user adds a new
attribute to the existing diagram, Cernato extends the diagram in a way that
the relation between the old and the new can be seen. This is done by keeping
as much structure as possible from the old diagram and animating the process
of the change.

The concept used in Cernato is based upon an algorithm presented by
Godin and Missaoui ([GM94], for a more complete description see [Be99]). The
algorithm extends an existing lattice by adding an additional attribute concept
and building the closure with respect to the infimum operation, i. e. adding all
infima between existing concepts and the new attribute concept.

All the new concepts created are either the attribute concept itself or infima
of it and some concept that already existed in the old diagram. For this reason the
new projection base needs at most one new vector. All points in the ideal of the
attribute concept are either new points, created as infimum from the attribute
concept and an existing point, thus being different from their predecessor in
the existing diagram structure only by the vector of the attribute concept, or
they are a concept that existed in the old diagram but now its intent has been
extended with the new attribute. In this case its position has been changed by
the vector for the new attribute.

This means that the attribute concept and all points below are related to
a concept in the old diagram – either to its old position or to one of their
predecessors in the new diagram, the one that is not in the ideal of the attribute
concept. This fact is used by Cernato to create an animation from the old to
the new diagram: the whole ideal of the new attribute concept is moved out of the
old diagram structure, partly by moving existing points, partly by duplicating
points and moving the new points.

The opposite process of removing attributes or the dual processes of adding
and removing objects are not implemented yet. The algorithms needed for doing
this can be derived by reverting the Godin & Missaoui algorithm and/or using
its dual form.

6 Further Research

The author is currently evaluating a new algorithm, for a similar effect, that
behaves in a slightly different and more consistent way. The basic idea for this
algorithm is to find the maximal chains in the attribute order and assigning
each of them a dimension and thereby a vector with a single coordinate set. An
attribute is assigned the sum of all the vectors of the chains it is part of.

156

The major difference of this approach in comparison with the implemented
algorithm can be seen by looking at the left diagram in Fig. 2: the chains for
the implications “every cat is an animal” and “every dog is animal” are simply
ignored to avoid conflicts in the projection. The new algorithm should create a
diagram using only two dimensions, prolongating the diagonal of the diamond
in the same manner as done in Fig. 4. The new projection is shown in Fig. 6.

Cat Dog

Animal

Yoyo Samson

Hal
(0,0)

(1,1)

(2,1) (1,2)

(2,2)

Animal

Cat Dog

(1,1)

(1,0) (0,1)

Fig. 6. Layout using the new algorithm

To allow sharing algorithms and code between different applications, the au-
thor started an Open Source project which can be found on the World Wide
Web ([Tockit]). The project plans to implement a framework for Conceptual
Knowledge Processing in Java, including the algorithms described in this paper.
Within this framework applications for special purposes will be built by com-
bining suitable components, like a component for editing conceptual scales in an
Anaconda-like style and another for presenting line diagrams in a Webbrowser.
The project is also intended to synchronize the implementation of scientific work
on this topic. There will be information available on the Website and the com-
munication structures like mailing lists and news forums allow the sharing of
ideas between researchers and developers.

Another interesting aspect for further work is to create a more abstract ver-
sion of these algorithms to show their potential to other fields of Conceptual
Knowledge Processing. Since we operate only on the partial order of the at-
tributes, the algorithms may well be applicable to a large number of Conceptual
Knowledge Processing tools. The work of Barwise & Seligman ([BS97]) seems to
give valuable terms and patterns for this goal.

7 Conclusion

The success of Cernato in target groups, formerly not addressed by tools like
Toscana and Anaconda, shows that by easing the interface to comfort un-
trained users, the methods of Formal Concept Analysis can be used in different,

157

more-demanding environments. The interaction based on the conceptual model
described here and the use of animation and of terms comprehensible to the user
leads to an intuitive understanding of the underlying concepts and allows a more
experimental process for creating conceptual systems.

From the experience gained with Cernato we can learn for future applica-
tions. Although Cernato has been successful in the applications it was designed
for, there is still a need for other tools like Toscana, which offers the ability to
handle large data sets and to present a simpler user-interface due to a reduced
set of functionality offering less interactivity. Experience using both tools should
be used for constructing new applications.

8 Acknowledgments

The author wants to thank Jo Hereth for helping him understanding the work
presented in this paper and refining the algorithm – including the ideas presented
in Section 6. Also NaviCon GmbH contributed much to this paper by giving him
the chance to work on Cernato. Further thanks go to Peter Eklund and Thomas
Tilley for their comments on the final drafts.

References

[Be99] P. Becker: Einsatz der Formalen Begriffsanalyse zur Dokumentennaviga-
tion. diploma thesis (in german) Computer Science Department of the
Philipps Universität Marburg. 1999.

[BS97] J. Barwise, J. Seligman: Information Flow: the Logic of Distributed Sys-
tems. Cambridge Tracts in Theoretical Computer Science, 44, Cambridge
University Press, 1997.

[GW99] B. Ganter, R. Wille: Formal Concept Analysis : Mathematical Founda-
tions. Springer Verlag, Berlin – Heidelberg – New York, 1999.

[GM94] R. Godin, R. Missaoui: an incremental concept formation approach for
learning from databases. In: Theoretical Computer Science, 133, p. 397–
419, 1994.

[NaviCon] Homepage of NaviCon: http://www.navicon.de
[Sk89] M. Skorsky: How to draw a concept lattice with parallelograms. In:

R. Wille (ed.): Klassifikation und Ordnung, p. 191–196, Indeks-Verlag,
Frankfurt 1989.

[Tockit] Homepage of the TOCKIT project: http://tockit.sourceforge.net.
[Vo96] F. Vogt: Formale Begriffsanalyse mit C++– Datenstrukturen und Algo-

rithmen. Springer, Berlin – Heidelberg – New York 1996.
[VW95] F. Vogt, R. Wille: TOSCANA — a graphical tool for analyzing and

exploring data. In: R. Tamassia, I. G. Tollis (eds.): Graph Drawing ’94.
LNCS 894, p. 226–233, Springer, Berlin–Heidelberg 1995.

158

http://www.navicon.de
http://tockit.sourceforge.net

	Introduction
	N-Dimensional Projection of Concept Lattices
	Projection Onto the Plane
	Moving Points in the Diagram
	Extending the Diagram
	Further Research
	Conclusion
	Acknowledgments

