
117

Dependency Analysis Using Conceptual Graphs

Lisa Cox, Dr. Harry S. Delugach

Computer Science Dept.
University of Alabama Huntsville

Huntsville, AL 35899
lcox@cs.uah.edu, delugach@cs.uah.edu

Dr. David Skipper

Bevilacqua Research Corp.
Huntsville, AL 35815
DavidS@brc2.com

Abstract. Analysis of dependencies between entities is an important part of
modeling. Whether the modeling domain is at the enterprise level or at the
system or software component level, characterization, representation, and
analysis of these dependencies is essential to correctly modeling the
domain. For example, it is important to identify and characterize
dependencies between both system and software components when trying
to determine the extent of and impact of a breach in computer system
security or of a malfunction in a component. Analysis of such
dependencies is also greatly beneficial in both the requirements and
maintenance phases of software engineering. What is needed is a formal
characterization of the concept of dependency along with a more formal
and unified approach to dependency analysis . This paper introduces the
notion of dependency at a general level. In the present literature, an actual
definition and characterization of a dependency is usually avoided, and it is
difficult to separate the discussion of the dependency from the particular
domain of interest. Most of the literature available implies that it is simply
“understood” that a dependency can be represented by a directed arc on a
graph where the dependent components are the nodes of the graph. Much
work in the current literature addresses dependencies in widely varying
ways. This paper attempts to formalize both the definition and
characterization of a dependency in a unified approach, and then illustrates
how dependencies themselves and the effect of those dependencies upon a
system can be efficiently modeled using Conceptual Graphs.

1.0 Introduction

In modeling, it is usually important to identify, characterize, and understand the
impact of the dependencies that exist between the entities in the model. This is

118

vital at all levels of modeling and in all domains. The concepts and approach
presented in this paper are applicable at all levels and in each domain. We start
by considering that there are many notations in use for the specification of and
analysis of models. While some of these notations allow explicit specification of
dependencies, some include dependency only by implication. For example,
UML represents a simple dependency as a dotted arrow between components. [1]

In the software engineering domain, OSD (Open Software Description) is
presently being pushed by Microsoft as a standard for describing and packaging
software [5]. While OSD and the literature surrounding it are in agreement that
dependency representation is important, OSD simply represents dependencies by
supplying a list of other components that are required to be present before a
particular software component can be installed on a system. [6]

Work has also been done in the natural language processing area dealing with
dependency analysis between words of a sentence, and specific linguistic
dependency types have been identified, such as the dependency between a noun
and a determiner or the dependency between noun and verb. [16], [3] However,
these dependencies once again are limited to the particular domain in question
(i.e., linguistic dependency) and explicit definitions of an abstract dependency are
not considered.

Much of the present literature takes the definition of dependency for granted
and where definitions are occasionally given, they vary widely. Some sources
maintain that dependencies are simply first-order logic formulae, or in database
terminology, constraints [18], [4], [5]. Others insist that higher-order logic is
required to express dependencies. [14] Some take a probabilistic approach and
express dependencies as conditional probabilities between specified variables or
look solely at dependencies from a statistical viewpoint. [10], [17], [2]. Some
sources take the approach that a dependency is best modeled by the client/server
relationship, and then develop the definition of dependency in client/server terms
[15], [19], [8], while others specify types of dependency such as structural and
functional dependencies [8] or data and value dependencies. [13].

Keller, Blumenthal, and Kar in [8] attempt a more in-depth characterization of
dependencies and define six different “dimensions” of dependency, and Prost in
[14] also takes a “type-based” approach to dependency analysis. However, some
of the dimensions given in [8] for analyzing dependencies are actually attributes
of the computer system under analysis. Once again, there is no clear delineation
between the dependency itself, and the domain in which the dependency exists.

Mineau in [12] discusses the addition of functions to and the treatment of
functional dependencies in Conceptual Graphs, but even Mineau does not address
the explicit definition of a dependency.

This paper presents an approach for formally defining and characterizing
dependencies using Conceptual Graphs. It is our contention that our approach to
the definition of dependency and the use of Conceptual Graphs as a dependency
language allows for a much more coherent and complete description of
dependencies at the general level and explicitly delineates the characteristics of

119

the dependency from any domain limitations. We also expect the use of
Conceptual Graphs to allow more powerful analysis of the dependencies of a
given system.

2.0 Definitions

Our perspective comes from the Realist’s view as defined by Hayes in [7]. We
assume “a set can be a set of anything” and that “the universe can be physical or
abstract or any mixture” in order to make our universe as general as possible.[7]
Based upon this perspective, we then refer to an entity as anything that can be a
member of such a set, and therefore can be anything we want to model. This can
be an object, a concept, an organization, or any other thing to be modeled. We
also make the assumption that the entities are not static. The entities can change.
At this point, we simply assume the existence of something called change that
happens to entities, but we deliberately do not yet attempt to define change in
order that it, too, may be allowed to be as general as possible. We understand that
an entity may change for at least several and possibly many reasons. The entity
may have change as part of its very nature (for example, try to model a 2-year-old
child without allowing for change). The entity may also be influenced to change
by something outside itself. This latter type of change is of specific interest to us
and it is upon this that we base our understanding of dependency. From this
understanding, we assume that there are cases where the “something outside
itself” possibly or potentially influences the entity to change.

We ask the reader to accept our general definitions for entity, change, and
potential for change in the interest of concentrating upon dependency. We also
assume the existence of a relation R between some number of entities, expressed
by R(A, B, C, D, . . .) where it can be said that the R relationship exists between
the entities A, B, C, D, etc.

In the general case, we define a dependency as such a relation, D, between
some number of entities wherein a change to one of the entities implies a potential
change to the others. We can therefore express such a general dependency as
D(A, B, C, D, . . .) where D ∈ R. This general form of a dependency is shown in
Figure 1. In order to emphasize the complexity of this most general type of
dependency (which may exist between many entities), we refer to it as symbiosis.

As an example of this most general type of dependency, or symbiosis, we can
consider the relationship between the departments within a corporation. It is easy
to see that the engineering, accounting, contracts, marketing, and facilities
departments are dependent upon each other. However, it is not at all easy to
specify and quantify the extent of such a dependency.

120

 Entity:
D Entity:

C
Entity:

B

Entity:
E

Entity:
F

Entity:
A

Dependency:
D(A, B, C, . . .)

. . . .

Fig. 1. Graphical representation of most general form of a dependency

As a first step in our analysis, we focus upon a much simpler type of
dependency, the case of a dependency between only two entities, D(A, B). In the
case where A depends upon B and B depends upon A, this dependency can be
seen as a bi-directional relationship. We call this bi-directional dependency an
interdependency. Given such an interdependency between two entities, we can
now separate the dependency D(A,B) into at least two one-way, or unidirectional
dependencies d1(A, B) and d2(B, A). We can be sure that this is always the case,
because we have included “independent” in our type hierarchy for dependencies
(refer to Figure 4).

Entity: A Dependency:

D(A, B)

Entity: B

Fig. 2. Bi-directional dependency, or interdependency, between two entities

In the simplest case of a dependency, a unidirectional dependency between two
entities, d(A, B), we can say that A depends upon B. If A depends upon B, then a
change in B implies a potential or possible change in A. As in Keller, et. al.[12],
we refer to A as the dependent and B as the antecedent. This definition of the
simplest form of a dependency is very like the definition of dependency given in
[1] and is depicted in Figure 3.

 Dependent:
A

Dependency:
d(A, B)

Antecedent:
B

Fig. 3. Graphical representation of the simplest dependency

Again, it is important to note that this definition of the simplest case of
dependency expresses a one-way direction for the dependency. As Briand, Wust,
and Lounis [2] point out, it is not only possible, but common that a bi-directional

121

dependency exists; and, given the definition of the most general form of
dependency above, it is also conceivable to have such an interdependency
demonstrated between N entities where N>2.

Our initial work is based upon the decomposition of complex dependencies
into unidirectional, binary relations. The complex dependency can be broken into
some number of unidirectional dependencies. As described above, it is easy to
see that in the case of an interdependency between two entities, the bi-directional
dependency can be described using at least two one-way dependencies between
the two entities. We expect that in a case of symbiosis among N entities, the
symbiosis can be represented by at least

()N
22

unidirectional dependencies. We use the term “at least” here because there may
be multiple types of dependency existing between any two entities. For example,
both an intermittent, time-based dependency and a static structural dependency
may be involved in the interdependency. Even if the dependency is of a single
type, such as a functional dependency, it could include several different and
specific “needs” of the entities. In that case, a separate unidirectional dependency
could be defined for each specific need. Our continuing research will include a
more in-depth investigation of this expectation.

3.0 Describing a dependency

Now that we have defined both a general dependency and the most simple
dependency, we need to discover the characteristics that are inherent in all
dependencies and we need to investigate the types of dependency that are
possible. Our research is focusing on the very ambitious attempt to produce what
might be called an ontology of dependencies. This includes both the
identification of a set of attributes which apply to every dependency and the
development of a general dependency type hierarchy based upon those attributes.

3.1 Attributes which describe a dependency

Keller, et. al.[8] is the only source in which we have found an attempt at the
classification of dependencies based upon such attributes. Keller, et. al.[8] lists
six attributes of dependency which are represented as orthogonal axes in a six-
dimensional dependency space wherein each dependency can be graphed. Our
initial set of attributes, which are applicable to all dependencies, includes two
attributes from [8], criticality and strength. However we believe that the other
four attributes cited by [8], rather than being associated with the dependency,
would be more properly represented as attributes associated with the system
components (the entities A and B) or with the system, itself. For example, the
“component type” cited by [8], is not an attribute of a dependency as much as it is

122

an attribute of the entity, A, being modeled, and the attribute “dependency
formalization” is actually dependent upon the particular system in question.

To the two attributes we have taken from [8], we have added the attributes of
impact, sensitivity, stability, and need as important to all dependencies. Keller et.
al. [8] also addresses the issue of “time”, although it is not included in the six-
dimensional dependency space. This is very like the attribute we have named
stability. The following represent our current definitions of our initial set of
attributes:

Sensitivity (or fragility) – how vulnerable to compromise or
failure is this dependency? Possible values for this attribute are
Fragile, Moderate, and Robust.

Stability (like “time” in [8]) – a measure of the continuity of the
dependency’s vulnerability to compromise or failure (sensitivity)
over time. One way of looking at stability is to ask the question:
“When is the dependency fragile?” Possible values for this attribute
are Extremely Stable, Infrequent, Periodic, Certain Defined Times
only, etc.

Need – what “need” of entity A is fulfilled by entity B? This can
be expressed as a list of particular capabilities upon which this
dependency is based. Possible values for this attribute include
Authorization, Resources Provided, Testing, or at lower levels could
include Text Editing, Computation, Network Access, File
Save/Retrieval, etc.

Importance (or criticality) – what is the weight of this
dependency as a determinant of entity A’s success, or how critical is
this dependency to the goals and overall function of entity A?
Possible values for this attribute are: Not Applicable, High, Medium,
and Low.

Strength – a measure of the frequency of the need or the
importance of this dependency, from entity A’s viewpoint. How
often or how much does entity A rely upon this dependency in any
particular time period? One way of looking at Strength is to ask the
question: “How often does this dependency’s importance or need
come into play?” Possible values of this attribute are Daily, Hourly,
Yearly, etc. or a numeric value representing how often the
dependency is an issue during a particular time period.

Impact – in what way is the entity’s function affected by
compromise or failure at this particular dependency? Possible
values for this attribute are: None, Mission Compromised,
Information Unreliable, Performance Degraded, Corruption/Loss of
Information/Communication.

This represents our initial attempt to identify the set of attributes which are
applicable to all types of dependencies. Using this initial set of attributes, we are
able to determine an initial version of a hierarchy of dependency types. We

123

expect that if it were possible to identify a complete set of such attributes, that we
should then be able to identify all possible dependency types in our hierarchy.

3.2 Dependency type hierarchy.

Once a complete set of dependency attributes is identified, it will then be
possible to establish a type hierarchy, resembling a lattice, based upon those
attributes and their values. Using this hierarchy, specific types of dependency are
characterized and related to each other, and dependency types can be chosen to be
applicable to particular domains. Eventually, it should be possible to fully
populate the dependency type hierarchy based upon the attributes identified.
Figure 4 contains a portion of the dependency type hierarchy identified so far.
From the types shown in this structure, it is now possible to analyze the
dependencies discussed by each of our sources and indicate where in the structure
their particular approach to dependency lies.

Several of our sources assume no more detail about a dependency than that it is
a directed arc between two entities. [3], [5], and [9] are examples.

Mineau [12] goes into specifics about functional dependencies. In Lukose and
Mineau[11], data dependencies are explicitly referenced, and the messages passed
between actors can also be seen as data dependencies. Lukose’s “control marks”
and “control maps” also represent dependencies which are reflected in our
hierarchy as the control dependency type. These dependencies appear to lie near
the bottom of our structure as functional, data, and control dependencies
respectively.

Lukose and Mineau [11] also discuss co-reference links between concepts. A
co-reference link indicates that two concepts exist which describe the same entity.
We have allowed that two or more representations for the same entity may be
required and have included a co-reference dependency in the structure.

Briand et. al. [2] refers to data and control dependencies in particular metrics
analyzed, but also introduces the dependency between object classes based upon
inheritance. That type of dependency lies in the “requires” section of the structure
as can be seen in Figure 4.

4.0 Using Conceptual Graphs as a dependency language.

Given the definition of dependency above, it is now straightforward to map
dependencies into conceptual graphs. First, the definition of the simplest
dependency is encoded in Conceptual Graph terms. Figure 3, depicting such a
dependency is already in Conceptual Graph form. From there, the graph may be
relationally expanded to include the definition of the dependency using its
attributes. This conceptual graph is shown in Figure 5.

The relation, “dependency” has now been expanded into a graph defining a
concept of “Dependency” which is related to the previous concepts of

124

“Dependent” and “Antecedent” and which is also now associated with attributes
characterizing the most general dependency.

Note that the conceptual graph representation allows us to easily represent the
most general case and also to expand the general graph in order to represent more
specific information about the dependency as it becomes available, i.e. the
Conceptual Graph representation facilitates modeling at multiple levels of detail
simultaneously. This addresses one of the most difficult problems in modeling,
the efficient representation of and processing of entities modeled at multiple
levels of fidelity. Using Conceptual Graphs, the scalability problem becomes
much less difficult and in some cases is solved altogether.

usually
occur
together

Absurd

D

dependency independent

time based
dependency

dependent
irrespective
to time

causality

requires

functional dependency

mandatory

required under
certain conditions

choose one
of many

only after
chain of
events

mutual
exclusion always

occur
together

data
dependency control

dependency

requires
for existence

bound
spatially

part of

implication

follows

co-references

inheritance

usually
occur
together

Absurd

D

dependency independent

time based
dependency

dependent
irrespective
to time

causality

requires

functional dependency

mandatory

required under
certain conditions

choose one
of many

only after
chain of
events

mutual
exclusion always

occur
together

data
dependency control

dependency

requires
for existence

bound
spatially

part of

implication

follows

co-references

inheritance

Fig. 4. Dependency type hierarchy

Dependent
A

Dependency antecedent
Antecedent

Bdependent

attr attr attr

due to
attr

Strength

Importance Sensitivity
Impact

Need

Stability

attr

125

Fig. 5. Relationally expanded dependency graph

For applications such as those in [3], that need no more knowledge of the
dependency than the direction of the relationship (or the directed arc), the graph
shown in Figure 3 need not be expanded at all. Also note that if the parts of
speech used in [3] are defined as subtypes of “Dependent” and “Antecedent”, then
restriction of the graph shown in Figure 3 allows the expression of all the
dependencies used by that source.

As noted earlier, [8] focused upon dependencies between hardware and
software system components in a distributed system. All six dependency
attributes cited in [8] are vital to analysis of that domain. While our dependency
attributes specifically include two attributes from [8], the issues surrounding the
other four must also be addressed. In order to address the others, we first need to
restrict the dependent and antecedent to a subtype of “computer system
component.” This representation allows the information pertaining to the system
components to be put into attributes associated with those concepts in order to
leave the definition of the dependency concept uncluttered. A possible definition
of “computer system component” which will include the information required by
[8] is shown in Figure 6.

 Computer System
Component

attr

Compone
nt Component

Type
(File, S/W,

H/W)

Version
Nmbr

Manufacture
r

Capabilities
Provided

Capabiliti
es

attr attr
attr

attr attr

Fig. 6. Computer system component definition

In this way, the two requirements for “component type” and “component
activity”[8] (which we have named “capabilities provided”) are represented as
attributes of the components and thereby influence the analysis, but are separated
from the dependency itself.

The dimension of “locality”[8] is more difficult to deal with. But if we
introduce the idea of dependency chains, as indeed were introduced in [8], then a
dependency can be defined between entities A and E, d1(A, E) where the set of
dependencies, {d2(A, B), d3(B, C), d4(C, E)} form such a dependency chain.
This introduces a limited transitivity of dependencies: given the possibility that
d2, d3, and d4 can be of different dependency types, it is very difficult to draw
conclusions about the nature of such transitivity without examining the specific

126

definitions of the dependency types. However, if d2, d3, and d4 are identified as
dependency types that are indeed transitive, then the attribute of “locality”[8] can
then be implemented by counting the “hops” on the fully expanded dependency
chain and including a weighting factor or “importance” such that a dependency
“hop” between a software component and a hardware component is more
significant than one between two software components.

We also have not addressed the last dimension given [8]. “[D]ependency
formalization” does not appear in our attribute list. Keller et. al. define that
particular dimension as “a metric [signifying] how expensive and/or difficult [it
is] to acquire and identify this dependency,” particularly relating to the “degree it
can be determined automatically.” Although we understand why this particular
“dimension” is important given the domain of focus, we again think it is better to
separate this from the attributes of the general dependency. In some systems a
dependency may be extremely simple to “determine automatically” if UML
descriptions of system components are available, while an identical dependency
may be extremely difficult to identify “automatically” in a legacy system which
has little supporting documentation.

5.0 Our approach applied to two examples

To illustrate the application of our approach, we now present two examples. In
the first, we consider the analysis of a particular dependency in a computer system
from the information security perspective. A complex dependency exists between
network browser (Brows), e-mail package (EMail), word-processing package
(WP), and the hardware/software that provides network access (Net). That
dependency may be broken into at least twelve unidirectional dependencies as
follows.

d1(Brows, EMail) d2(Brows, WP) d3(Brows, Net)
d4(EMail, Brows) d5(EMail, WP) d6(EMail, Net)
d7(WP, Brows) d8(WP, EMail) d9(WP, Net)
d10(Net, Brows) d11(Net, EMail) d12(Net, WP)
In systems where the network browser and the e-mail package are unrelated, d1

and d4 will be extremely weak dependencies, to the point where they are
categorized as independent. In other systems, where the same software package is
used to provide both these services, the dependencies will be much stronger. In
the case where the word processing package, WP, depends upon the network
browser, Brows, to download new fonts, the dependency d9(WP, Net) can be
replaced by the dependency chain: { d7(WP, Brows), d3(Brows, Net) }.

WP dependency Brows

127

Fig. 7. Dependency Example

In this example, the attributes of each dependency could be given values where
data is available, but left without a value if the attribute does not involve itself in
the analysis.

Dependent
WP

Dependency antecedent
Antecedent

Browsdependent

attr due to
attr

Strength:
Hi

Importance:
Hi

Need:
WebFontsUpdate

Fig. 8. Dependency Specifics

In the second example, we look at a dependency encountered when designing a
model at the enterprise level. A complex dependency, or symbiosis, exists
between certain entities within the enterprise, such as the contracts department,
the proposal department, and the engineering department. Let us identify one
particular dependency that exists at the point of decision on whether or not to bid
upon a contract. The contracts and proposal departments depend upon the
engineering department for technical knowledge of the scope of the effort,
estimates of the cost of performing the contract, estimates of the cost of bidding
upon the contract, and possibly estimates of the chances of a contract win. The
engineering department and the contracts department depend upon the proposal
department for resources and expertise that will allow the preparation of and
delivery of a proposal. The engineering and proposal departments depend upon
the contracts department for legal knowledge and possibly for a “go/no-go”
decision.

This complex dependency may be broken into a set of simple dependencies
that explicitly specify each one-way dependency identified. The following list
represents some of the dependencies that might be identified:

d1(ContractsDept, ProposalDept)
d2(ContractsDept, EngineeringDept)
d3(ProposalDept, ContractsDept)
d4(ProposalDept, EngineeringDept)
d5(EngineeringDept, ContractsDept)
d6(EngineeringDept,ProposalDept)

128

We can then determine the attributes associated with each dependency. For
example, we could determine that because the enterprise has a documented and
often-used policy for proposal preparation, the sensitivity of both d1 and d6 is
“robust.” However, we also could assign a sensitivity of “fragile” for d4 and d2 if
there has been some recent history wherein the engineering department has been
less than helpful during proposal efforts. In that case, we could also assign an
impact rating of “information unreliable” and an importance rating of medium if
the enterprise is of the opinion that the contract bid can take place without
detailed engineering input, but would be more confident of their efforts if that
detail were available. The stability of d4 could be assigned to “3rd and 4th
weeks” if there are two particular weeks when input from the engineering
department to the proposal department will make a difference in the proposal
department’s output. Given the description above, the need associated with d4
could be formulated as a list of capabilities or of outputs from the engineering
department required by the proposal department: estimate of technical scope,
contract cost estimate, proposal preparation cost estimate, and estimate of win
probability. It can also be seen that the modeler might choose to break d4 down
further into a set of simple dependencies where the need associated with each is a
single product or output.

Dependent
Proposal

Dept

Dependency:
d4

antecedent

Antecedent:
Engineering

Dept
dependent

attr attr attr

due to
attr

Stability:
3rd/4thWeeks

Importance:
Medium

Sensitivity:
Fragile

Impact:
Information
Unreliable

Need:
Capabilities

List

Fig. 9. Dependency Example, Enterprise Level

6.0 Significance

Without a type based approach to dependency analysis, it becomes extremely
difficult to distinguish between widely differing dependencies. For example,
systems that easily represent functional dependencies have difficulty dealing with
causality. The statement that “a dependency exists between” two entities carries
almost no information. Is the dependency a causal relationship? Is it a mutually
exclusive relationship? Both relationships are dependencies and need to be
analyzed in much different ways. A type based approach to dependency analysis
will allow the modeling of dependencies at the traditional level where not much is

129

known besides direction of the dependency. But it will also allow much more in-
depth analysis of complex relationships in multiple domains.

7.0 Conclusion

The approach given in this paper shows that dependencies can be grouped
based upon the identification of attributes applicable to all dependencies. From
that set of attributes, a dependency type hierarchy can be produced that will cover
all dependencies found in the present literature. Our initial research indicates that
this approach provides a more general and unified approach to dependency
analysis. We have also shown that Conceptual Graphs provide a powerful
approach to represent, characterize, and analyze dependencies between the entities
in a model. Using Conceptual Graphs, we can more easily model entities at
different levels of model fidelity and when only partial information is available.
We are planning continued research which will extend these results to a broader
set of practical applications.

8.0 Continuing work

Continuing research is needed to fully investigate and populate the dependency
hierarchy in order that all relevant dependency types can be investigated in the
approach. We expect that new dependency types will be easily incorporated into
our approach simply because it is a type based approach. Also, as we discover
more attributes which are pertinent to the general case of dependency, they can be
easily added into the existing structure. A more complicated issue which needs to
be addressed is the representation and analysis of the most general form of a
dependency. A method is needed for decomposing such dependencies in order to
simplify analysis. In addition, research is needed in the formal analysis of the
method, and in analysis of the complexity of that method. We also need to
investigate a more formal definition of our assumptions for entity, change, and
potential for change, upon which our definitions are based.

Acknowledgment

This work has been funded in part by the Air Force Research Laboratory,
Wright Research Site, for the Defense Advanced Research Agency (DARPA)
Autonomic Information Assurance Program.

References
[1] G. Booch, I. Jacobson, J. Rumbaugh, and J. Rumbaugh, The Unified Modeling

Language User Guide: Addison-Wesley, 1998.
[2] L. C. Briand, J. Wust, and H. Lounis, "Using Coupling Measurement for Impact

Analysis in Object Oriented Systems," presented at IEEE International Conference
on Software Maintenance (ICSM98), Bethesda, MD, 1998.

130

[3] C. Chelba, D. Engle, F. Jelinek, V. Jimenez, S. Khudanpur, L. Mangu, H. Printz, E.
Ristad, R. Rosenfeld, A. Stolcke, and D. Wu, "Dependency language modeling, 1996
Large Vocabulary Continuous Speech Recognition Summer Research Workshop,"
Center for Language and Speech Processing, Johns Hopkins University Technical
Reports, Research Note 24, April 15, 1997.

[4] V. M. Crestana-Jensen and A. J. Lee, "Consistent Schema Version Removal: An
Optimization Technique for Object Oriented Views," IEEE Transactions on
Knowledge and Data Engineering, vol. 12, pp. 261-280, 2000.

[5] R. S. Hall, D. Heimbigner, and A. L. Wolf, "Software deployment languages and
schema," Dept. of Computer Science, University of Colorado CU-SERL-203-97,
December 18, 1997.

[6] W. J. Hansen, "Deployment Descriptions in a World of COTS and Open Source,"
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 1999.

[7] P. Hayes, "Aristotelian and Platonic Views of Knowledge Representations,"
presented at Second International Conference on Conceptual Structures (ICCS94),
College Park, MD, 1994.

[8] A. Keller, U. Blumenthal, and G. Kar, "Classification and Computation of
Dependencies for Distributed Management," Proceedings of the Fifth International
Conference on Computers and Communications (ISCC 2000), 2000.

[9] A. A. Kountouris and C. Wolinski, "High Level Pre-Synthesis Optimization Steps
Using Hierarchical Conditional Dependency Graphs," presented at 25th Euromicro
Conference (EUROMICRO '99), Milan, Italy, 1999.

[10] R. Levinson and A. R. Goodwin, "Explorations in Scientific Thinking: a Systems
Theoretic Approach: Chapter 2," in Scientific Thinking: a Systems Theoretic
Approach. Santa Cruz, CA, 2000, p. 65.

[11] D. Lukose and G. W. Mineau, "A Comparative Study of Dynamic Conceptual
Graphs," Brightware Inc/Department of Computer Science, Université Laval,, New
York, NY/Quebec City 1998.

[12] G. W. Mineau, "Views, Mappings, and Functions: Exxential Definitions to the
Conceptual Graph Theory," presented at Second International Conference on
Conceptual Structures (ICCS94), College Park, MD, 1994.

[13] M. Papazoglou, A. Delis, A. Bouguettaya, and M. Haghjoo, "Class Library Support
for Workflow Environments and Applications," IEEE TRANSACTIONS ON
COMPUTERS, vol. 46, pp. 673-686, 1997.

[14] F. Prost, "A Static Calculus of Dependencies for the l-Cube," presented at 15 th
Annual IEEE Symposium on Logic in Computer Science (LICS'00), Santa Barbara,
CA, 2000.

[15] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual: Addison-Wesley, 1998.

[16] D. D. K. Sleator and D. Temperley, "Parsing English with a Link Grammar," School
of Computer Science Carnegie Mellon University, Pitsburg, PA CMU-CS-91-196,
October 1991.

[17] V. S. Subrahamanian, P. Bonatti, J. Dix, T. Eiter, and F. Ozcan, Heterogeneous
Agent Systems, 1st ed. Cambridge, Mass: MIT Press, 2000.

[18] B. Thalheim, Entity-Relationship Modeling: Foundations of Database Technology.
New York: Springer-Verlag, 1998.

[19] E. S. K. Yu, J. Mylopoulos, and Y. Lespérance, "AI Models for Business Process
Reengineering," IEEE Expert, vol. 11, pp. 16-23, 1996.

