
Authoring Operations Based on
Weighted Schemata

Felix H. Gatzemeier?

Lehrstuhl für Informatik III, RWTH Aachen
fxg@i3.informatik.rwth-aachen.de

Abstract Conceptual authoring support enables authors to model the content of
their documents, giving them both constructive and analytical aid. One key aspect
of the constructive aid are schemata that contain proven structures that the author
may instantiate in her document.
This paper presents operations offered in an authoring system partially derived
from extended schema definitions. The author may instantiate a schema, expand-
ing an existing concept. In contrast with classical CG, the join with the host graph
is not maximal, but determined by the author. Generic commands allow concepts
and relations to be created, edited and deleted.
Analytical aid based on schemata checks whether a schema instance has been
severely mutilated after instantiation. In order to do this, schema elements (con-
cepts and relations) are given weight parameters. Removal of schema instance
elements triggers warnings of varying severity and with appropriate fixing oper-
ations.

1 Introduction: Authoring Problems and Conceptual Authoring
Support

Creating well-structured documents is a complex activity. The author has to solve the
problem of conveying a topic, usually in a given amount of space, building on some pre-
supposed knowledge and serving some interest. Key tasks in achieving this are devising
a coherent concept structure of the document and maintaining that structure during edits
[7]. Conventional authoring environments, however, concentrate on capturing, manip-
ulation and formatting text as a string of characters.1 Little or no help is available for
building the structure.

As an answer, we are working on a prototype of a high-level authoring tool pro-
viding Conceptual Authoring Support (CAS) named CHASID. It operates not only on
thepresentation(the formatted string of characters) and thepresentation structure(the
formal hierarchy of sections and subsections), but also on acontent model. By explic-
itly storing and editing this model, flaws in it or in the structure of its presentation

? This work is funded by the Deutsche Forschungsgemeinschaft (DFG) Grant No. NA 134/8-1.
1 For simplicity, I restrict myself here to textual documents. The ideas and implementation pre-

sented here do not rely on specific media types.

61

can be detected. CHASID can also help building the document by offering ready-made
substructures to be integrated, thus providing some formalized authoring experience.

Conceptual graphs (CG) and schemata lend themselves well to express the content
model and the substructures provided by the tool. The graph model has the appropriate
expressiveness and the editability of schema corresponds with the proposing character
of the substructures. [7] describes the overall CHASID authoring scenario, where the
concept graph is, among other operations, built by instantiating schemata chosen from
a schema browser. This implies extensions to the definition of a schema to provide
documentation for the author. Some required conditions given in type definitions are
enforced. More fundamental direction is given by document patterns presented in a
pattern browser.

When joining a schema to a graph, a maximal join is required by [12, Definition
4.1.3, p. 130]. In an interactively built graph, the author may prefer some compatible
concepts not joining, or an instance even if the join on the expanded concept is not
maximal. So, instead of a maximal join, this article proposes an interactive join.

The use of a schema as a building block resembles a macro that, once executed,
leaves new concepts and relations as traces in the document. The author may afterwards
modify the traces freely, obscuring or even removing them. When seen as a guide for
document construction, however, the schema should retain some integrity across modi-
fications, or it should be abandoned when crucial elements are removed.

To allow this behavior, I proposeweighted schemata. In such a schema, weights
are attached to concepts and relations that are remembered in the schema instance. If
crucial elements of a schema instance are later removed, warnings are issued. Optional
elements, on the other hand, may be freely removed. Currently, three weights are used:
optional, important and crucial.

This paper employs an Introduction-Methods-Results-Discussion structure to sup-
port the thesis that these extensions allow for a number of useful operations and diag-
nostics.

The Method section, section 2, describes the operations and diagnostics available. It
begins with the generic operations independent of the underlying canon, including the
modified procedure of joining a new schema instance to the host graph. It also defines
weighted schemata as a basis for diagnostics. For comparison, it also mentions specif-
ically implemented diagnostic patterns. Some notes on the implementation in PRO-
GRES2, a non-CG graph-based language, are also given.

To illustrate the usefulness, an extended example of instantiation, modification,
warning and correction is given in section 3.

In the discussion in section 4, benefits and limitations of schema-based authoring
are discussed. Some deviations from CG definitions are recapitulated. Section 5 wraps
up the document and gives an outlook on medium-term plans.

2 PROgrammed Graph REwriting Systems, [10; 11],http://www-i3.informatik.
rwth-aachen.de/research/progres .

62

http://www-i3.informatik.rwth-aachen.de/research/progres
http://www-i3.informatik.rwth-aachen.de/research/progres

Figure 1. Sample CHASID window with Introduction-Methods-Results-Discussion
(IMRD) schema instance (see section 3) and Open-Problem schema in schema browser

2 Method: Operations, Diagnostics and Implementation

CHASID works as an extension to existing authoring applications. Figure 1 shows the
main user interface. It provides additional views on the document, the primary ones
being a tree view of the presentation structure and a graph view for the content model.
Concepts and relations are of types known to CHASID (the known types) and carry
arbitrary type labels, which the author may use to differentiate sub-types for her in-
formation. Concepts additionally have arbitrarynames. Referents are not considered.
Supplementary and other specialized information (see 4.1) is stored in the document
graph in ‘light-weight’ nodes and edges.

The presentation structure is linked to the content model through import and ex-
port relations. A section exports a concept, if reading the section is required to fully
understand the concept. It imports the concept, if some understanding of the concept is
required to understand the section.

This section characterizes kinds of editing operations available, ways to design
warning functionality and some aspects of the implementation.

2.1 Editing Operations

The editing operations are classified here into three groups according to their origin:
generic, schema instantiation, and hand-implemented.

63

Generic Operations. These work without reference to any canon. They instantiate and
remove concepts and relations. Type labels and names of concepts and relations may be
changed freely, while the known type remains fixed. Concepts may bemerged, which
is a combination of restriction and join with relaxed conditions, where known types,
type labels, and names do not have to fulfill any conditions.

Operations to handle warning messages and conditions also fall into this category,
but are described in section 2.2.

Schema-based Operations.Schemata are presented to the author in a schema browser
to be instantiated in the graph. If the author chooses to instantiate a schema, she has
to indicate the node to be extended and may furtherdetermine the joinof the schema
with the existing graph. For each concept in the schema, she may give a concept in
the graph it is to join with. The instantiation command then creates instances of the
remaining concepts and of the relations of the schema body in the host graph and draws
the required arcs.

Schema instantiation is thus based on a controlled orinteractive join instead of
a schematic join. The interactive join is not required to be maximal, not even locally
maximal.

Hand-implemented. There are also specialized commands building on the known
types. For example, the author may move a section in the presentation structure be-
low another one instead of inserting and deleting relations or edges. The command uses
the known types of division, first-descendant and next-sibling in its implementation.

2.2 Diagnostics and Weighted Schemata

The content model and presentation structure are evaluated according to information
derived from schema instantiation and hand-implemented rules. The result of the eval-
uation are warning markers that are handled by generic operations.

Weighted Schemata.Each element (concept or relation) of a schema has one of three
weights.

OPTIONAL : The element may be removed without consequences.
IMPORTANT : The element should not be removed, except for special circumstances.
CRUCIAL : If the element is removed, the schema does not apply any more.

Removal covers both deletion of concepts as well as disconnection of concepts, as
that means removal of a relation. There is currently no provision for unwanted ele-
ments, whose addition (rather than removal) would trigger warnings. Elements may be
modified (given new type labels or names) in any case without entailing warnings.

The different weights are shown in the graphical notation by different border styles:
CRUCIAL elements are solid bold,IMPORTANT ones solid plain andOPTIONAL ones
dashed plain, as in figure 4.

64

As an additional documentation measure, therole of each schema element is also
recorded. This is used to assemble more informative message texts.

Formally, weights and documentation extensions can be added to the definition of a
schema given in [12, Definition 4.1.1, p. 129], as follows:

A weighted schematic clusterfor a typet is a set of weighted monadic
abstractions{n1 : 〈λa1u1, d1, ρ1〉 , . . . nn : 〈λanun, dn, ρn〉}, where each for-
mal parameterai is of typet. Each weighted abstractionni : 〈λaiui, di, ρi〉 in
the set is called aweighted schemafor the typet, with ni being the name of the
abstraction,di a description for the author andρi a function mapping the con-
cepts and relations ofui to weights and roles from ({OPTIONAL, IMPORTANT,
CRUCIAL} × String-label).

For readability, I use the regular names ‘schema’ etc. in the weighted instead of the
classical meaning. As only the weighted definitions are used, there should be no cases
of doubt.

During schema instantiation, the weights of the schema elements are recorded for
their counterpart in the host graph (displayed in figure 6). Thus, graph elements now
have weights specific to the schema contexts in which they are used. This change to the
graph model can be formally expressed as a set of tuples of schema names and (partial)
instantiation functions mapping elements fromui to the host graph.3

Hand-implemented Warning Rules are patterns of unwanted graphs. To describe
these, the programmer may use the full set of the underlying PROGRES facilities,
most frequently nodes (single nodes or node sets) and edges that must or must not
match, attribute restrictions, and edge path expressions. For example, there are warning
rules to find presentation structure sections that contain just one subsection, or a section
that imports a concept that comes before a section which exports it.

Warnings are attached to the graph as additional nodes with edges to all concerned
concepts and relations and a textual attribute containing the warning message. They
show up as non-concept nodes in the graphical display and as annotations in the exter-
nally edited conventional document. If the condition causing the warning is fixed, the
warning and all its representations are removed.

All warning messages can be manipulated with these generic operations:

– Suppress a specific warning, confirming the change that triggered this warning. The
warning’s representations disappear.

– Suppress all warnings of a type, indicating that this type does not apply to the
current document. The representations of all warnings of this type disappear.

– Resurrect all suppressed warnings about one concept or some context,4 to re-check
whether these warnings were intended for suppression. The representations of the
warnings re-appear as they were when suppressed.

3 This is compatible with the graph model described in [4].
4 The context actually requires a specific command to determine, for example, a subtree in the

presentation structure.

65

Generic operations helping to cure warnings about crucial or important elements
missing from schema instances are:

– Re-connect a missing important or crucial element and
– Dissolve the schema instance, leaving the concepts and relations as plain graph

elements.

2.3 Implementation Issues

CHASID is implemented using the high-level graph transformation language PRO-
GRES, whose graph model is the directed, node- and edge-typed graph with multiple
inheritance and attributes defined on node types. Edges may only connect two nodes,
there are no hyper-edges, as inn-adic relations withn ≥ 3. A language feature used
extensively in the implementation of CHASID are graph rewriting operations (produc-
tions), which partially replace matches of graph patterns with new graphs. Graph mod-
ifications can also be defined in a more imperative manner in so-called transactions.5

Concepts and relations are actually implemented as nodes, arcs as edges.
Generic and hand-implemented operations are arbitrary productions and transac-

tions, with the generic operations using only knowledge of more abstract node types.
From the PROGRES specification, C Code is generated, which is used in a frame-

work implemented in Java in which the productions of the specification can be executed
interactively [9]. The framework is extended with custom Java code for specialized
views and integration with the ToolBook multimedia authoring system.

The implementation instantiates and joins a schema in several steps:

1. The author is asked forjoining conceptsfrom the host graph;
2. A complete instanceof the schema is created in the host graph, withcoreference

edgesfrom the concepts to their joining concepts, as far as given by the author;
3. For each element in the instance just created, astub nodeis created that stores

role and weight. For the entire instance, aninstance marker nodeis created and
connected to the stubs.

4. Coreferring concepts arejoined; and
5. Parallel relations aresimplified.

Step 1 is performed through an user interface element automatically generated from
the template instantiation transaction. Steps 2 and 3 are the template-specific core, con-
sisting of transactions derived from schema descriptions. This derivation is determin-
istic, but not automated. As an example, figure 2 shows a simplified graph production
performing step 2 for the OPEN-PROBLEM schema (which is visible in figure 1).

The production begins with the keywordproduction , followed by its name and
parameter list (collapsed to an ellipse), a match pattern (the upper dashed box), and a
replacement pattern (the lower dashed box). Further parts are possible and present in
the actual production, but collapsed to ellipses here. Solid rectangles inside the match

5 While the terms production and transaction are used consistently here, understanding the dif-
ference should not be required to understand the text.

66

production TMCGT_OpenProblem_Instantiate[...] [...] =

::=

[...]
end ;

‘6 = descriptionR ‘5 = literatureR

‘4 = openR‘3 = questionR

‘2 = solutionR

‘1 = theProblem

TMCG_Coreference

10’ : TMCG_Question

9’ : TMCG_Answers

6’ = ‘6

5’ = ‘5

4’ = ‘43’ = ‘3

1’ = ‘1

TM_From

7’ : TMCG_Of TM_To

TM_To

TM_From

TMCG_Coreference

TM_To TM_From
11’ : TMCG_Attribute

TMCG_Coreference

TM_To

12’ : TMCG_Open

TM_From

13’ : TMCG_Ground

TMCG_Coreference14’ : TMCG_Literature
TM_From

15’ : TMCG_Ground

TM_To

TMCG_Coreference

TM_To

16’ : TMCG_Description

TM_From
17’ : TMCG_Topic

TM_To

TM_From

18’ : TMCG_Key

2’ = ‘2

8’ : TMCG_Solution

Figure 2. PROGRES production to instantiate an OPEN-PROBLEM schema, step 2

pattern denote nodes that must be matched, while dashed rectangles denote nodes that
may be matched or not. Matched nodes may be kept in the replacement pattern, denoted
with equalities. Solid rectangles with a type name behind a colon in the replacement
pattern indicate nodes to be created.

The optional nodes in the match pattern indicate the optional joining nodes from the
host graph. During execution of this production, they are connected with coreference
edges with the respective nodes of the new schema instance. PROGRES’ parameter
type checks enforce type conformance on the joining nodes (to the extent available in
the known types), so only conforming nodes are unified here. A further transaction cre-
ates the instance node and its stubs by calling on sub-transactions for attaching optional,
important or crucial parts in their roles.

The connecting steps (4 and 5) are generic actions with no connection to particu-
lar schemata. As coreference edges have been drawn by the instantiation productions,
the joining production takes two concepts with a coreference edge between them and
merges them. Relations to be simplified are detected by a production that requires iden-
tical source concept sets and identical targets. One of the relations is then removed.

When schema instance elements are removed, the stub nodes remain. Warnings are
then created by warning patterns that test for crucial or important stub nodes that have

67

no corresponding node and no such warning. The warning message states the role of
the missing element and suggests operations based on the weight stored in the stub. If
crucial nodes have been removed, it recommends removing the schema instance record,
consisting of the instance node and the stubs, as the remaining nodes no longer represent
the original schema. This can be done with a generic production, since the instance/stub
subgraphs are unambiguous. If merely important nodes have been removed, the stub
may be removed to remove the warning. If optional nodes are removed, the stub is
quietly removed. The warning also disappears if the author reconnects an appropriate
element.

3 Results: An Usage Example

As an example, parts of the structure of the present article are built up, modified and
corrected. Even though this is an idealized account, similar considerations have been
applied during writing.

The first snapshot, figure 1 on page 63 shows the main graph as an instance of
a Introduction-Method-Results-Discussion (IMRD) schema. This has been chosen to
achieve a clear distinction between descriptive and evaluative parts. This construction
is very common for empirical reports, up to being required in behavioral science [5].

Next, the main thesis is modeled in order to establish a focus. It states that extending
schema with weight information allows significantly more useful authoring support.
This model is shown in figure 3. As this substructure is the core of the creative authoring
work, there are no schemata available to support the author here.

Figure 3. Cutout of the document model containing the thesis

Further edits and text creation lead to a first version of the document. Reading it,
the author notices that the introduction is rather hasty, and the reader is shoved into an
array of unknown terms. Skimming the schema browser for structures of introductory

68

CONCEPT:*x

CONCEPT

IMP

FIRST

SUBS

CONTCONCEPTEXPDIVISION PERSON: {*}

KNOW
DIVISION:Introduction

schema ADVANCE-ORGANIZER for CONCEPT(x) is

To prepare defining a concept in the document, you can freshen super-concepts of it that should
be known to the reader in an advance organizer. The advance organizer does not introduce the
new concept, but should activate the right conceptual context in the reader’s mind. Lead the

reader gently to the gates of the presentation.
You may structure the connection between presentation structure and content differently, or you

may choose not to have the reader modeled at all while still building an advance organizer.

Figure 4. Schema ADVANCE ORGANIZER

sections, the author finds the advance organizer schema. An advance organizer is lo-
cated early in a document and activates concepts already known to the reader in order
to prepare him to add new refining concepts underneath them. Numerous psychological
studies have verified advance organizers to have a positive influence on text recall, so it
is listed in psychologically oriented writing instructions like [1].

The schema for an advanced organizer (figure 4) contains part of the presentation
structure to identify the introduction and parts of the content model to identify presup-
posed knowledge of the reader and the parts to be introduced. The crucial core of the
pattern are the introduction, the subsumed new concept and the presupposed concept.
The structural model connecting top division and content is optional to avoid harsh
warnings should the author construct this otherwise. The reader model is deemed op-
tional, for authors that rather keep track of that themselves to gain smaller graphs with
fewer layout problems.

The process of instantiation is illustrated in figures 5 and 6. The concepts of classical
and weighted schemata are given as referents and the new concepts and relations are
created. Figure 6 also displays the schema instance and stub nodes.

During further editing, the author introduces additional concepts and connects them
with the advance organizer pattern. In the end, the paper becomes too long and must be
truncated. As the author does not want to lose any of the new material to be presented,
he shortens the introduction to mention only his previous work, which in turn introduces
the used terms. The note on schemata is therefore deleted, together (manually) with the
import relation.

69

Figure 5. Giving coreferents for schema instance

Figure 6. The newly created Advance Organizer

Since the import relation has been a crucial part of the schema instance, a warning
to this effect appears, as in figure 7. The author can now consciously decide whether
to let go of the advance organizer due to space restrictions, or to uphold this structure,
making cuts elsewhere.

4 Discussion

This discussion addresses several aspects of the authoring support presented here.
There is the discussion of the provided functionality itself, its benefits and shortcom-
ings. Looking at the implementation, some differences between the abstract conceptual
graphs view and the concrete nodes and edges appear. Finally, there are other connec-
tions to related work.

70

Figure 7. The ‘removed crucial part’ warning

4.1 Benefits and Shortcomings

The instantiation and weighting mechanisms presented here allow creation of graph
models with parts of discriminated importance with some guidance. Giving reference
points at instantiation time is an intuitive and efficient way to integrate schemata into
graphs under construction. Weights are an useful addition to avoid less-than-helpful
warnings about lost fringe elements, and to post warnings about severe mutilations
where appropriate.

A shortcoming of the interactive join is that there are some places where referents
are ‘obvious’, for example the root and content nodes in the advance organizer: there is
only one root, which is linked to the one overall content concept. Grasping this obvi-
ousness formally could take the form of locally maximal joins, context search heuristics
(for example using only unambiguous locally maximal joins), or further parameteriza-
tion of the schema. Either possibility makes the matching more complicated. This may
conflict with the requirement that operations must remain predictable for the author.

The current implementation detects only missing parts; a schema cannot inhibit re-
lations being attached to it. This may be added by incorporating negated nodes and rela-
tions, for which additional warning patterns would have to be implemented that check
negation instead of stubs. These patterns would lead in the direction of satisfiability
tests.

CHASID does not attempt to infer anything from the document content. Solely the
formal presentation structure is integrated automatically. Some heuristics or natural lan-
guage processing may be useful here, but are not in the focus of our research.

4.2 Deviations from CG

For various reasons, CHASID is not fully ‘CG-compliant’ in its operation. For compar-
ison, I list some of the interesting deviations here:

– Nodes and therefore concepts carry attributes within them, not attached through
(ATTR) relations. This reduces the number of nodes in the graph and allows some
simplifications in the technical handling. (ATTR) relations may still be created in
the content model.

71

– When relations are simplified, the order of the incoming arcs is ignored. Arcs are
implemented as edges, which have neither attributes nor identity in PROGRES.
This is a technical limitation. As only dyadic relations have occured, this is not yet
pressing.

– The presentation structure is implemented using nodes and edges rather than con-
cepts and relations. This simplifies hand-implemented operations, but causes addi-
tional effort for schema instantiation.

– The arbitrary type label softens the type concept. There are no constraints on editing
them, but some operations check their equality. This may be just the flexibility
needed, or it may unexpectedly cause operations to fail.

4.3 Related Work

CHASID being an application (a program aimed at supporting users in solving real-
world problems) based on (Conceptual) Graphs, it may be interesting to classify it ac-
cording to [3] into natural language processing, information retrieval, knowledge ac-
quisition, requirements engineering, or miscellaneous. CHASID is, however, not really
an artificial intelligence application, as it does not use the document structure (which
would be the model of the natural language text or the basis of document retrieval, or
the acquired knowledge) for deduction — unless evaluating the structure is regarded as
deducing warnings. It merely supports the author in building a good structure, avoid-
ing structures that are known as problematic. So, it would be a dedicated system of the
‘Miscellaneous’ class, on the fringes of NLP.

Argumentative structures have been explored analytically in [8]. The result is a sys-
tem of data structures consisting of the text, the thematic map (a model of the subject
area), the author’s/discursive goals structure, the conceptual map (charting the path of
argument in the subject area) and the evaluation map (evaluating of the subject with
respect to the subject area). Since the aim of CHASID is not analytical, its model is
simpler. The presentation structure resembles text data structure, but does not model
argumentative units. Depending on the modeling by the author, the content model may
contain parts of a goals structure, evaluation map, and thematic map. Keeping these
aspects in single graphs would probably overtax average authors. CHASID does not
contain a model that traces the flow of argumentation like the conceptual map. Such
a view would probably be advantageous, since losing this flow is a frequent flaw in
documents.

The idea of using structures with attached weights is based on CIDRE.6 To support a
document structure recognition process, certain hierarchical arrangements in SGML are
given a probability rating. This uses a logical extension of the proven optical character
and text recognition technique of statistical n-gram modeling. The weights are derived
from a body of structured documents, which should allow this technology to scale well
to large document management systems, as it does not require human intervention.
This is, however, chiefly possible on the basis of the formal nature of the structure. The

6 Cooperative & Interactive Document Reverse Engineering, [2].

72

principle accounts well for the fact that formal structure definitions are bound to cater
for exotic cases in order not to be too restrictive, so that the regular cases may get lost.

Well-documented document type descriptions, such as DocBook [14], provide a
host of technical type and schema definitions. Relevant content structures occur only
rarely there. They are, therefore, at most a starting point.

5 Conclusion and Plans

Conceptual authoring support systems have to cope with the cost of adding the struc-
ture. While having the structure may pay off for the author in the long run, average
authors do not look so far ahead. Patterns and schemata help in this respect by guiding
the author through planning the document, which can speed up this process. Schemata
extend a current working graph, so that instantiation has to take creating connections
into account. I have proposed an interactive join for this here. Later in document pro-
duction, the conceptual structure behind the document can be useful in warning about
local changes that induce wider-scope problems. Using weights in schemata offers a
way to encode knowledge about problems in the schema instance scope easily. This
allows non-programmers to extend the authoring environment significantly.

This article has discussed the problems using an article as the example document.
Given the current tools, a content model of a 15-page article may realistically be han-
dled. The writing span of such a document is so short, however, that this will frequently
not pay off. When considering a more coarse-grained model of a book, a benefit be-
comes more likely: the time spent writing increases, making it easier to get lost. There
are, however, even less accounts of discernible reusable structures in books than there
are in articles.

To fully deliver on the promise of extending the authoring environment with
schemata, the necessary productions should be generated from schema definitions con-
structed in a schema editor. This seems to be possible, but has not yet been done. This
may also lead to a more appealing user interface for giving the co-referring concepts.

As content graphs grow larger, problems of stable semi-automatic layout arise. A
related topic are navigation and visibility operations.

For reasonable text production, integration with word processors remains an open
problem, since elements are not as clearly discernable there.

References

[1] S.-P. Ballstaedt.Wissensvermittlung: Die Gestaltung von Lernmaterial (Convey-
ing Knowledge: The Design of Teaching Material). Beltz, Psychologie-Verlags-
Union, Weinheim, 1997. ISBN 3-621-27381-6.

[2] R. Brugger, F. Bapst, and R. Ingold. A DTD Extension for Document
Structure Recognition. In R. D. Hersch, J. André, and H. Brown, edi-
tors, Electronic Publishing, Artistic Imaging, and Digital Typography, vol-
ume 1375 of Lecture Notes in Computer Science, page 343ff. Springer,

73

1998. URL http://link.springer.de/link/service/series/
0558/papers/1375/13750343.pdf .

[3] M. Chein and D. Genest. CGs Applications: Where Are We 7 Years after the First
ICCS? In Ganter and Mineau [6], pages 127–139.

[4] D. Corbett. A Framework for Conceptual Graph Unification. In Stumme [13],
pages 162–174.

[5] Richtlinien zur Manuskriptgestaltung (Guidelines for mauscript design). Deutsche
Gesellschaft für Psychologie (German association for psychology), Göttingen,
second edition, 1997.

[6] B. Ganter and G. W. Mineau, editors.Proc. International Conference on Concep-
tual Structures 2000, volume 1867 ofLNAI, 2000. Springer. ISBN 3-540-67859-
X.

[7] F. Gatzemeier. Patterns, Schemata, and Types — Author Support through Formal-
ized Experience. In Ganter and Mineau [6], pages 27–40.

[8] H. Irandoust and B. Moulin. Pragmatic representation of argumentatitve text: A
challenge for the conceptual graph approach. In Stumme [13], pages 30–44.

[9] D. Jäger. Generating tools from graph-based specifications. In J. Gray, J. Harvey,
A. Liu, and L. Scott, editors,Proceedings First International Symposium on Con-
structing Software Engineering Tools (CoSET ’99). University of South Australia,
School of Computer Science, 1999.

[10] M. Nagl, editor.Building Tightly Integrated Software Development Environments:
The IPSEN Approach, volume 1170 ofLNCS. Springer, Heidelberg, 1996. ISBN
3-540-61985-2.

[11] A. Schürr.Operationelles Spezifizieren mit programmierten Graphersetzungssys-
temen (Operational specification with programmed graph rewriting systems). PhD
thesis, RWTH Aachen, Deutscher Universitätsverlag, Wiesbaden, 1991.

[12] J. F. Sowa.Conceptual Structures: Information Processing in Mind and Machine.
The Systems Programming Series. Addison-Wesley, Reading, MA, 1984. ISBN
0-201-14472-7.

[13] G. Stumme, editor.Working with Conceptual Structures: Contributions to ICCS
2000, 2000. Shaker Verlag. ISBN 3-8265-7668-1.

[14] N. Walsh and L. Muellner.DocBook: The Definitive Guide. O’Reilly, Oct. 1999.
ISBN 1-56592-580-7. URLhttp://www.oasis-open.org/docbook/
documentation/reference/html/docbook.html .

74

http://link.springer.de/link/service/series/0558/papers/1375/13750343.pdf
http://link.springer.de/link/service/series/0558/papers/1375/13750343.pdf
http://www.oasis-open.org/docbook/documentation/reference/html/docbook.html
http://www.oasis-open.org/docbook/documentation/reference/html/docbook.html

	Authoring Operations Based on Weighted Schemata

