
Experimenting with Complex Event Processing for

Large Scale Internet Services Monitoring

Research Paper

Stephan Grell, Olivier Nano

Microsoft, Ritter Strasse 23, Aachen, 52072, Germany

Tel: +49 241 99784 533, Fax: +49 241 99784 77

{stgrell, onano}@microsoft.com

Abstract: In this paper we discuss an experiment to monitor large scale internet

services. The monitoring system is implemented as a Complex Event Processing

system to enable better scaling of the infrastructure. We describe the application of

the monitoring in two scenarios and give a brief overview of the benefits of the

approach and the remaining challenges. The discussion is focused on language

expressiveness, debuggability, root cause analysis, and maintaining a stable system.

Keywords: CEP, debugging, load shedding

1 Introduction

Large scale internet services are a class of applications which impose strong

requirements on their management infrastructure and on their execution environment.

Large scale internet services are services deployed in Data Center environments and

running on a large number of machines (from hundreds of machines to thousands of

machines). Due to the scale of these services, the management and monitoring system

needs to scale accordingly.

Monitoring of large scale internet services can be performed in many different

ways depending on the expected monitoring results. This experiment is based on a

Complex Event Processing (CEP) system which process the events in near real-time

as long as the resource consumption limits are kept. We explore two monitoring

scenarios: syntactic transactions generated by a watchdog and business events

generated by the services themselves.

In today’s monitoring setups there are a lot of tradeoffs between scalability and the

speed at which results are computed. Our goal is to evaluate the benefits of

implementing, deploying and managing a monitoring system through a CEP system in

very large scale setup. The motivation to use a CEP system is its ability to do fast in-

memory processing of events (filtering, grouping and aggregating) which enables to

do real time analysis. The following sections discuss early results and share some of

the challenges which we believe need to be addressed to ease the adoption of CEP as

a scalable monitoring system.

mailto:stgrell
mailto:onano%7D@microsoft.com

2 Stephan Grell, Olivier Nano

In the next section we detail the two scenarios for monitoring large scale internet

services. In the third section we present the CEP system we used for our experiments.

In the fourth section we describe challenges around the expressiveness of query

languages. In the fifth section we discuss the challenges around debugabillity and root

cause analysis. In the sixth section we describe the challenges around environment

stability and load shedding. At the end we conclude and present potential future work.

2 Monitoring large scale internet services

In this paper we explore two different scenarios to monitor Service Level Agreements

(SLA) of large scale internet services. In the first scenario we monitor the services’

availability through syntactic transactions. In the second we monitor business events

generated by user interactions upon the services.

2.1 Syntactic transactions monitoring

In the first scenario services are monitored via syntactic transactions generated by a

watch dog invoking the services. The results of the syntactic transactions are made

available via a Pub/Sub system to different listeners. One of them is a SLA monitor

which aggregates all the results according to different rules depending on the state of

the services. The SLA monitor publishes the results of the aggregations which are

emailed to the IT operators. The motivation for syntactic transactions is to have a high

degree of control on the load of the monitoring system. Syntactic transactions are

scheduled at regular interval and the frequency can be adjusted. For this scenario, a

single machine is sufficient to execute the SLA monitoring because the volume of

syntactic transactions results is low enough to be transferred to the central SLA

monitor. We used a CEP system for this scenario because of its flexibility in updating

the standing queries based on new demands as well as its ease to add new queries to

monitor new services.

Experimenting with Complex Event Processing for Large Scale Internet Services

Monitoring

Research Paper 3

Fig. 1: Outlines the communication between the services and the services involved

The SLA monitor uses the following set of rules to aggregate the results of the

syntactic transactions. Every service has its own set of tests (test cases) which are

combined in a test module. Every test module has one SLA associated. The state of

the test module is determined by the worst state of its test cases. A test case can have

the following states: up, low, or down. The state is computed based on the success

percentage of the test runs: above 95% the state is up, between 5% and 95% the state

is low, and below 5% the state is down.

The SLA computes the states of a Test Module every 10 min. If the Test Module

undergoes a state change, a state change event is published. Otherwise the Test

Module stays in its current state and state stay events are published every 30 min for

down, 60 min for low, and 6 hours for up. Every published event contains the entire

list of the test case results for the test module at that time with the aggregated values

over the reporting period.

In addition to monitoring the Test Module states, the SLA monitor is also

monitoring its own infrastructure. The SLA also raises an alarm if it did not receive

any test events for a period of 5 min. No events for 5 minutes are an indication that

either the Pub/Sub is down or the watch dog.

To support the debugging of the services, the exceptions that the watch dog creates

in case of failures will be reported with the state of the test case. Every test case report

contains the latest exception. We decided against a list of all exception because that

list might get long over the course of up to 6 hours of monitoring.

This scenario brings the requirement of maintaining a complex standing query in

an environment with limited human access. The writing was complicated enough that

multiple iterations were needed to get the state model right and to understand the

4 Stephan Grell, Olivier Nano

issues. To get this scenario right, we need a way to understand what the CEP system

is doing from log files and being able to analyze them efficiently from remote.

2.2 Business events monitoring

In this second scenario the requirements are to monitor business events generated by

the services. Business events are events which represent transactions happening in the

service logic as opposed to lower level events (like heartbeat, disk operations, etc).

The business events generated are for example login/logout of users, search operation

triggers, etc. As these events are user driven, they are generated as users hit the

services. Because of the events’ frequency and the number of machines running the

services in the cluster, it is not feasible, nor performing, to move all the generated

events to a central machine for processing.

For this scenario we have setup a distributed version of our SLA monitoring

system. Every machine that is running an instance of a service is also running an

instance of our SLA monitoring system which receives and aggregates the business

events generated by the local service over short period of times (around 10 minutes).

A central instance of the monitoring system then receives, through the Pub/Sub, all

the aggregated events and performs a per user aggregation over the events from all

services. The final aggregation results are made available through the Pub/Sub for

other services, such as billing or user satisfaction monitoring.

This scenario puts requirements on the resource usage by the SLA monitoring

infrastructure. As the SLA monitors run on the same machines as the services

themselves we need to guarantee that they will execute within certain resources

boundaries (such as CPU, memory, and network bandwidth).

This scenario also brings requirements on the quality of the final aggregated data.

Depending on the technique used to maintain the service utilization, certain business

events can be discarded to ensure the overall performance of the SLA monitoring

system. However, because these business events and their aggregate are used by other

systems such as a billing system, it is important to ensure that effect of the discarded

data on the overall results is controlled.

Experimenting with Complex Event Processing for Large Scale Internet Services

Monitoring

Research Paper 5

3.

2.

Pub/Sub

1.
4.

Users

SLA

SLA

Service Provider Servers with

SLA monitoring

SLA

SLA aggregation server

SLA

Fig. 2: Showing the distributed cloud service scenario with the user interactions

3 The SLA monitoring system

The SLA monitoring system (1) we implemented for the experiments is generic

and comparable in term of operators and queries to other CEP systems (2) (3). It

consists of the following parts (also shown in Fig. 3):

- SLA language for writing SLA documents (similar to standing queries)

- SLA editor to create the SLA document as box diagrams

- SLA runtime to monitor an SLA document, single node or distributed

- SLA dashboard for monitoring the service performance against the SLA and

to analyze SLA runtime log files.

The language contains four main building blocks: Input Adapters, Probes,

Computations and Audits/ Violations. Probes take the data from the Input Adapters

and extract that data into the internal data format. They also filter the incoming data,

so that only the information needed is extracted. Computations contain a set of

operators. The operators work on streams or the output of other operators.

Computations get their inputs from the Probes or other Computations. Audits and

Violations define data validations and trigger an output event when data is out of

range. Data computed by Audits and Violations is publish on the Pub/Sub system and

made available for other systems to consume.

In addition the language contains supporting concepts for time based triggering,

logging, and assigning the elements to specific runtimes. The assignment of elements

6 Stephan Grell, Olivier Nano

to the runtimes can be updated for some elements during the runtime. The elements

that reside in different runtimes are connected by streams which span machines.

SLA Runtime

SLA

Compiler

Audit
Audit

Violation/ Audit

Audit
Audit

Computation

Audit
Audit
Probe

Input Adapter

Output Adapter

SLA Runtime
SLA Runtime

SLA Tooling

SLA Store

SLA

SLA Designer

SLA Analyser
Input Adapter

Output Adapter

Fig. 3: Overview of the SLA monitoring system with the different tools and the main

concepts inside the language

4 Language expressiveness

SLA monitoring brings interesting challenges when implemented as a CEP system.

Certain SLA requirements are difficult to express as queries and would benefit from

automata support description for example. Next, we list some examples of issues

expressing SLA with standard query languages.

SLA monitoring usually works within fixed windows as the state of a system is

usually defined over a fixed period of time. This means that hopping windows need to

be simulated on top of the sliding windows semantic of the underlying CEP system.

A SLA monitoring system needs to determine the state of services and send out

information about it. In our experiments state changes are of high importance and the

most expressive way to implement them was to build a state machine with standing

queries. In our first scenario described in section 2, we built 3 sub-queries for the

analysis of the current state and nine additional sub-queries for state transitions. The

nine sub-queries include a state stability transition.

Timing the publication of violations and audit reports is also challenging. For

regular audit reports they need to be published at precise time of the day and

violations reports depend on the state of the monitored service and their frequency

depends on past violation reports.

For the CEP usage in an SLA monitoring system we believe that adding domain

specific constructs that provide SLA patterns would ease the description of SLA.

Experimenting with Complex Event Processing for Large Scale Internet Services

Monitoring

Research Paper 7

These patterns should simplify the pattern recognition inside streams, the dealings

with time in the processing as well as the state computation.

5 Offline / root cause analysis

The development of the different standing queries showed that it is easy to introduce

errors in standing queries. The generation of the traces and past events analysis helps

not only in debugging the standing query during the development phase but also later

in production when an unexpected issue occurs. The analysis of past events has been

research topic for some time now. It is labeled as “Time travel” or “Replay” (1).

The requirements of our environment exceed the ones of the Borealis project. Our

monitoring system runs on servers which cannot be directly accessed. All we can do

is accessing log files to understand what the monitoring service has been doing in the

past. Another challenge is the limit on the file size. The monitoring system cannot log

every incoming event package that it has seen since the beginning of time. And lastly,

the obvious challenge of limiting the performance impact on the processing is of high

importance.

In addition to our internal motivation as the developer of the standing queries for

the monitoring system, we have an additional request by our “users” to be able to drill

down into interesting violation events from the standing query. The tools and

requirements for this functionality are very similar to the debugging one. The drill

down case is a bit more limited, as the systems needs only to hold the events and the

internal processing steps which resulted into a violation. All the other events are

considered noise which distract from the violation analysis.

To anticipate these requirements the monitoring runtime includes a logging

framework that allows logging every result of a “block” in the standing query. These

results contain besides the time, a unique identifier, and the data fields also a list of

events / results which were consumed by this result. The log messages are made

available via a set of adapters, including a file writer as well as a network connector.

The network connector allows a tool to directly connect the log messages and display

the processing progress. The file writer stores all messages in a rotation log file on

disc. The file has a maximum size associated.

A UI tool allows us to display the log messages with the standing query. The

display enables the user to replay all log messages for the processing or only the ones

for certain sub-path inside the standing query. In addition one can also look at one

processing block and see all the log messages for that one with its definition.

The work so far allows us to debug a running standing query and we can

understand what happened inside the monitoring runtime in case of a crash. One

could also use this data for recovery in case of a failure. However, this does not

satisfy all the demands we started out with. This tool does not fully support the drill

down requirements. The log framework does not allow selecting which data can be

purged from the log file so that only the data of the violation stays. If the log file size

is big enough and the drill down request is down quickly after the violation is issued,

one has a good chance that the data that lead to the violation is still available. The

8 Stephan Grell, Olivier Nano

current approach has also a big impact on the overall performance when the logging is

enabled. A second mode that supports the drill down but not the debugging is thought

of but not experimented with. One could store the history, similar to the Borealis

approach, in memory and only write the log file when a violation happened. This

would result in a less frequent interruption and the writing could be scheduled such

that it is does not interfere with the processing.

 After a couple sessions of debugging and analyzing the log files, the desire for a

CEP debugging environment similar to that of programming languages arose. This

environment should be capable of working with recorded traces from a test run as

well as simulating the execution of the standing queries with a range of inputs. The

simulation environment would be helpful as a test environment for the written

standing query and allows testing the corner cases and the different paths.

6 Reliable Infrastructure

Large scale internet services require by definition a very stable execution environment

and as they scale the management infrastructure needs to scale as well. In the second

scenario that we presented in section 2, the requirement is to monitor business events

generated by the services. The number of events generated by the services is high and

there are a lot of service instances. Therefore a first aggregation of the business events

needs to be done on the machines running the services instances. Due to the fact that

the number of business events generated depends on user actions on the services, a

higher service load results in a high event count which in turn impacts the

computation of the first level of aggregation on the services’ machines.

This creates a potential problem for the stability of the services’ execution

environments. Based on the very dynamic nature of the services and aggregations

execution under heavy load it is very difficult to understand under which exact

conditions the system is at risk.

We are experimenting with a combination of two techniques to limit the risk of

system overload and system crash during execution. The first technique applies static

capacity management to the standing queries to understand what is potentially

executable without too much risk. The second technique is events shedding to enable

aggregations to empty its pipeline under overload situations. Our goal with these

techniques is to ensure during execution that the SLA monitoring elements deployed

on the service machines will never exceed 30% of CPU and memory consumption.

For the capacity management our main interest is to understand statically the

memory and CPU consumption of queries based on an event input rates. In the light

of work from (1) (2), we have gathered statistics over time of our operators depending

on their semantic (selection, aggregation, projection) and build a model of their

composition. This enables the SLA runtime to evaluate the burst potential of a given

query depending on input rates. This technique gives a rough estimate of potential

burst and does not take into account external factors from the environment.

Because capacity management only gives a rough estimate of potential burst and

does not prevent overload situation, the SLA monitoring system is complemented by

an events shedding gate (7)(9) to stay in the 30% CPU and memory consumption

Experimenting with Complex Event Processing for Large Scale Internet Services

Monitoring

Research Paper 9

range. Comparable to work from (3), (4) and (5) we introduce a drop operator as an

entry gate as a first operator (and only first operator). This operator uses random

events shedding which brings maximum efficiency.

The challenges when using static analysis in capacity management of the queries is

to evaluate the roughness of the estimates. Because many external factors influence

the queries execution at runtime, it would be interesting to refine the queries analysis

during execution.

One of the main challenges of applying events shedding is the understanding of the

quality impact (8) of the event loss on the final aggregated results as well as

determining if a delayed execution (6) could save quality without destabilizing the

system. From a quality perspective, it is difficult to predict the impact of the removal

of low level events. It is also a fair assumption that the quality impact very much

depends on the usage of the output events from the system. Therefore, it would be

interesting to investigate special purpose shedding techniques, which are dependent

on the SLA.

Another area that we would need to invest more is the understanding on how

delayed execution of operators can help in overload scenarios. We believe that a

schedule that takes the current load on the machine into account and the knowledge

on how much CPU time an operator will consume can make a smarter decision

between delayed execution and load shedding.

7 Conclusions

In this paper we discussed the use of Complex Event Processing for the management

of large scale internet services. We presented two scenarios focused on SLA

monitoring emphasizing the importance of language expressiveness, root cause

analysis and environment stability. These issues are from our perspective the most

critical and potential prevent a safe deployment of such monitoring system in large

scale internet services. We also described our SLA monitoring solution which allows

distributing and scaling the processing of events inside the management

infrastructure.

Our experiments showed that the usage of Complex Event Processing nicely

separates the implementation details from the semantics of the SLA. CEP also

includes good support for scalability inside the infrastructure to anticipate future

grows. It aids in the removal of the network bottlenecks created by the Pub/Sub layer,

by moving computation closer to events’ sources.

However as we have underlined there are still many challenges while deploying

such system for large scale internet services. Better expressiveness of languages for

writing queries would help the developers / IT operators. Debugging queries and

enabling root-cause analysis is an important requirement for fine tuning service

monitoring and understand service failures. Capacity management of the queries is

also an important requirement when deploying the queries to understand potential

bottlenecks and availability problems. In addition it plays a safe guard to ensure that

the monitoring services do not draw to many resources away from the services.

10 Stephan Grell, Olivier Nano

We have detailed a few exploration paths which are promising. For the debugging

and root cause analysis we have experimented with a linkage mechanism inside our

logging framework supported by analysis tools. For the capacity management and

scalability we are exploring flood gates mechanisms as well as mathematically

formulating the query operators’ memory and CPU requirements. Our work at

simplifying the expressiveness of the standing queries was just identified as a subject

of promising future work. More work is still needed to fully answer these

requirements. As future work we are investigating a less intrusive debugging

approach and an improvement of the automatic scalability.

8 Acknowledgement

The work reported in this paper has been done under the umbrella of the project

SeCSE funded by the European Commission under contract FP6-IST-511680.

9 Works Cited

1. SLA Monitoring: Shifting the Trust. O.Nano, M.Gilbert. Ljubljana : IOS Press

Amsterdam, 2005. Echallenges 2005.

2. Borealis. http://www.cs.brown.edu/research/borealis/public/. [Online] Brown

University.

3. Stream. http://infolab.stanford.edu/stream/. [Online] Stanford University.

4. The Design of the Borealis Stream Processing Engine. Daniel J. Abadi, and

others. 2005, Proceedings of the 2005 CIDR Conference.

5. Query Processing, Resource Management, and Approximation in a Data Stream

Management System. Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian

Babcock, Shivnath Babu, Mayur Datar, Gurmeet Manku, Chris Olston,

Justin Rosenstein, Rohit Varma. 2003. CIDR.

6. Chain: Operator Scheduling for Memory Minimization in Data Stream Systems.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani. 2003.

SIGMOD.

7. Load Shedding for Aggregation Queries over Data Streams. B. Babcock, M.

Datar, and R. Motwani. s.l. : IEEE, 2004. ICDE.

8. Approximate Join Processing Over Data Streams. A. Das, J. Gehrke, and M.

Riedewald. s.l. : ACM , 2003. SIGMOD.

9. Load Shedding in a Data Stream Manager. N. Tatbul, U. Cetintemel, S. Zdonik,

M. Cherniack, M. Stonebraker. Berlin : s.n., 2003. VLDB .

