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Abstract. Modern event-driven applications implement sophisticated
and highly specialized algorithms for detecting and correlating events
from event streams or clouds. The correlation logic and resulting actions
are declaratively defined as EA (event action) rules. An EA language
allows the definition of complex correlation rules with the help of log-
ical, temporal, content-based and other operators. On the other hand,
production rule systems provide a declarative means to express and com-
pute CA (condition action) rules. CA rules define constraints. The most
prominent scientific and commercial production rule systems rely on the
RETE algorithm in order to efficiently compute CA rules. As the indus-
try is on the way towards a loosely coupled service-oriented and event-
driven architecture, there is a high demand for an integrated solution
of computing ECA (event condition action) rules. In this paper we give
a survey of already finished as well as ongoing research in the field of
combining event processing algorithms with the RETE algorithm. We
compare the different approaches and present our approach of combin-
ing SnooplB, a specialized event detection algorithm, with the RETE
algorithm.
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1 Introduction

In a production rule system the RETE algorithm [1, 2] or derivatives thereof like
TREAT [3], LEAPS [4] or GATOR [5] are used to establish which rules must be
fired. The RETE algorithm is the execution kernel of the rule-based language,
OPS5 [6]. OPS5 is a condition action (CA) production rule language. The RETE
algorithm is concerned with the condition parts of rules. When matching rules
are found, their action parts are executed. An extension to CA rules are event
condition action (ECA) rules, comprised of an additional event part. This kind
of rules specify an action which is executed upon the detection of an event
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but only if the condition is fulfilled at the same time. Both the event part and
the condition part of a rule may consist of complex patterns which must be
fulfilled for the rule to fire. The event pattern must be detected from one or
more streams of events and the condition pattern must be matched from among
business objects (facts) pertaining to the application state.

The open research question remains of how both matching operations can be
integrated in an efficient manner. There are many approaches of either adding
event processing to production rule systems or integrating scalable condition pat-
tern matching algorithms into event processing engines. In this paper we describe
the different approaches and present their Pros and Cons. We present a novel
approach of combining the two rule execution paradigms: Data-driven and event-
driven execution. Our algorithm is an excerpt of our ongoing research of adding
complex event processing (CEP) to RETE. It is a middle course which refrains
from merging the two algorithms but still exposes synergistic effects. However,
the question is not whether the event and condition specifications should be
consolidated. Conceptually, events and conditions are concerned with different
information with different semantics. Therefore, it makes sense to distinguish
events from non-temporal facts in an ECA rule specification. Considering an
application as a state machine, events represent transitions, cf. [7]. When an
event is detected, the appropriate transition is taken. The event may then be
discarded. Facts, on the other hand, represent state. A rule condition determines
a state to be held before a transition may be taken. Facts remain valid and must
be retained until they are explicitly removed in a state change. The analogy of
a state machine provides a usable guide to distinguish between events and facts.
For the implementation of an ECA rule engine, on the other hand, there is no
obligation to keep events and facts separated. However, as events are transient,
they must efficiently be discarded after they cannot be used any further.

Table 1 outlines some notable differences in semantics and behavior of events
and non-temporal facts. Events are transient and are consumed after they are
delivered to all consumers. Facts, on the other hand, are persistent and must ex-
plicitly be deleted. Events are usually immutable, whereas facts may be changed.
Analogies may be drawn to transitions and state, respectively. Another analogy
from [8] compares facts to (computer-)written text. Text may be altered or
deleted. Also it does not expire by itself. It is available for anyone to retrieve it
(i.e. pull). Events, on the other hand, are like the spoken word. It is available
only to the people who listen at the right time (i.e. pushed to subscribers). Also
the spoken word is immutable.

The paper is structured as follows: Section 2 surveys the different approaches
of adding event processing capabilities to the RETE algorithm. In Section 3 the
several approaches introduced in Section 2 are accessed and the pros and cons are
outlined. We give an elaborated insight into our algorithm that combines CEP
with RETE in Section 4. We conclude the paper in Section 5 with a discussion
and outlook.
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Table 1. Events and non-temporal facts: Events are not like other facts which RETE
usually handles. This table briefly outlines some notable differences in semantics and
behavior.

Events non-temporal facts

transient persistent
usually not modifiable modifiable

Analogy:

transition state

spoken word written text
Behavior:

received via push fetched via pull

2 A Survey of Approaches Adding Event Processing
Capabilities to the RETE Algorithm

Maloof et al. [9] extend RETE to allow reasoning about relative time represen-
tations. This is done by introducing temporal operators before, during and after
which may be used to compare temporal facts from the working memory. Events
are seen as having a duration, therefore an interval-based semantics is assumed.
However it is not clearly pointed out how exactly the operators are evaluated
and how the interval start or end are used.

Berstel [10] also proposes an extension to the RETE algorithm to enable
the relative operators before and after. Only time-point semantics is used for
events. This exposes unwanted effects for the correct detection of sequences
when handling non-instantaneous events. Two extensive intervals, which mostly
overlap, will be detected as occurring one after the other, because only their end
points are considered for comparison. Nesting of sequence operators provides
even more unexpected results when transitivity is concerned.

Berstel also devised a garbage-collection mechanism to expunge unneeded
events when they are no longer needed. Events are special facts which are
asserted through a special API. Only these facts are considered for garbage-
collection. When a join node encounters a new event in one of its input mem-
ories, the lifetime of the event is calculated from the time stamp of the event
and the join conditions of the node which must at least be fulfilled. A callback
service is used by the join node to raise a timeout when the lifetime is passed.
The node then issues its parent memory to delete its local reference to the event.
Global retraction of events is not discussed.

Walzer [11,12] extended the RETE algorithm with the 13 temporal relations
from Allen [13]. They cover all relationships intervals can have. Accordingly,
Walzer uses interval-based semantics for events. Temporal operators for each of
the 13 relations are introduced, e.g. equal, before, after, during, overlaps, etc.
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The operators can be quantified, e.g. specifying how much two intervals overlap
in the beginning and in the end. Ranges for these quantifiers are also allowed.

Walzer implemented a garbage-collection mechanism, taking into account the
constraints in join nodes, time-based windows in join nodes, the time stamps of
events and maximum lifetimes of events. When a new token or a new working
memory element (WME) reaches a RETE memory, their lifetimes are calculated
if they contain events. The working memory is notified to increase the reference
counts on these objects. Using the calculated lifetimes the working memory
starts the creation of timers in the garbage-collector. When a timer runs out,
the garbage-collector removes the referenced token or WME from its memory.
The reference count in the working memory is then decreased, and if it reaches
zero, the event is completely retracted from the working memory.

3 Comparing the Different Approaches

There are several features concerning CEP in which the mentioned approaches
differ and there are some which they have in common due to the RETE algo-
rithm.

An important distinctive feature is the treatment of events as time intervals
instead of time points. For the field of CEP this has been discussed for quite some
time, e.g. in [14]. To receive expected results from temporal operators, events
must be represented as intervals if they are detected over a period of time.

The next distinctive feature is garbage-collection. Events arrive in streams.
They may then be processed and must be discarded in order not to use indefinite
amounts of space. Events are transient representations of incidents which hap-
pened. These events may be used on a subscriber-basis by different consumers,
i.e. rules in the RETE context. When no further consumer is interested in an
event, it can be discarded. Thus, there is a fundamental difference between facts
and events. Facts have a potentially indefinite lifetime. They are only removed
if they are explicitly retracted. Events, on the other hand, have individual life-
times which may be calculated from constraints imposed by their consumers.
After these lifetimes have expired, the event can be completely removed.

Another distinctive feature is the operators introduced by the different ap-
proaches. Berstel proposes the operators before and after for time-points. As
there are no intervals, Berstel’s approach does not contain an during-operator.
Maloof adds the during-operator. Walzer finally adds all operators representing
the 13 interval relations. This is the richest set of operators one of the approaches
offers.

All approaches share the notion of a working memory. All events go into the
working memory and stay there as long as they are not garbage-collected. How-
ever, providing a global pool of events is not appropriate for a publish/subscribe
environment. For example an event should be only visible to rules which sub-
scribe to it and there should be no reason to expose the event further. The
working memory, however, retains the event as long as it might still match one
of the current rules. Only then is the event discarded. When a new rule is intro-
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duced it should not match events from the past; Ideally all events will be deleted.
However, a new rule might still see an older event if is still in the working mem-
ory, retained by some existing rule / consumer. Therefore the matches for the
new rule depend on the existence of other rules. This is a very much undesired
effect for a rule system.

The semantics of an event being visible in the working memory is therefore
unspecific, meaning only that the event has not been consumed by all subscribers.
Other features of the working memory are also not applicable for events. This
questions the purpose of adding events to a working memory in the first place.
For example as events should be immutable (cf. spoken word analogy mentioned
in Section 1) the modify-operation of the working memory is not applicable. In
fact, Walzer marks events as immutable facts (cf. [15]) in her implementation
for the rule engine Drools® [16,17]. On top of that, retract-functionality seems
unreasonable for events, as well. An event either happened or it did not happen.
All subscribers should consistently receive it.

None of the RETE-based approaches have a notion of event selection and
consumption. Selection and consumption are described e.g. in [18] as so-called
contexts. For each event operator they define which events from each input should
be used for correlation, if there are more than one, and whether a used event
can be part of further matches or is consumed.

In all of the approaches mentioned above a given join node correlates the
available events from both inputs. This results in a cross product of all events
which have a suitable lifetime and therefore are not garbage-collected yet. How-
ever, there is no way to specify e.g. that successive events should supersede
their predecessors as in the so-called Recent context. Also, there is no way to
consume events in the process of correlation. Rather, events will take part in
further correlations as long as only its temporal constraints are fulfilled.

4 Enhancing RETE with SnoopIB

Instead of incorporating the event detection in the RETE network, we decided
to process events in a disjoint set of nodes and only merge the two graphs at the
final nodes. Figure 1 shows an example graph.

This allows us to retain an event graph which is not subject to assumptions
from the RETE algorithm. We use an event detection graph as proposed with the
event pattern language Snoop [18], extended with interval-based semantics for
events [19]. Such an event detection graph is a DAG, constructed as follows: All
simple events are at the bottom. There is one simple event node per simple event
type. Complex event expressions are at the top of the graph. Sub-expressions
form the inner nodes, down to the indivisible, i.e. simple, nodes at the bottom.
Common sub-expressions shared by more than one rule result in node sharing.

Simple events coming from the event sources are fed into the graph at the bot-
tom. According to the connected nodes, the events are either discarded, queued
or propagated further if they match an event expression.

3 http://www.jboss.org/drools
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Fig. 1. Coupling RETE with CEP. The RETE network, depicted at the top, is respon-
sible for rule conditions and finds matching facts fulfilling rule conditions. The event
detection graph, at bottom left, is responsible for event specifications and finds events
matching an event pattern. Both RETE and the event graph propagate their results
to newly introduced top nodes. These nodes trigger rule actions.

The RETE network and the described event detection graph have several
things in common. They are both DAGs used for incremental pattern matching,
in a data-driven, bottom-up fashion. Both employ state saving by not recalcu-
lating previous matches. Both reuse partial matches shared by more than one
rule. However, especially for the application of CEP, the event graph has some
advantages.

— The event graph can have nodes with more than two input edges. This more
closely resembles higher-level event operators from Snoop which we are using.
— Also garbage-collection comes more naturally. Events are stored and dis-
carded in the queues of event nodes where they are still needed. There is
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no global repository for unused or partially unused events like the working
memory from RETE.

— Consumption modes are selectable (on a per-node basis, if necessary). This
allows for the controlled selection of events from a stream, if more than one
events have arrived and might be fitting for a match. For example in selected
applications only the newest event of its kind might be of interest. This
behavior is called Recent context. There are several contexts as described in
[18].

On top of the event graph and RETE a new layer of nodes is introduced,
cf. Figure 1 at bottom right. It represents the rules. For a CA rule, the produc-
tion node from RETE is connected solely to the rule node. For an ECA rule,
additionally an event node is connected to the rule node. The rule node fires its
associated rule actions according to the ECA semantics. For an ECA rule action
to fire, an event must be detected, and for its complete interval, the condition
must be fulfilled.

Vice versa this means that no events need to be correlated as long as RETE
supplies no matched tokens. Using this realization, computation time (and space)
can be saved in the event detection graph, when unneeded event nodes are
disabled during the time the rule condition has no matches. We are disabling
nodes recursively down from the top event node (which is to-be-disabled) down
to all of its contributing children nodes. Care must be taken when encountering
a shared node which has further consumers. Such a node is only disabled when
all its consumers are disabled.

The achieved savings from this procedure varies depending on several fac-
tors. If no event nodes are reused, the saved computations are a function of the
event frequencies and the probability of the rule condition being unmatched.
To calculate the necessary event operations of one rule, one must consider the
added frequencies of all participating events, simple and complex, including all
intermediate stages.

However, determining the average frequency of events might not always be
practicable or accurate, e.g. if a source emits events aperiodically. Also, if nodes
are shared by several consumers, assessing the amount of saved computations
becomes more difficult. Event operations can only be cut down if all consumers
are disabled. The event-frequency of each participating node must then be mul-
tiplied by the probability of all other consumers being disabled as well.

5 Conclusions and Outlook

In this paper we compared different approaches of incorporating CEP in a RETE
network. As RETE is designed to reason over persistent and mutable facts, it
is not a natural fit for doing event processing. Many changes towards temporal
capabilities as well as event expiry must be added. And because the RETE
network relies on a working memory where events reside, such an approach does
not resemble an event processing network as described in [20]. In such a network
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events are propagated forward? and are only visible to nodes which subscribe to
the events and have not yet consumed them.

We presented our approach of blending CEP with RETE as a solution to
avoid the indicated mismatch of requirements. Our approach works by com-
bining dedicated event processing nodes with RETE nodes. In our opinion it
is a promising way of coupling event and condition processing, creating syner-
gistic effects without constricting the features of CEP. Features of CEP which
are not available in current RETE adaptation are mentioned in this paper. The
features include selectable detection contexts to determine the precise candi-
dates of events for correlation. Also the features include local visibility of events
and garbage collection which guarantees the isolation of different rules. These
requirements for CEP have not been addressed by the current RETE-based
adaptations.

As an outlook for our approach we are going to evaluate our implementation,
in order to produce numbers for the savings in event processing time mentioned
in Section 4. Benchmarking ECA rule performance depends on many factors
and we are looking for a suitable ratio of event frequency, number of rules,
and changes to the working memory. For that purpose we are going to evaluate
existing metrics on scoring of event-driven and rule-based systems.

In the future we are also looking into further improvements for our approach.
The four detection contexts from Snoop can possibly be generalized by an algebra
for event selection and consumption as proposed in [22] or [23]. Using these
event algebras, one is independent of predefined detection contexts. Also we
are exploring the use of advanced RETE derivatives like TREAT, LEAPS or
GATOR as the preferred discrimination network to satisfy rule conditions and
to combine it with CEP.
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