
Contextualised Event-Triggered Reactivity With
Similarity Search

Darko Anicic1, Sinan Sen1, Nenad Stojanovic1, Jun Ma1, and Kay-Uwe
Schmidt2

1 FZI Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14, 76131 Karlsruhe
˜http://www.fzi.de

2 SAP AG, Research, Vincenz-Prießnitz-Straße 1, 76131 Karlsruhe
˜http://www.sap.com

Abstract. Event-driven processing becomes ever important for appli-
cations such as reactive context-aware mobility applications, attention-
handling and pervasive collaboration systems etc. However today’s reac-
tive systems define complex events with rather precise specifications. In
some applications, such as fraud or failure detection, identification of sim-
ilar event patterns may be of tremendous use. These kind of applications
need to identify not only critical situations but also situations which are
similar enough to them. We present a novel approach for event-driven
processing which is realized by combining reactive rules with ontologies.
Ontologies are used to capture the context in which certain active behav-
ior is appropriate (i.e., to discover situations in which particular reactive
rules fire). Second, ontologies together with similarity search techniques
are utilised to enable discovery of similar complex event patterns.

1 Introduction

Event-based systems are now gaining increasing momentum as witnessed by
current efforts in areas including event-driven architectures, business process
management and modeling, Grid computing, Web services notifications, and
message-oriented middleware. Moreover, market research companies, like Gart-
ner3 or Forrester4, predict the key role of even-driven processing for making
business Web application more agile.

The current approaches in event processing mainly deal with the syntactical
event processing. They do not exploit a rich domain knowledge to reason about
contexts in which a particular coplex event has occurred. As a consequence, it is
not possible to detect valid situations in which an intelligent system should react
on events. Further on, they cannot deal with uncertain and unknown events.
Having background knowledge enable us to calculate similarity between coming
unknown and existing known events, so that the system can react in an ad-hoc
manner, i.e. on previously unknown complex events.

3 Gartner: www.gartner.com
4 Forrester: www.forrester.com

In this paper we propose a semantically enriched framework for modeling
event-triggered reactivity and its execution. The framework is capable to moni-
tor changes in a reactive environment and to respond to those changes appropri-
ately. Semantic descriptions of events and contexts are used to ensure appropri-
ate reactions on events. We formally describe complex event patterns and their
corresponding contexts, which in turn allow us to identify complex events and
reason about contexts before undertaking reactions. Additionally we are also
able to discover events which are similar to already specified (known) events.
Similarity search techniques have not been widely applied in the area of event
processing yet, specially not in the contextualized manner. Contextualised and
similar event processing may be of paramount importance in many real-world
use cases, and we apply our event-triggered reactivity model to one of them.

The paper is organized as follows. In the second section we describe a mo-
tivating scenario. In the third section we give preliminaries, describing at the
same time the state of the art in event processing and ontology-based similarity
search. In the fourth section we give a new form of reactive rules, define an event
calculus extended with a similarity search approach, describe the role of the con-
text in intelligent event processing, and present a situation discrimination tree.
Finally, we summarize our work and conclude in the section sixth.

2 Motivating Use Case Scenario

SAP’s new product SAP Business ByDesign addresses small and medium en-
terprises. SAP Business ByDesign is delivered as Software as a Service (SaaS)
over the Internet. SaaS is a software application delivery model where a software
vendor develops a web-native software application and hosts and operates the
application for use by its customers over the Internet. Customers do not pay for
owning the software itself but rather for using it. SaaS puts new requirements
like monitoring and metering to the provision of software. To ensure quality
and availability of service, the hosted application instances must run reliable. In
order to achieve that, all instances must be monitored. Further on, the system
needs to be prophylactic to changing benchmarks, and capable to indicate forth-
coming execution problems. The performance and availability of mission-critical
applications are impacted by several interconnected factors (system resources,
application architecture, behavior of application code, network infrastructure,
user usage etc). When problems occur, finding the bottlenecks in such a dis-
tributed system can be a complex, lengthy, and costly process. However failure
detection and maintenance could be improved using Complex Event Processing
(CEP) techniques. Complex event monitoring mainly informs the administrator
of possible application problems. A good scalable solution is needed not only to
correlate simple events to complex events, but also to relate complex events to
their triggered actions and the application contexts in which they were issued.
This will reduce significantly the event flood and will generate meaningful alerts.

The need for introducing the context in CEP can be illustrated by the fol-
lowing example. In order to react on a high CPU load of a CRM5 instance (in a
specified time interval) the following rules are defined: If all CRM-Monitoring-
Events of the last fife minutes (event) exceed the threshold value of 90% for
CPU consumption (condition) and no previous repair action happened (context)
then do some sort of automatic healing, e.g., suspend other threads, increase or
decrease the process priority etc. (action). Further, the second rule says: if all
CRM-Monitoring-Events of the last fife minutes (same event) exceed the thresh-
old value of 90% for CPU consumption (same condition) and the automatic self-
healing procedures did not yield any improvement from the previous situation
(different context), then do a different action, e.g., send a serious warning to the
monitoring cockpit (different action).

This example illustrates that conventional event processing based on events,
conditions, and actions is not appropriate for more sophisticated real world ap-
plications. However introducing the context, we are able to react differently on
the same events in different contexts (i.e., different situations). Similarity mea-
sures for events further enable reuse of rules to be fired in situations which were
not originally specified. Similarity in event processing enable flexible monitoring
in terms of handling the situations which are not completely known but simi-
lar enough to them (which is important in failure detection or fraud detection
applications).

3 Preliminaries

3.1 Event Processing

Complex Event Processing (CEP) is a field of research concerned with task of
processing multiple events, from an event cloud, with the goal of identifying the
meaningful events (within the event cloud).

CEP is concerned with clouds of events, which yield only a partial temporal
order of events. Other partial orders of interest are causality, association, taxon-
omy, ontology. Simple events are usually characterised by a type, their occurrence
time, and optionally by a list of data parameters (which can help in detecting
event patterns, or can be used in the computation after the detection). Utilising
the event types, one can create complex nested expressions using the operators
as in [3]: And, Or, Sequence, etc. Complex event specifications are patterns of
events which are matched against the streams of events that occur during the
run-time of the system. These patterns consist of simple event types and event
operators. Simple (atomic) events are the basic events the system can detect.
Complex events are detected from occurrences of one or more of atomic events.
All simple events have a simple event type, which for a database application
might be insert, update and delete. The types are used as placeholder in event
patterns.

5 CRM stands for Customer Relationship Management.

Early event specification languages were developed for active databases [11].
They use complex event specifications to facilitate database triggers. One early
active database system is HiPAC [10]. It is an object-oriented database with
transaction support. HiPAC can detect events only within a single transaction.
Global event detectors are proposed which detect complex events across trans-
action boundaries and over longer intervals. Ode [5] is another active database
system with a language for the specification of event expressions. Ode proposes
several basic event operators and a large amount of derived operators for ease
of use and shorter syntax. The last of the classical event specification languages
discussed here is Snoop [3] and its successor SnoopIB. Snoop provides the well
known operators And, Or and Sequence, as well as, Not, Any, A, A*, P, P* and
Plus. A well known issue with defining an event on discrete time points instead
of an interval-based semantics has been fixed later in SnoopIB [1].

3.2 Similarity Search

Based on the cognitive psychological approaches to similarity measure, different
models have been proposed. Generally speaking, one cannot expect to find a uni-
versal measure for similarity, that can be used independently from the knowledge
that is represented [2]. However, one approach to define a similarity measure is
by using the notion of “ontology-based similarity”, which helps finding elements
in the domain of interest that are conceptually close but not identical. Compar-
ing two instances in an ontology is often based on considering the properties,
the level of generality (or specificity) and the relationships with other concepts
they may have. Ontology-based similarity can be further divided into different
separate fragments, namely taxonomy-based similarity, feature-based similarity
and similarity based on information-content [15].

The taxonomy-based approaches calculate the similarity of terms by evalu-
ating their position within a given taxonomy. This approach takes into account
the intuitive idea that closely related terms are grouped together while distantly
related terms are spaced more widely apart. Ontologies have the benefit that all
terms of the domain are available as a tree structure. Since concepts are orga-
nized in a hierarchy, more general concepts are located closer near the root of
the hierarchy, while more specific ones are located nearer to the leaves. A simple
metric for terms arranged as nodes in a directed acyclic graph such as a hierarchy
would be the minimal distance between the two term nodes so that similarity
between two terms could be defined as the length of the shortest path between
the two nodes (see also [12]). Alternatively, the similarity measure presented by
[14] finds the most specific common concept that subsumes both considered con-
cepts. On the other hand, in [9] has been introduced the upwards cotopy (UC)
to measure the similarity considering their super concepts and relative places in
a common hierarchy. Finally, Leacock and Chodorow define a measure based on
the shortest path length between two concepts normalizing this value by twice
the maximum depth of the hierarchy and smoothing the result with the loga-
rithm. Feature-based similarity assumes that each instance in the ontology has
arbitrary properties or features. The more common features two instances have

the more similar they are. While common features tend to increase the similar-
ity between two elements, non-common features decrease the similarity. Existing
approaches calculates the similarity by combinations of shared features, distinct
features, and shared absent features [6].

4 Contextualised Event-triggered Reactivity with
Similarity Search

4.1 System Architecture

In this section, we briefly present the architecture of our intelligent complex
event processing engine and its components. The execution in event processing
engines is driven by events. The event source may be an application as pre-
sented in the use case (Section 1) but in order to be more general the event
source can be any other resource e.g., a business process, sensor or a tool). All
these events are collected in the event cloud which is the input source for the
intelligent complex event processing. Figure 1 shows a simplified view of our
intelligent complex event processing architecture. Event Cloud is a collection

Fig. 1. Intelligent Event Processing in Fraud Detection Scenario

of all received events. It contains different types of events. In a distributed sce-
nario, where many events can be generated externally (w.r.t the core system),
this component also integrates an event filter in order to preselect the relevant
events. In Event Content Analysis the selected events from the event filter
are analyzed in order to extract the event describing elements, e.g. event name,
type, id, timestamp or more specific details about the occurred event. These
information are forwarded to the Knowledge Base in order to map the event
to the event ontology, as well as to the situation handler for the complex event
processing. Situation Handler contains the complex event processing engine

and the similarity calculation for each event. The Situation Handler detects rel-
evant situations based on the patterns taken from the rule base and the context
ontology. Depending on the context information, the CEP Engine recognizes
different situations and fires corresponding actions. The CEP Engine takes also
situations into account where no exact pattern can be recognized but similar
ones. Action Handler is the task of executing actions triggered by events in
well-defined contexts and situations. In general case, the action execution may
change the state of a reactive system, e.g., to update a knowledge base, trigger
other events, call a web service etc. For example, in the use case presented in
Section 1, the system can execute an action to shut down some running threads
which consume too much CPU power of the server. Knowledge Base contains
the ontologies and rules for specifying events and contexts.
Event and Domain Ontology We have created an event ontology to describe
different types of atomic events6. Further on, the ontology is enriched with a
number of event properties which represent event data. Purpose of the event
ontology is two fold. First it is used for complex event detection. Secondly, the
ontology is utilised for detecting similar complex event patterns. Figure 2 de-
picts the structure of an event with some defined properties. Every atomic event
is related to a specific type of events in the domain ontology in order to define
all types of known events. Known events are precisely specified events. The sys-
tem knows how to detect and react upon known events. Based on the event and
domain ontology we can calculate more reliable similarity between the events,
either using the taxonomy of the domain ontology or the properties.

Fig. 2. Event conceptualization within a domain ontology

4.2 Reactive Rules

Work on modeling behavioral aspects of reactive information systems originates
back to the dawn of Active Databases time [11]. One type of reactive rules are
ECA rules with typical form: “ON event IF condition DO action”. Such a rule
executes action as a reaction on event, provided that the condition holds. We
adhere to a new form of reactive rules, i.e. ECCA (Event - Context - Condition

6 All ontologies from the system are accessible from http://sake.fzi.de/

- Action) rules; their general form is:

ON event WITHIN context IF condition DO action.

Therefore we explicitly introduce the context as an important part of reactive
rules. In the standard interpretation of ECA rules, the condition part is used for
representation of the contextual information. However in reality it is difficult to
ensure that all relevant data for approving an automated action execution are
provided in the condition part. In our opinion, an automated reactive system
needs to be capable to deal with more complex contexts and situations in which
data are processed. Moreover it needs to reason before undertaking any action
[13]. Therefore we utilise the context part to find out implicit relationships be-
tween events and actions (and possible between other concepts as well), while
the condition part is used simply to query the background information (i.e.,
explicitly stated knowledge7). For example, the context determine whether an
action should be triggered as a reaction on a complex event, though it has been
proved the action was not solved a problem (which initially caused that event).
Having the context as tight relationship between events and actions allow us to
reason before undertaking any further reactions.

4.3 Event Calculus Extended With Similarity Search

Event calculus is a mechanism for complex event specification and detection. Be-
side this standard definition of event calculus we further extend this mechanism
to account for specification and detection of similar composite events. Therefore
in this section we first define the similarity measures between events, and then
specify a set of event operators considering similarity between events.

As we have already said, one aim of the intelligent complex event processing
should be to detect the similarity between events in order to handle unknown
event patterns. Thus the objective is to derive a function sim(e1, e2) that mea-
sures the distance between the event e1 (which is part of the specified and known
event pattern) and the currently occurred event e2. We assume that the similar-
ity function maps instances of an ontology O into the unit interval:

sim(x, y) : I × I → [0, 1]

where I is the ontology instance representing possible events. The extreme value
1 occurs only if x = y, which is an exact match. In case the two events have
nothing in common the value 0 is returned. For defining similarity in event
processing, we combine more than one similarity measure, and the calculate an
aggregated similarity function:

simA(e1, e2) :=
∑n

i=1
ωi∗simi(e1,e2)

n

7 Note that the role of condition could be added to the context part. However we want
to emphasis the conceptual difference between explicit and implicit data, and hence
importance of reasoning over situations.

Particularly we use two different types of similarity measures, i.e., similarity
based on the event taxonomy simtx [9], and similarity based on the event prop-
erties simpr. The importance of each similarity measure in an aggregated result
is captured by the parameter ω. Default value is 1, which means all similarity
measures have equal importance.

In order to calculate simtx it is necessary to look into the taxonomy and
identify which concepts connect e1 and e2. In a simple way this can be considered
as the shortest path between the two event instances.

simtx(e1, e2) = min(
∑n

pathe1

∑m
pathe2

|UCpathe1 (e1)∩UCpathe2 (e2)|
|UCpathe1 (e1)∪UCpathe2 (e2)|)

This measure is able to handle different connections between the two instances
and to select the shortest one if many paths are available. One drawback of
the shortest path calculation is the increase of complexity, since we consider
all possible paths in the taxonomy between two instances. However, since the
similarity calculation of events is executed at design time, it has no influence
on the overall event processing performance at run time. For the calculation of
similarity the reachable superconcepts shared by e1 and e2 are normalized by
the union of the superconcepts.

The major shortcoming of computer-based similarity judgment is that the
results do not fulfill all users’ requirements [7]. This is mostly due to the lack
of context information. Since the context is to be the crucial factor of the in-
telligent complex event processing, it also must be considered in the similarity
calculation. Within the similarity calculation contextual information can influ-
ence the ranking list of the most similar events. In our approach the contextual
information are considered in the feature-based similarity simpr.

simpr(e1, e2) :=
ωf∗ α∗vrcc+β∗vrc

α∗vrcc+β∗vrc+δ∗vr−c+γ∗vc−r

k

The function fdist calculates the similarity for every equivalent property in e1

and e2 under consideration of existing context information. The similarity is
calculated by considering not only properties and the values but also the type
of the property values. The calculation of similarity consists of elements which
increase the similarity, vrccand vrc, and elements which decrease the similarity,
vr−c and vc−r. The context information is considered in vrcc.

– vrcc expresses how many values e1 and e2 have in common with respect to
the context for each property;

– vrc expresses how many values e1 and Ie2 have in common for each property;
– vr−c expresses how many values are e1 and not in e2 for each property;
– vc−r expresses how many values are e1 and not in e2 for each property.

The result of the calculation is normalized by the value k whereby k represents
the number of distinct properties in both event instances. Like the weight-value
used by the aggregation function we define a weight ωf which expresses the

importance of a property. The parts of fdist which increase or decrease the
similarity also have weights.

In the remaining part of this subsection we utilise the similarity measures
defined above to define a set of operators for complex similar event specifications.

Let E denote a finite set of all known event types (i.e., all event classes defined
in an event ontology). For each (atomic or complex) event type E ∈ E , DOM(E)
represents the set of event instances of type E. For an event e, we say that it is
an instance of type E iff e ∈ DOM(E). We assume a discrete time model, where
time T is an ordered set of time points t0, t1, t2.... Time points are represented as
integers, though other time models for time and data representation are possible
without restrictions. An event e is defined over a time interval 4t = [t0, t2] =
{t1|t0 ≤ t1 ≤ t2}, t0, t2 ∈ T . For convenience we define: start([t0, t2]) = t0,
end([t0, t2]) = t2, and [t0, t2] ∪ [t1, t3] = [min{t0, t1},max{t2, t3}]. Finally an
event is represented as a tuple 〈E, e,4t〉, where E is an event type, e is an
instance of that type, and 4t is an interval over which the event happened8.

In the following definition we formally introduce event calculus operators: the
disjunction dis of E0 and E1 represents that either of E0 or E1 occurs, denoted
E0 ∨ E1. Conjunction con means that both events have occurred, possibly not
simultaneously, and is denoted E0 + E1. The negation neg, denoted E0 − E1,
occurs when there is an occurrence of E0 during which there is no occurrence
of E1. A sequence seq (denoted E0;E1) is an occurrence of E0 followed by an
occurrence of E1. Finally, there is a temporal restriction E0(4t), which occurs
when there is an occurrence of E0 shorter than 4t time interval, denoted tim.
Definition 4.3 For similar events 〈E0, e0,4t0〉 and 〈E′

0, e
′

0,4t
′

0〉 with the sim-
ilarity measure sim(e0, e

′

0), and similar events 〈E1, e1,4t1〉, 〈E
′

1, e
′

1,4t
′

1〉, with
the similarity measure sim(e1, e

′

1), define:

– Disjunction: dis(E0, E1) = {e0 ∨ e1| 4 t = 4t0 ∨4t = 4t1, where e0 may
possible be replaced with e

′

0 and e1 with e
′

1, in which case 4t0 is replaced
with 4t

′

0 and t1 with 4t
′

1, respectively};
– Conjunction: con(E0, E1) = {e0 ∧ e1| 4 t = 4t0 ∪ 4t1, where e0 may

possible be replaced with e
′

0 and e1 with e
′

1, in which case 4t0 is replaced
with 4t

′

0 and t1 with 4t
′

1, respectively};
– Negation: neg(E0, E1) = {e0|¬∃e1(start(4t0) ≤ start(4t0) ∧ end(4t1) ≤

end(4t0))};
– Sequence, E0;E1: seq(E0, E1) = {e0 ∧ e1|end(4t0) < start(4t1), where

e0 may possible be replaced with e
′

0 and e1 with e
′

1, in which case 4t0 is
replaced with 4t

′

0 and t1 with 4t
′

1, respectively};
– Temporal restriction: tim(E0,4t) = {e0|end(4t0) − start(4t0) ≤ 4t,

where e0 may possible be replaced with e
′

0, in which case 4t0 is replaced
with 4t

′

0.

Using an operation defined in Definition 4.3 we can create a new complex
event and assign a name to it (e.g., a new type CE0). Alternatively such an
expression may repeatedly be used for building more complex events with other
8 For atomic events the time interval is equivalent to the time point.

operations. Construction of complex event expressions requires also propagation
of similarity measures upward the Situation Discrimination Tree (see Section
4.5). For this purpose we consider every operation in the tree and calculate for
each node the propagated value.

p(sim) :=
∑0

depth=n

∑n
nodeAtDepth=1 op(val1, val2)

The propagation function p(sim) starts the calculation with the maximum depth
level of the tree. Values are a combination of the calculated similarity and default
values (which is 1), see also Figure 5. For each level it considers all nodes and
invokes the calculation function op according to the node operator (see Defini-
tion 4.3 for the operators). For every operator, except the negation and temporal
restriction operator, is a node similarity propagation defined:

or(val1, val2) =
{

val1, iff val1 ≥ val2
val2, else

and(val1, val2) = val1+val2
|val|

seq(val1, val2) = and(val1, val2)

The calculation for the seq operator is the same as for the and operator since
we do not consider any time constraints in the similarity calculation.

4.4 Context Model for Event Processing

Complex event processing (CEP) is about aggregation of atomic events in order
to detect situations of particular interest. The events aggregation is specified
in advance by event patterns, hence we say that CEP deals with known events.
Extending the standard CEP with similarity search techniques (Section 4.3), our
intention is also to tackle discovery of unknown events. Unknown events cannot
be recognised with classical CEP approaches as they are not defined in advance.
On the other side, unknown events may represent notable situations which do
require reactions. An example is our use cases, which deals with appropriate
reactions on CRM server defects. Other scenarios typically include fraud and
error detections etc.

Handling unknown events, and hence unknown situations, is a challenging
task. We believe the context in which events are identified may be helpful in
tackling this challenge. A context is a set of attributes and predetermined values,
labeled in some meaningful way and associated with desirable semantics [8].
Instead of a single value, attributes could be constrained over a range of values.
We have created a context ontology which describes each context (of particular
interest to our application) with corresponding actions relevant in that context.
Furthermore the context is described with a number of attributes which differ for
different contexts (e.g., location, execution phase, involved actors etc.). In order

to dynamically bind the context attributes to specific instances in run-time, we
execute a set of SWRL9 rules (accompanied with the ontology10).

Sometimes triggering two or more actions by the same event may cause a
conflict. Very often this is happening as those actions are supposed to be executed
in different contexts. Hence introducing the context explicitly in reaction rules,
and enabling reasoning over contexts help in the conflict resolution. Intuition
behind this idea is to shift the issue of the conflict resolution to a problem of
identifying conflicting situations (i.e., contexts). However in this direction of
research we still do not have measurable results, and it is a topic of our future
work.

4.5 Detection of Complex Events and Situations

Figure 3 shows an event discrimination tree from [4]. Leaves in the tree repre-
sent atomic events and nodes represent event calculus operators. The detection
of complex events starts bottom-up as atomic events populate slots for leaves.
When a condition (i.e., operation) specified in a particular node is satisfied with
event instances11, the recognised pattern is further propagated up to its node
parent. Every node maintains its local memory of data (i.e., history of event
occurrences). The history of events is important for implementation of different
polices that prevent event processing from combinatorial explosion (i.e., detec-
tion of useful but also too many unusefull events). In [4] four different polices
have been defined, and for our use case we focus on the recent policy, i.e., only
the last event occurrence needs to be remembered at each node.

Fig. 3. Event Discrimination Tree

In general it is very hard to control behavior of event-triggered reactive (EtR)
systems. For instance, execution of an event may trigger other events, and these
events may trigger even more events. There is neither guarantee that, such a
chain of events will stop, nor that a reactive system executes actions as intended.
We believe EtR systems would be more controllable if there was a tighter con-
nection between events and actions. Standard ECA rules use the condition part

9 SWRL: www.w3.org/Submission/SWRL
10 Due to space reasons we could not provide the content of rules in the paper. Instead,

they are accessible in the ontology files from http://sake.fzi.de/
11 Additionally it is ensured that such a set of instances has not already been detected.

(i.e., C) to establish that connection. Our approach is to use the context for that
purpose (see Section 4.4). The context (Section 4.4) captures not just explicit
background information, but also history of passed actions triggered by partic-
ular events. Therefore the context represents a relationship between events and
actions. Due to this reason we assign to each arrow a context used for detec-
tion of a particular complex event, Figure 5. Unlike the event discrimination
tree (Figure 3), the tree from Figure 5 represent a situation discrimination tree
(as it detects events within certain contexts). Consider the rules from our use
case in Section 1. We interpret a complex event CRMMonitorEvent in a con-
text InitialRepairContext as situation s0. Handling the situation s0 requires an
action SuspendThreads, which is different from handling the same event CRM-
MonitorEvent in a context RepairContext, i.e., situation s1 (Figure 4). However
as presented, in the situation s1 another action (i.e., SuspendThreads) will be
triggered.

ON CRMMonitorEvent WITHIN InitialRepairContext IF Trashold > 90% DO SuspendThreads.

ON CRMMonitorEvent WITHIN RepairContext IF Trashold > 90% DO WarnMonitorCockpit.

Fig. 4. ECCA Sample Rules

The current run-time context is determined by a reasoner in each node of
the tree (though the tree is constructed at the design time using complex event
specifications and the context part of ECCA rules). Thus detection of a complex
event depends both on atomic events and the context itself. Note that the tree
will not even detect some complex events which are out of scope of an EtR
system. Further on, the situation discrimination tree from Figure 5 is enriched
with data to detect unknown events. What is an unknown event? We consider
all atomic and complex events defined in an event ontology as known events (i.e.,
events that are fully specified). A complex event which do not fulfill a particular
event pattern exactly, but to some extent, is an unknown event. Further on, as
an event characterised with a certain context represent situation, an unknown
event in a given context creates an unknown situation.

In Figure 5, the relationship between two similar events is depicted with a
dashed arrow. The semantics of a dashed arrow between two events is: “replace
a known (exact) event (in its absence) with a similar event”. The intention here
is not to trigger a complex event as soon as possible, possible replacing exact
events with similar ones. If exact atomic events come (fulfilling specified time
constraints) corresponding complex events will still be generated12. What we
intend is just to provide a first step towards handling events that are not fully
specified (i.e., unknown events). As it is difficult to process objects (i.e., events)
in an automated and reasonable manner without knowing them in advance, we
tackle this challenge by trying to process those that are similar to known ones.

12 This is one of tasks of memory buffer allocated with every tree discrimination node.

Fig. 5. Situation Discrimination Tree

We express a level of similarity between two events by assigning the weight
(i.e., similarity measure) to each dashed arrow. The value of weight is calculated
and propagated upward based on similarity measures described in Section 4.3.
Calculating similarities between events we are effectively establishing more re-
lations between complex event patterns. As this process involve reasoning over
an event ontology, computationally it may be very expensive. However note that
this task can be done at the design phase. Also note that having both, an event
ontology with events specification and an event discrimination tree, it seems we
have defined events twice. That is not true as the role of an event ontology is to
specify events in order to discover similarities of them and process events within
particular contexts. On the other hand, the role of an event discrimination tree
is to detect complex events and situations as soon as they occur (what is not
possible with static ontologies).

5 Conclusion

In this paper we presented a novel approach for modeling event-triggered reactiv-
ity. Our event processing model with similarities measures is used in a distributed
web environment to help in monitoring of the system execution. The approach
extends the traditional event processing by introducing the concept of contextu-
alized similarity, which enables the discovery of unknown complex events. Our
initial evaluation has shown that the method is able to detect unknown events
with a high relevance. The presented approach opens the possibility to define the
reactivity of a system in more complete manner, and can be applied in various
application domains in which such reactivity is of particular importance.

References

[1] R. Adaikkalavan and S. Chakravarthy. Snoopib: Interval-based event specification
and detection for active databases. Data Knowl. Eng., 59(1):139–165, 2006.

[2] T. Andreasen, H. Bulskov, and R. Knappe. From ontology over similarity to
query evaluation pp. 39-50, in r. bernardi, m. moortgat (eds.): 2nd colognet-
elsnet symposium - questions and answers: Theoretical and applied perspectives,
amsterdam, holland, 2003.

[3] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim. Composite events
for active databases: Semantics, contexts and detection. In J. B. Bocca, M. Jarke,
and C. Zaniolo, editors, 20th International Conference on Very Large Data Bases,
September 12–15, 1994, Santiago, Chile proceedings, pages 606–617, Los Altos, CA
94022, USA, 1994. Morgan Kaufmann Publishers.

[4] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts and detection. In VLDB ’94: Proceedings
of the 20th International Conference on Very Large Data Bases, pages 606–617,
San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[5] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification
in active databases: Model & implementation. In VLDB ’92: Proceedings of the
18th International Conference on Very Large Data Bases, pages 327–338, San
Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[6] H. Hirakawa, Z. Xu, and K. Haase. Inherited feature-based similarity measure
based on large semantic hierarchy and large text corpus, 1996.

[7] K. Janowicz. Kinds of contexts and their impact on semantic similarity measure-
ment. In 5th IEEE Workshop on Context Modeling and Reasoning (CoMoRea) at
the 6th IEEE International Conference on Pervasive Computing and Communi-
cation (PerCom08), 2008.

[8] O. Lassila and D. Khushraj. Contextualised applications via semantic middleware.
In In Proc. of the Second Annual Conference on Mobile and Ubiquitous Systems
(MobiQuitous ’05), 2005.

[9] A. Maedche, S. Staab, N. Stojanovic, R. Studer, and Y. Sure. Semantic portal - the
seal approach. in: Spinning the semantic web, d. fensel, j. hendler, h. lieberman,
w. wahlster (eds.),pages 317-359, mit press, 2003.

[10] D. McCarthy and U. Dayal. The architecture of an active database management
system. In SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD international
conference on Management of data, pages 215–224, New York, NY, USA, 1989.
ACM.

[11] N. W. Paton and O. Dı́az. Active database systems. In ACM Comput. Surv.
ACM, 1989.

[12] T. Pedersen, S. V. S. Pakhomov, S. Patwardhan, and C. G. Chute. Measures of
semantic similarity and relatedness in the biomedical domain. J. of Biomedical
Informatics, 40(3):288–299, 2007.

[13] A. D. Stojanovic N. Towards creation of logical framework for event-driven in-
formation systems. In To appear in: 10th International Conference on Enterprise
Information Systems, 2008.

[14] Z. Wu and M. Palmer. Verb semantics and lexical selection. In 32nd. Annual
Meeting of the Association for Computational Linguistics, pages 133 –138, New
Mexico State University, Las Cruces, New Mexico, 1994.

[15] X. Zhang, L. Jing, X. Hu, M. Ng, and X. Zhou. A comparative study of ontology
based term similarity measures on pubmed document clustering. In DASFAA,
pages 115–126, 2007.

