
Model Driven Security Management:
Making Security Management Manageable in

Complex Distributed Systems

Dr: Ulrich Lang, Rudolf Schreiner

ObjectSecurity Ltd., St. John’s Innovation Centre, Cowley Road,

Cambridge CB4 0WS, United Kingdom
{Ulrich.Lang | Rudolf.Schreiner}@objectsecurity.com

Abstract. Today, the challenge in security of complex distributed systems does
not anymore lie in encryption or access control of a single middleware
platform, but in the protection of the system as a whole. This includes the
definition of correct security policies at various abstraction layers, and also in
the unified and correct management and enforcement of the correct security
policy at all relevant places in the system. The authors have learned in the
development even of comparatively simple distributed systems that this is not
possible anymore by a manual definition of encryption properties and access
control rules. Human security administrators are not able to define all these fine
grained rules with sufficient assurance, to distribute them to all Policy
Enforcement Points and to check many log files or admin consoles. This is
especially impossible in highly distributed and agile service oriented or data
driven systems. In this paper we will illustrate the approach and architecture
behind Model Driven Security Management and provide a healthcare regulatory
compliance case study using our OpenPMF 2.0 technology.

Keywords: model driven security, security policy, security policy management,
authorization management, identity & access management, XACML, security
enforcement, service oriented architecture (SOA), regulatory compliance.

1. Introduction

The protection of distributed systems in large organizations is often a great
challenge. In most organizations there are many applications based on different
middleware platforms and there is also a large number of users. Today, the common
approach to protect such systems is based on a security policy document. This
document balances the functional business requirement of the application, the security
requirements, legal and regulatory requirements and other factors like costs. This
security document is written in human language and given to the IT staff. The IT staff
now has to enforce the security policy using so called controls, for example
encryption or access control systems like Virtual Private Networks (VPN) or
firewalls. Typical enterprise security architecture today consist of an identity
management system, e.g. used for Single Sign on, firewalls and VPNs for connection

to remote sites or business partners, and application layer access control directly
implemented in the application logic or, in the best case, using more or less
sophisticated authorization and entitlement management systems.

This approach raises several issues, for example policy correctness and
consistency, even for quite simple client/server or 3-tier applications How can be
ensured that the high level policy is really correctly mapped to a high number of
access control rules and configurations of security mechanisms at all times? Even if
parts of the systems are administered in different departments or if administrators are
absent? How can many different controls be managed in a uniform way? How can
policy violations be detected and handled? Therefore, this approach was never really
good; it was error prone, had high maintenance costs and required a lot of resources.
But, nevertheless, many organizations considered it sufficient.

In the future, this approach will not be sufficient anymore. First of all, there is a
paradigm shift in the development of distributed applications. Secondly, in many
domains closed systems have to be opened to communication with the outside world.
In particular, the complexity arises because of the need for business-driven IT agility,
where IT policies and enforcement can change frequently, e.g. Business Process
Modelling (BPM) driven Service Oriented Architecture (SOA).

And finally, regulatory and legal requirements demand a higher level of security,
including the proof that the system is really sufficiently protected. Compliance with
regulatory and governance standards is rapidly becoming one of the more pervasive
hot topics of information security today because organisations have to expect large
financial and reputational losses if compliance cannot be ensured and demonstrated.
One major difficulty of implementing such regulations is caused by the fact that they
are captured at a high level of abstraction that is business-centric and not IT centric.
This means that the abstract intent needs to be translated in a trustworthy, traceable
way into compliance and security policies that the IT security infrastructure can
enforce. Carrying out this mapping process manually as described above is time
consuming, maintenance-intensive, costly, and error-prone. Compliance monitoring is
also critical in order to be able to demonstrate compliance at any given point in time.

Model Driven Security (MDS) [1] management is an innovative technology
approach that can solve these problems as an extension of identity and access
management (IAM) and authorization management (also called entitlement
management). In this paper we will illustrate the theory behind Model Driven
Security for compliance, provide an improved and extended architecture, as well as a
case study using our OpenPMF 2.0 technology [2]. Model Driven Security
management also helps achieve and demonstrate regulatory compliance.

Section 2 outlines today’s security management complexities; section 3 introduces
the model driven security concept; section 4 illustrates OpenPMF 2.0, an
implementation of the concept; section 5 presents a concrete example, and section 6
draws some conclusions.

2. Today’s typical security management complexities

One major difficulty of implementing security policies is caused by the fact that
policies (and regulations) are expressed at a high level of abstraction that is
organisation-centric, business-centric, information-centric, legal aspects centric and
human-centric. Policies/regulations are often not IT centric, nor expressed in IT
terms. This means that the abstract and high level policy requirements defined by the
regulations need to be translated into compliance and security policies that the IT
security infrastructure can enforce. Carrying out this mapping process manually is
time consuming, maintenance-intensive, costly, and error-prone. An automated,
reliable technology approach is required to solve these issues.

Another major difficulty is related to compliance monitoring. How can an
organisation demonstrate sufficiently that it complies with these organisation-centric,
information-centric and human-centric and legal regulations, security policies, and
governance standards? And how can attempted compliance violations be detected
early on and prevented before damage is caused? Doing this manually, as suggested
by many survey-based compliance tools is too slow, costly, and error-prone. How can
this be done in an automated way that is cost effective, timely, reliable, and
automatic? Again, a suitable technology approach is required.

These two difficulties are particularly hard to deal with in distributed IT
environments that are “agile”, i.e. get reconfigured regularly. The current architectural
style for agile distributed software applications is Service Oriented Architecture
(SOA). One concept behind SOA is to specify and manage application interactions in
an abstract model that bridges the gap between the business (business processes,
workflows, BPM etc.) and IT (platforms like web services, databases etc.). In such
model driven SOA environments, enterprise architects specify workflows in Business
Process Modelling (BPM) suites, which are used to orchestrate underlying modular IT
services. One of the main benefits is that the IT environment can be reconfigured
easily to reflect changes in the business. For security policy enforcement and
monitoring, SOA agility poses a major complexity because security policies (both for
compliance enforcement and monitoring) will have to be updated each time the IT
environment gets reconfigured. Carrying out such policy updates manually each time
the SOA gets reconfigured is clearly unworkable because this would be too costly, too
slow, and too error-prone. So again, a suitable technology approach is required to
automatically update compliance enforcement and monitoring whenever the SOA
changes.

Another interesting related aspect is how trustworthy the link between the
regulation or governance standard on the high layer of abstraction, and its IT
enforcement and monitoring on the low layer of abstraction is. This trustworthiness is
relevant for defence accreditation (e.g. Common Criteria [3]) and many other safety
and assurance standards. This is an especially important factor for agile systems,
where an accreditation approach of a static system (the normal way to achieve
accreditation) is not possible.

3. Model Driven Security

Model Driven Security (MDS) [1] is an innovative technology approach that can
solve these problems. MDS can be defined as the tool supported process of modelling
security requirements at a high level of abstraction, and using other information
sources available about the functional aspects of the system (produced by other
stakeholders). These inputs, which are expressed in Domain Specific Languages
(DSL), are then transformed into enforceable security rules with as little human
intervention as possible. MDS explicitly also includes the run-time security
management (e.g. entitlements/authorisations), i.e. run-time enforcement of the policy
on the protected IT systems, dynamic policy updates and the integrated monitoring of
policy violations.

In the first step of MDS, regulations and governance standards are modelled as a
high-level security policy in a Model Driven Security tool (such as ObjectSecurity’s
OpenPMF 2.0). These models are then translated into low-level security policies that
are enforced across the entire SOA environment (e.g. through local plug-ins
integrated into the middleware or at a domain boundary). The local plug-ins also deal
with the monitoring of compliance/security-relevant events. If tied into the SOA BPM
suite and the SOA middleware (e.g. web application server), Model Driven Security
can automatically update the compliance enforcement and monitoring whenever the
SOA application changes.

Model Driven Security management (in the form implemented in OpenPMF 2.0 by
ObjectSecurity) has the following benefits:

• Model driven security regulates information flows and resource access between

different systems (or software services/components) and users in a fine-grained,
policy-driven way across a potentially large, heterogeneous IT environment.
Furthermore, it ensures that security policy updates caused by IT agility, i.e.
changes to the IT environment, can be managed without a maintenance cost
explosion. All this helps reduce the security management effort.

• Another core benefit is that Model Driven Security management helps align
business security requirements (including regulatory and best-practice security
requirements) and policy-driven technical IT security enforcement. This means that
security requirements, which can be captured in an undistorted, abstract way close
to human/business thinking, can be automatically transformed into technology-
centric IT security enforcement. This reduces the cost and effort of security policy
definition and maintenance. The automated technology approach also improves the
traceability from requirements to enforcement and improves assurance, because
human administration errors are minimised.

• Cost/effort savings can be significant. In various projects, the authors showed that
thousands of rules can be generated and maintained automatically, which saved
several person weeks of effort (on the flipside, this saving is lessened a bit by the
effort of developing the model transformations and high-level requirements
model).

• In addition, the Model Driven Security approach can tie security requirements into
the overall business enterprise architecture, which ensures that the needs of the
business are reflected.

MDS is an emerging hot topic. There is little doubt that some form of model-

driven approaches in general will become mainstream over the coming years (in
whatever form). This is because IT complexity in today’s complex, interconnected,
ever-changing, ever-faster world has become unmanageable, and it has always been
human nature to try to find an abstraction in order to be able to easier deal with that
complexity.

On the other hand, pervasive changes to IT and business staff behaviour and
technology has always posed a formidable adoption hurdle. However, industry
analysts such as Gartner [4] forecast model-driven approaches to become mainstream
within five years, based on high-profile, big-vendor pushes (e.g. Microsoft “Oslo”
[5]). Model Driven Security will then be a feature with obvious benefits in the overall
architecture.

Irrespective of that, the adoption of Model Driven Security does not have to wait
for model-driven approaches to become mainstream. Instead, a non-intrusive gradual
adoption roadmap is possible, starting with authorisation management as a policy-
driven add-on to today’s identity management (IdM) deployments. While not model-
driven, such authorization management (integrated with IdM) can help bridge the
time until full Model Driven Security gets adopted.

The authors see the most complete deployment of Model Driven Security as a
scenario where a Model Driven Security tool is used as an enterprise-wide security
management tool that ties in with enterprise architecture (incl. BPM) , model-driven
integration, model-driven engineering. Such a pervasive deployment would do away
with the many different and incompatible ways of managing security infrastructure,
and thus provide significant benefits, including cost-saving and manageability. An
additional benefit of such a deployment is that the end customer “owns” the security
policy model, and is therefore in a position to outsource most of the IT and IT security
infrastructure “plumbing” to vendors and integrators without losing control and in-
house security expertise.

4. OpenPMF 2.0 Model Driven Security Management

OpenPMF [2] is a framework for the unified definition, management and
enforcement of security policies in complex distributed systems. It allows a definition
of security policies in a human readable Policy Description Language (PDL) [6], the
central management and automatic distribution of security policies to Policy Decision
Points (PDP) Policy Enforcement Points (PEP) collocated with the middleware and
application. It also includes a central management of security events, for example
policy violations. OpenPMF can be used to protect different communication patterns.
Enforceable security policies are described in PDL and automatically distributed to
the PDP/PEPs in the different middleware platforms (including Web services, JMS,
CORBA, CCM, DDS, MOM etc) or the applications. During runtime, the PEPs

control the invocations or the data flow. If a policy violation is detected, a notification
is sent to the central admin console. Practical evaluations and tests, and using
OpenPMF in real world applications, showed that it really improved policy
management and enforcement a lot. There was one, central consistent security policy
for the whole application, and a single administration console. It was not necessary
anymore to manually configure different security mechanisms and to check multiple
log files. But the policy definition still turned out to be difficult.

Initially, when the authors developed OpenPMF, they expected to write the
policies in the PDL language. For simple and static client/server applications this
works indeed well. ObjectSecurity’s OpenPMF 2.0 security management technology
is a significant extension and enhancement of the OASIS eXtensible Access Control
Markup Language (XACML) [7], which is a standard architecture and XML based
syntax for transferring authorisation rules called within the web services world.
XACML includes Policy Administration Points (PAPs), Policy Decision Points
(PDPs), Policy Information Points (PIPs), and Policy Enforcement Points (PEPs).
OpenPMF 2.0’s extended and improved architecture also includes model-driven
policy management points and runtime central monitoring points, two critical features
to make security policy management manageable. While XACML has been originally
advocated as the solution for fine-grained authorisation management (also called
entitlement management), it is evident now that XACML (and authorisation
management) solves more the security policy interchange challenge than the security
policy definition and management challenge. This is because the XACML
architecture assumes that the (typically many) fine-grained technical enforcement
rules are defined and managed at the low level of abstraction of IT enforcement.
Specifying and maintaining thousands (or more) rules manually in an agile, ever-
changing IT environment is clearly impossible. Model Driven Security can be seen as
the missing piece at the top of the architecture that makes security authorisation
management manageable by generating these low-level rules from abstract
requirements.

In contrast to XACML, PDL is human writable, with a syntax similar to the
CORBA Interface Description Language. But in more complex systems (e.g. the AD4
ATC simulation system [8]), it turned out that the manual policy definition is
infeasible with a sufficient level of assurance. The exact problem, as turned out, was
not to write down the single rules of the policy, but understanding the system and all
its interactions, both business logic and infrastructure, in sufficient detail. OpenPMF
was good at the management and correct enforcement of security policies, but the
definition of correct policies was still an issue.

The key to policy correctness lies in the full integration of security into software
development. Today, it is very common to use Model Driven Engineering (MDE) for
the development of complex distributed systems. Systems, their components/services
and interactions, are modeled using a generic modeling language like the Unified
Modeling Language (UML), Business Process Modeling Notation (BPMN) or a
Domain Specific Language (DSL) tailored to specific application domains. To allow
the common interpretation of models, these modeling languages are expressed in a so
called “meta meta model”, for example the OMF Meta Object Facilities or Eclipse

Ecore1. The models, as normally used today, describe the functional aspects of the
system to develop, for example data types, service and interface definitions, service
interactions and workflows in business processes, deployments of components and
services onto hosts and networks, and also users. From these models, so called model
transformations automatically generate many programming artifacts and configuration
files. For example, from a service or interface model it is possible to generate a
CORBA interface description in CORBA IDL, a Web Services service description in
WSDL, or the Java classes of a Web Services implementation.

For the definition of the security rules and configurations, this functional model is
most important. It provides all the detailed information which is required for the rule
definition and hard to fully understand process for human administrators. But this is
still not sufficient to define the rules, since a high level security policy is missing.

In the first version of Model Driven Security as used in the AD4 ATC simulation
system [8], this high level security policy was hard coded in the transformations to
generate the rules and configurations. This was good enough for the concrete task, but
in general flexible security policies are required, depending on the organization’s
enterprise wide security policy. To define a high level security policy, a specific DSL
for this purpose, the Security Policy Language (SPL) is used, normally based on the
same meta meta model as the functional model. In SPL, the high level security policy
is described. This includes for example the definition of the Quality of Protection
(“All communication has to be protected at level X”, or “All protection outside the
own network has to be protected at level Y”), access control (“Accountants are
allowed to used the accounting system during working hours”) or information flow
policies (“For all information flow, Mandatory Access Control (MAC) has to be
applied”)2.

Now, all information required for the generation of the security rules is available:
We have the detailed functional model of the system and a high level security policy,
expressed in SPL. From both models, model transformations are now able to generate
all artifacts relevant for security, for instance the access control rules expressed in
PDL or the command line options for encryption (Fig.1). For example, in information
flow based on a publish/subscribe middleware, the rules for the publish and subscribe
operations are generated, and also for the MAC properties of the data distribution.

1 This description of Model Driven Engineering is simplified, but it is sufficient to understand

the concepts of Model Driven Security.
2 Currently, we have a meta model for SPL, but no textual representation. Therefore we use

free text for the description of the policies.

Figure 1: Generation of High Assurance Security Rules from Models

Instead of hundreds or thousands of very fine grained rules, a policy in SPL

consists of a very low number of rules with a high abstraction level. For example, an
appropriate security policy could define the encryption strength to use for
authentication and message protection, and the rule that all communication defined in
the functional model has to be allowed both for invocations and events. For humans,
such short and high abstraction layer policies are much more accessible.

Model Driven Security solves many of the problems of manual policy definition,
because the security rules and configurations are always in line with the functional
behavior of the system. First of all, MDS greatly improves the assurance of the policy,
because the policy is generated from well tested or verified transformations. This
trusted transformation is also superior to policy verification, because it takes the
functional behavior of the system into consideration, instead of just checking a policy
for internal inconsistencies. Model Driven Security also makes security in SOA
manageable, because whenever the agile applications based on interacting services are
modified, the security policy is adapted as well. This not only ensures a correct policy
but also greatly reduces the maintenance effort.

5. Model Driven Security Healthcare Example

This section illustrates how one exemplary security-related high-level healthcare
regulatory requirement (HIPAA) is translated into enforceable authorisation rules
(another example can be found in [6]). The exemplary (particularly intuitive)
healthcare security/privacy requirement is simple: “Every doctor is only allowed to
access the patient record of the patient they are currently treating (unless the patient
is treated in a crisis context, or the patient consents).” This requirement is stated in
an abstract way, independent of the particular IT environment, patient identity, doctor
identity, doctor-patient relationship, IT environment etc. In line with the OMG Model
Driven Architecture (MDA) framework, we call these requirements “undistorted” by

the particular deployment. This requirement can be captured in a modelling tool in a
customised, customer-specific way.

A crucial dimension of Model Driven Security is that other system models are
reused in order to infer the authorisation rules for the particular deployment. There are
potentially many other sources for system models, such as Business Process
Management System (BPMS) tools which are for example used by enterprise
architects to capture the processes of a business and map them to the IT environment
(e.g. SOA BPEL/web services). OpenPMF 2.0 has been designed to co-exist with
modelling tools (both BPM and MDA) inside the same Eclipse IDE installation.
Model Driven Security also needs to have access to the information about which
particular participants exist, such as doctors and patients (the “who” in authorization
rules). In many organisations, this information has been collected in a centralised
identity management solution (IdM), which typically do not provide a means of
specifying and managing (potentially many) fine-grained access rules (the “what” and
“how” in authorization rules). Model Driven Security can be seen as an extension for
such already-deployed IdM solutions, and OpenPMF 2.0 reuses such information
sources.

This high level regulatory requirement can then be transformed into potentially
very many deployment-specific IT-centric message protection and authorisation rules
at different layers. With the model transformations and the models in place, many
(potentially hundreds of thousands) of specific, fine-grained authorization rules can be
generated from a single high level rule, with the push of a button. For example,
generated rules can contain the following information: allow information flow if
“caller X.509 cert. id doctor1” via “firewall IP…” calling “file patient1” on
“database IP …” and from “hospital IP …” and “doctor1 is treating patient1”
and/or “patient1 crisis”.

The next step is to distribute the generated authorization rules across the
distributed, heterogeneous IT environment to enable runtime security enforcement of
information flows through local Policy Enforcement Points (PEPs) on the systems
that need to be protected.

To close the security management loop, it is crucial to monitor security-relevant
activities across the distributed IT environment in the central policy. As an optional,
additional, deeper level of defence, OpenPMF 2.0 pushes its policy-based alerts into
an intrusion detection system for attack pattern mining.

6. Conclusion

In their practical work, the authors have learned that today the challenge in the
protection of complex distributed systems does not lie in the encryption of
communication or access control for specific middleware platforms anymore. The
main issue is the correctness of all the configurations of the security controls like
encryption, logging and access control of the different security mechanisms and
platforms dispersed all over the system, their distribution and updates, their correct
enforcement and also the processing of logging information, e.g. policy violations. As
our previous projects have shown, human security administrators are for example not

anymore able to define access control rules with sufficient assurance. The complexity
is especially unmanageable in agile service oriented and data driven systems, were the
security rules always have to be adapted to the modifications of the systems, e.g.
reconnections of services.

In order to better protect such systems, and to lower the effort of protection over
the whole system life cycle, we improved two aspects: The definition of correct
security polices at all layers, and the correct management and enforcement of these
security policies in the system as a whole. First of all, we embedded the definition of
security policies into the model driven development processes, which are commonly
used for the development of complex systems. This approach, called Model Driven
Security, generates a large number of low abstraction layer rules and configurations
from a very low number of high level security policy rules. Then we used our
OpenPMF Policy Management Framework to manage these rules, e.g. to distribute
them to Policy Enforcement Points in the systems, and also to correctly enforce them.

The benefits of Model Driven Security were demonstrated in the so far biggest
application of Model Driven Security, an experimental secure ATC system. In this
system, with over a dozen service types, about 50 service instances running on 10
hosts on three sites, MDS automatically generated a security policy of more than 1000
rules from the systems’ functional model. Whenever the system was modified, e.g. by
changing the services, their interactions or the deployment of services on hosts, the
security policy was automatically adapted accordingly. This ensured that the system
was always protected according the high level security intent. The policy maintenance
effort during these modifications was reduced to almost zero.

In this paper we also illustrated the approach, architecture, benefits, and adoption
roadmap for Model Driven Security in the context of (regulatory) compliance. We
described why our implemented policy management architecture is a significant
extension and improvement to current industry standards such as XACML. Details of
our implementation are provided as part of a healthcare regulatory compliance case
study. The case study is based on ObjectSecurity’s OpenPMF 2.0 security
management product, which is the leading Model Driven Security technology in the
market. The paper also discusses the general industry direction with respect to model-
driven approaches.

7. References

1. Model Driven Security web site, www. modeldrivensecurity.org
2. ObjectSecurity: OpenPMF 2.0 Model Driven Security Management, www.openpmf.com
3. Common Criteria Portal website, www.commoncriteriaportal.org
4. Gartner website, www.gartner.com
5. Microsoft, Oslo SOA & business process website, www.microsoft.com/soa/products

/oslo.aspx
6. Lang, U., Schreiner, R.: Integrated IT Security: Air-Traffic Management Case Study. ISSE

2005 Conference Budapest, Springer Proceedings, 2005
7. OASIS Consortium: XACML 2.0 Core: eXtensible Access Control Markup Language

(XACML) Version 2.0, 1 Feb 2005
8. Schreiner, R., Lang, U., Ritter, T., Reznik, J., Building Secure and Interoperable ATC

Systems, Eurocontrol INO Workshop 2006

