
A Server Side SOA Meta Model for
Assigning Aspect Services

Andreas Ganser, Stefan Hurtz, Horst Lichter

RWTH Aachen University, Research Group Software Construction, Ahornstr. 55,
52074 Aachen, Germany {ganser|lichter}@swc.rwth-aachen.de,

stefan.hurtz@rwth-aachen.de

Abstract. Service oriented architectures allow heterogeneity in general
and hence support the integration of legacy systems. But legacy systems
must often be handled as black boxes and they usually lack additional
requirements for new environments. The most important is security.
Wrapping services and integrating them via enterprise service buses is
one way to tackle this problem but it brings about proprietary and heavy
weight software suites. Therefore, a lightweight design concept is missing
which fosters encapsulating services at a platform independent level.
Below, we present how aspect services can be assigned to services and
underline how our concept becomes handy during design time. Addition-
ally, we discuss tool support for assigning aspect services to services.

1 Introduction

One basic idea of service oriented architectures (SOA) is to join business divi-
sion and IT division. Thereby, most of what IT does is challenged in terms of
company’s business goals. But, concerning technical aspects only and omitting
business, organizational, and cultural points, SOA can be condensed into inter-
faces and is better characterized as “interface oriented architecture” [1]. Next,
just caring about what is beneficial leaves out other “additional” aspects, e.g.
logging or security.

These “additional aspects” are called cross-cutting concerns in aspect ori-
ented modeling. Hence, we borrow a couple of terms from aspect oriented pro-
gramming (AOP) and slightly alter some concepts.

In this paper we introduce a generic meta model for assigning cross-cutting
concerns to services at server side. First, a short introduction illustrates the roots
of our work taken from aspect oriented programming. Second, a guiding example
motivates the necessity of our work and provides some design rationales. Third,
the meta model describes a static view concerning the issues, and a typical mes-
sage flow will depict further issues. Last, tools developed as feasibility prototypes
show the meta model’s applicability.

In a nutshell, our contribution to current research is a generic meta model
for cross-cutting concerns in SOA environments. It provides the roots for han-
dling dependencies and constraints between cross-cutting concerns and services
during design time. Further, it enables designers to model effects on messages
and interfaces during processing.



2 From AOP to Aspect Services

Cross-cutting concerns are requirements that are usually not of primary but
of secondary interest. In other words, there is a second dimension in solving
problems while building a program. But programming languages and the chosen
design criteria are one dimensional! For example a program accesses a database.
Let this be a primary requirement and, now, add logging as a secondary re-
quirement. This means, every access to the database is supposed to be written
to a file. The logging cross cuts whatever is done by this program because the
database accesses are usually scattered all over the source code.

As a consequence, implementing cross-cutting concerns with programming
languages has been cumbersome. Therefore, AOP introduced a concept to collect
these concerns, here called aspects, statements at a single place [2]. By that, a
separation of concerns is achieved and changing an aspect only results in changes
to a single file. But the statements need to be propagated back to the places they
belong. This distribution is done by a code weaver which inserts the aspect’s
source code at certain join points before the source code is compiled. (We do not
consider run time mechanism here.)

For example, every access to a database is supposed to be logged. Therefore,
calls of particular methods have to be monitored. Hence, all these methods are
join points and the code weaver inserts a logging mechanism before these meth-
ods are called. In other words, the cross-cutting concern is realized as an aspect
logging mechanism and is woven at compile time.

The objective, we are going to address, is cross-cutting concerns in a SOA
environment and we refer to these concerns as aspects likewise AOP does. But
aspects are slightly different in SOA since services have to be regarded as state-
less black boxes in our environment. Due to this, join points can only exist
outside of a service. This eases difficulties with respect to locating join points
and catching messages but it hampers handling of more concerns in matters to
order at one join point. Moreover, there will be no code weaver assuring the
proper aspect distribution. But there will be assignments to be evaluated during
run time. Lastly, it is reasonable to implement aspects as services themselves as
the environment comprises of services. We call these services “aspect services”.

3 Guiding Example: A Document Retrieval Service

We studied a document retrieval service as a motivating and guiding example
in order to illustrate how services and aspects might be related. With respect to
services this document retrieval service is subdivided into operations. You can
assign several cross-cutting concers to these operations. For example you might
want to add an access control service or a billing service. Traditionally, these
examples are manageable with AOP but they are conceptual challenging in a
service oriented environment.

In more detail, the document retrieval service consists of two major opera-
tions: one operation is searching the documents (the seeker) and one operation is



providing the documents (the stash). Therefore, a user first calls the seeker and
receives a list of meaningless links. These links, which the stash is able to under-
stand, point at some place in the stash. Consequently, the user employs these
links to obtain the documents. So far, this system is easy, and, unfortunately, a
black box.

Because the document retrieval service does not comply with any security
requirements, we need to add them now. First, Bob might be allowed to retrieve
a document or not. This surely depends on his authorization and hence an au-
thentication beforehand. As a consequence, if Bob is authenticated the stash
will display only the documents he is authorized to see. Second, Bob might be
allowed to read the document but has to pay for it. In order to realize this, Bob
must be authenticated and he must have paid beforehand. All these security
aspects base upon encryption and hence we simplify matters to encryption.

4 Meta Model

The aforementioned document retrieval service uncovers many details that have
to be taken into account while designing a suitable meta model. Therefore, we
exploited this example to build the meta model and tried to find the generic and
reusable parts. We did so, because we finally aim for a more generic model than
for security issues. This is because there are other examples for aspect services
like logging or billing that the meta model is supposed to cover.

We present the meta model in figure 1. There, we omit all attributes and
condense a few concepts to simplify matters and to focus on the core concepts.
These core concepts are ordered from left to right and hence the meta model
is supposed to be read as such. As a consequence, one can follow a common
sequence of processing by reading the core concepts from left to right. Addition-
ally, we named the core concepts like the packages for emphasis. They are aspect,
aspect assignment, aspect service and service.

In section 4.2 we will employ the meta model to model the relevant concepts
during message processing and in section 5 we will show how the realization of
single concepts looks like. In the latter, some concepts will emerge as files and
some will as components.

4.1 Core Concepts of the Meta Model

Following our example from section 3 we have two operations to begin with, our
seeker and our stash. Both operations are to be regarded as black boxes and
apply to an interface.

Now, security is under consideration: We decided to put security into an
aspect category because single aspects might be in this category. For example
authorization, authentication or encryption are aspects of the security aspect
category. Picking out e.g. encryption, one possible realization encrypts complying
with RSA, AES or IDEA. Therefore an aspect operation is required that belongs



aspect service serviceaspect assignmentaspect

aspect service

aspect operation

service

interface

operation

aspect 
assignment

assignment 
configuration 

parameter

assignment 
to service

assignment 
to operation

join point

aspect
assignments

composition rule

aspect

aspect category

applies to

applies to

calls

comprises

0..*

0..*

complies with

belongs to implements

consists of

1..*

comprises

1..*

comprises

1..*

has

0..*

Visual Paradigm for UML Standard Edition(RWTH-Aachen)

Fig. 1. Meta Model – Aspect Assignments

to our encryption aspect service which itself belongs to an aspect. Let’s call our
encryption operation IDEA-L.

Next, we need to relate our seeker and our stash to IDEA-L. This is achieved
via aspect assignments which consist of single aspect assignments. But our seeker
and our stash are operations, and, hence we need to apply a specialization of
aspect assignments: an assignment to operation.

Now, we need to apply our IDEA-L aspect operation at some time during
run time. Fortunately, a join point belongs to an aspect assignment which is a
concept similar to AOP because at this join point IDEA-L is called. Section 4.2
explains how this is realized in more detail.

Sometimes it is cumbersome to assign many aspect operations to operations.
Luckily, operations are usually subsumed under services; like our seeker and our
stash which are named document retrieval service. Thus we can assign IDEA-L
to our document retrieval service by using an assignment to service.

Unfortunately, aspect operations usually do not work immediately because
some need assignment configuration parameters. For example, IDEA-L might
need a RSA public key for negotiating the IDEA-L key. This key as a parameter
surely belongs to an assignment to operation. But it might be necessary to pass
parameters to every aspect operation an aspect service consists of. For example



you might want to set a default hash algorithm for all aspect operations. This
assignment configuration parameter must be part of the assignment to service.

Additionally, the execution of an aspect might have some prerequisites. For
instance an authorization service makes no sense unless an authentication oc-
curred before. Such prerequisites, which formulate dependencies between aspects,
belong to composition rules.

Further, the recursions in the meta model need more detailed explanation.
First, an aspect might be related to other aspects and second, aspect assignments
might be related to aspect assignments. For example one might want to combine
aspects to a new aspect. In case we have digital signatures and logging as aspect
services then a combined version is a “verbose digital signature service”. This
new aspect service might be used for monitoring users. Consequently, we have
recursion with the aspect assignments too. Another example why recursion is
handy is presented in section 4.2. In our example we might add a logging service
to IDEA-L. So, every step of IDEA-L is written to a log file.

To sum up, we made an assignment to operation by relating an aspect op-
eration to an operation giving an assignment configuration parameter. In our
example we assigned IDEA-L to our stash adding the public key for negotiating.
This assignment takes place at the join point. Finally, we added a logging service
to IDEA-L for e.g. debugging purposes.

4.2 Processing Messages

The meta model presented in section 4.1 provides a static view on aspect as-
signments to services. Based on this meta model we want to explain the pro-
cessing of messages in such an environment in more detail. Figure 2 depicts the
most important concepts and roles that are involved in message processing. It
is important to note that this figure only shows the involved concepts and roles.
Furthermore, the join point comes up in two roles with respect to services. First,
invoke messages are dealt with when the join point is a mediator during a pre
call, and, second, reply messages are dealt with in case the join point acts as a
mediator during a post call. In order to explain some more details let’s follow a
message flow and keep in mind the concepts in figure 2.

An encrypted invoke message is sent to the stash and this message is received
by the join point since IDEA-L is assigned to the stash. The join point delegates
the message for further processing to an aspect operation; let’s say IDEA-L
decryption during the pre call. This means, the invoke message is decrypted
and can now be processed by a service operation, namely the actual document
retrieval. But this can only happen if the invoke message is conform to the stash’s
interface. Otherwise the invoke message is malformed and an error message
arises. But in normal progression, the service operation produces a reply message
which contains the requested document delivered by the stash. Again, a join point
receives a message. This time it is a reply message which the join point deals
with as a mediator during post call. Hence, it delegates the reply message to
another aspect operation. Let’s say we sign the delivered document. This means



the outgoing message is produced which needs to be conform to the interface as
well.

outgoing
message

incoming
message

join point aspect
operation

interface

service
operation

reply
message

receives

mediator

conformant

pre call
conformant

post call

produces

receiver

receives

modifier / post call

modifier / pre call

mediator

Visual Paradigm for UML Standard Edition(RWTH-Aachen)

Fig. 2. Processing Messages

The above mentioned message flow considers two server side locations of join
points with respect to service execution. And, since we are dealing with services
as black boxes, we only inspected these two cases. One is located before and the
other is located after the service execution. At first sight, both are as expected.
At second sight, working purely on the incoming and outgoing messages is what
one might refer to as filters, and such filters build on API message exchange
patterns [3]. In any case, filters examine incoming and outgoing messages (or
calls) and decide on roles (e.g. RBAC) how to continue.

Filtering before the execution of a service bears nothing unexpected. But,
one needs to be careful with filtering data because an upcoming service has a
certain interface. If the filter changes or omits data, the upcoming service might
be harmed. This holds true for incoming and outgoing messages and must be
checked during design phase already.

On the contrary, filtering outgoing data is clearly uncommon. Nevertheless,
we had to keep this in mind as sometimes there is no way to execute a service but
with super user privileges. This means a service returns whatever you request
and this is not always good. Let’s say our document retrieval service is imple-
mented by means of SQL statements and needs to run with super user privileges
due to database issues. Now, on the one hand, you cannot filter incoming SQL
statements because they rapidly grow way too complex. But, on the other hand,
trying to filter outgoing data is simply too late because all execution is done.
For example a drop table returns only true and that’s what you filter. But the
harm to the database is already done. Hence, one needs to be very careful with
this kind of filter.

Now, one can imagine orchestration of services with incoming and outgoing
filtering. We call this I/O filter and, of course, this is the difficult part of filtering.



Additionally, this caused us to extend the meta model with a mechanism for
parameterizing the assignments between services and aspects. Moreover, this is
why we need self-references with aspects and aspect assignments in the meta
model introduced in section 4.1.

5 Tool Support

The realization of the meta model is subdivided into a coarse grain and a fine
grain editor as can be seen in figure 3. The coarse grain editor is a GUI editor
for editing aspect assignments by assigning aspect services to services. Further,
it gives an overview which aspect assignments exist. The fine grain editor is a
GUI editor for setting the assignment configuration parameters. Both tools work
hand in hand in order to achieve a deployable configuration.

fine view

coarse view

coarse modeling
(aspect to service)

generating
coarse model

replicate
models

fine modeling
(aspect parameter)

reflection to
coarse model

Visual Paradigm for UML Standard Edition(RWTH-Aachen)

Fig. 3. Concepts Involved Configuring Assignments

But the foundations of the editing are three repositories that comprise as-
pects, composition rules and join points. First, the aspects are as mentioned
in section 4. Second, the composition rules describe possible prerequisites for
certain aspects. For instance, authorization does not make much sense, if no au-
thentication occurred beforehand. Third, the join points configure how the join
points are realized in a particular target platform.

The coarse grain editor can be any arbitrary modeling tool that allows certain
extensions. For instance, we have chosen Sybase PowerDesigner 12.5 due to its
popularity in the application area [4]. Hence, the designers already have service
repositories which exist in PowerDesigner they are now able to reuse.

The actual assigning is easy. It is done by simple drag and drop actions
and the assignment is illustrated as a line between two symbols as depicted in
figure 4. Further configuration of this assignment is then done by the fine grain
editor. Consequently, the coarse grain editor only needs to call the fine grain
editor and needs to pass the information about the assignments.

We are aware of the drawbacks of this GUI approach. Especially the problem
to keep things clear and orderly quickly occurs when models grow. But at the
moment we do not expect too much complexity and therefore we have chosen this
approach. Second, all changes in either model must be transparently reflected



back to the other editor. But this ”round trip” compatibility was comparably
easily realized by locking mechanisms.

One target platform we have taken into consideration as a server side has
been the Oracle SOA Suite [4]. This platform is a heavy weight suite with a
lot of tools. In particular the agent concept has become handy for realizing the
join points and hence these agents call sentinels which are configured by our
assignments. They do so in order to call aspect services. Of course, the Oracle
SOA Manager can do something similar but it is too deeply integrated into the
Oracle Software and lacks flexibility; especially with respect to integrating legacy
systems.

Fig. 4. Coarse Grain Editor taken from [4]

6 Related Work

A good point to start working is to get an idea of an overall SOA meta model
from Linthicum Group [5]. This model gives a good idea on how subdividing
issues in a SOA environment might work and how certain concerns crosscut
the architecture. Two important points to mention are governance and security.
Taking a closer look at security issues, some technical terms in information
security might be helpful [6]. Using these, a brief view in the field of possible
threats and challenges underlines the necessity of research [7]. A state of the art



response to these challenges, in terms of programming, is given by Kanneganti
by realizing security as services in a SOA environment [8].

Now, thinking about model driven development, a constructive meta model is
required. One proposal aiming at code generation, which means it comprises a lot
of attributes, has been published by Everware-CBDI [9]. The model’s perspective
is from a business point of view and services are not regarded as black boxes.
Therefore, this meta model does not support recursion of concepts.

Back to security, one way to do e.g. authorization control is described as a
pattern called secure service agent [10]. This pattern bases upon a secure service
proxy and an intercepting web agent. Further, it aims at the integration of legacy
systems as black boxes in general. Since this is only one approach how to deal
with these issues a look into the “Analysis of the Security Patterns Landscape”
gives a more precise overview [11].

Taking into account employed patterns and model driven development, one
can build a meta model for supporting security issues by extending MOF [12].
Another way of building a meta model is extending OCL [13]. Both models have
in common that they are considering services as black boxes; what distinguishes
both approaches is the different stages in development they are applicable to.

We are not dealing with MOF nor OCL but AOP, and therefore a piece of
related work is a proposal dealing with cross-cutting concerns by introducing
a “Web Service Management Layer” [14]. This layer is an “adaptive middle-
ware between applications and Web services” that takes care of management
responsibilities at the client side [14]. There the employed approach complies
with dynamical AOP and facilitates service integration during run time.

Additionally, a “Service Creation Environment” has been built to support
visual editing for web services [15]. This tool is an Eclipse plug-in and employs
“documented services” which can be used with “service composition templates”
for modeling [15]. Finally, these compositions can be assigned to cross-cutting
concerns by an XML-based language called Padus to be statically woven.

Another piece of related work is a paper from Tomaz et al. [16]. It gives a de-
tailed description on how an idea, which is very similar to ours, was implemented
in a web services environment. But, this paper does not take into account too
much conceptual roots or design aspects. Instead, it focuses very much on the
employed target platform and the XML documents used.

7 Summary and Outlook

To sum up, we examined a server side SOA environment and tried to find a light
weight approach for dealing with cross-cutting concerns. We used this approach
to build a design tool for easy assignment of aspect services to black box services
at design level. But, one needs to be aware of some constraints which might occur
when messages are affected by aspect services. Hence, we examined this in more
detail and we analyzed filtering mechanisms in particular.

In addition, we tried to make the assignments transparent for the user and
to integrate the approach into existing design tools. For this reason, we built



a platform independent GUI tool that can be integrated into the designer’s
standard tool. In our terms we build a fine grained editor that can be used by
the coarse grain editor. As a consequence, the GUI tool neither depends on the
designer tool nor on the deployment platform.

References

1. Josutti, N.: SOA in Practice: The Art of Distributed System Design. O’Reilly
Media (2008)

2. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In Akşit, M., Matsuoka, S., eds.: Pro-
ceedings European Conference on Object-Oriented Programming. Volume 1241.
Springer-Verlag, Berlin, Heidelberg, and New York (1997) 220–242

3. Starke, G.: SOA Expertenwissen. dpunkt.verlag (2007)
4. Hurtz, S.: Modelling of Security Concerns in a Service Oriented and Model Driven

Environment. Diplomarbeit, RWTH Aachen (Sept. 2008)
5. Group, L.: SOA Meta-Model. http://www.linthicumgroup.com/Linthicum(2007)
6. Savolainen, P., Niemela, E., Savola, R.: A Taxonomy of Information Security for

Service-Centric Systems. Software Engineering and Advanced Applications, 2007.
33rd EUROMICRO Conference on (Aug. 2007) 5–12

7. Schwarz, J., Hartman, B., Nadalin, A., Kaler, C., Davis, M., Hirsch, F., Mor-
rison, K.S.: Security Challenges, Threats and Countermeasures. http://www.ws-
i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.doc (May 2005) Web Services-
Interoperability Organization.

8. Kanneganti, R., Chodavarapu, P.: SOA Security. Manning (2008)
9. Everware-CBDI-SAE: A Meta Model for SOA - Version 2.0 (2007)

10. Emig, C., Schandua, H., Abeck, S.: SOA-Aware Authorization Control. Software
Engineering Advances, International Conference on (Oct. 2006) 62–62

11. Heyman, T., Yskout, K., Scandariato, R., Joosen, W.: An Analysis of the Security
Patterns Landscape. Software Engineering for Secure Systems, 2007. SESS ’07:
ICSE Workshops 2007. Third International Workshop on (May 2007) 3–3

12. Delessy, N.A., Fernandez, E.B.: A Pattern-Driven Security Process for SOA Appli-
cations. Availability, Reliability and Security, 2008. ARES 08. Third International
Conference on (March 2008) 416–421

13. Alam, M., Breu, R., Breu, M.: Model driven security for Web services (MDS4WS).
Multitopic Conference, 2004. Proceedings of INMIC 2004. 8th International (Dec.
2004) 498–505

14. Verheecke, B., Vanderperren, W., Jonckers, V.: Unraveiliny crossoutting concerns
in Web services middleware (Jan.-Feb. 2006)

15. Braem, M., Joncheere, N., Vanderperren, W., Straeten, R.V.D., Jonckers, V.:
Concern-Specific Languages in a Visual Web Service Creation Environment. In:
Proceedings of the Second International Workshop on Aspect-Based and Model-
Based Separation of Concerns in Software Systems. Volume 163-2., Amsterdam,
The Netherlands, The Netherlands, Elsevier Science Publishers B. V. (2007) 3–17

16. Hmida, M.M.B., Tomaz, R.F., Monfort, V.: Applying AOP Concepts to Increase
Web Services Flexibility. In: NWESP ’05: Proceedings of the International Con-
ference on Next Generation Web Services Practices, Washington, DC, USA, IEEE
Computer Society (2005) 169


