
Extending Datalog to cover XQuery⋆

David Bedńarek

Department of Software Engineering
Faculty of Mathematics and Physics, Charles University Prague

david.bednarek@mff.cuni.cz

Abstract. Datalog is a traditional platform in database research
and, due to its ability to comprehend recursion, it seems to be
a good choice for modeling XQuery. Unfortunately, XQuery func-
tions have arguments carrying sequences; therefore, logic-based
models of XQuery must be second-order languages and, conse-
quently, Datalog is usually extended by node-set variables. In
this paper, we suggest an alternative approach - extending Data-
log by allowing structured variables in a form similar to Dewey
numbers. This extension is then used to model the behavior of
a XQuery program as a whole, using predicates that reflect the
semantics of XQuery functions only in the context of the given
program. This fact distinguishes our approach from traditional
models that strive to comprehend the behavior of a function inde-
pendently of its context. The advantage of this approach is that it
uses the same means to model the structural recursion of docu-
ments and the functional recursion of programs, allowing various
modes of bulk processing, loop reversal and other optimization
techniques.

1 Introduction

Contemporary XQuery processing and optimization tech-
niques are usually focused on querying and, in most cases,
ignore the existence of user-defined functions. In the era
of XSLT 1.0, the implementation techniques had to recog-
nize user-defined functions (templates) well (see for in-
stance [3]); however, this branch of research appears dis-
continued as the community shifted to XQuery. The re-
cent development in the area of query languages for XML
shows that the XQuery language will likely be used as one
of the main application development languages in the XML
world [1]. In particular, intensive use of user-defined func-
tions may be expected.

There were several attempts to apply Datalog or Data-
log-like models to XPath or XQuery. There are also top-
down approaches using structural recursion, i.e. strongly
syntactically limited form of Horn clauses with function
symbols [7]. More general forms, using first-order logic,
were also used in the area of XML constraints [8].

In this paper, we (informally) define the language BT-
Log as an extension of Datalog. In the Section 3, an ab-
straction of an XQuery program as a forest is defined. In the
fourth section, the principles of the transformation to BT-
Log is defined and shown on an example. In the Section 5,

⋆ Project of the program “Information society” of the Thematic
program II of the National research program of the Czech Re-
public, No. 1ET100300419

a detailed representation of the most important XQuery
core operators is given.

2 BTLog

Traditional Datalog program is a set of rules in the form of
Horn clauses without function symbols. We will extend this
definition with one binary function symbolT, correspond-
ing to the creation of a binary treeT(x, y) from subtreesx
andy. We will call this languageBTLog(from binary-tree
logic). Of course, addition of a function symbol raises the
power of the language quite dramatically; therefore, some
properties of Datalog are lost and new problems are raised:

– Termination– using theT-operator, any number of val-
ues may be generated. Therefore, termination is not
generally guaranteed and any BTLog evaluation algo-
rithm shall cope with termination problems.

– Minimal model semantics– without negation, minimal
model semantics works well with BTLog, just as it
works with Datalog without negation.

– Stratification– In Datalog¬, stratification is used to
extend the notion of minimal model. Similar defini-
tion may be used in BTLog, resulting in the language
BTLog¬,strat.

– Non-stratifiable program semantics– stable modelse-
mantics is used for non-stratified BTLog¬ programs.

Definition of the abovementioned terms and detailed
discussion of theoretical properties of such a language may
be found for instance in [5].

3 Abstraction of a XQuery program

Similarly to the normative definition of the XQuery seman-
tics, we use (abstract) grammar rules of thecore gram-
mar [9] as the base for the models. A XQuery program is
formalized as a forest of abstract syntax trees (AST), one
tree for each user-defined function and one for the main ex-
pression. Each node of each AST, i.e. each sub-expression
appearing in the program, has a (program-wide) uniquead-
dressE. These addresses will participate as subscripts in
BTLog predicate names and they will also appear as con-
stants in some rules.

2 David Bedńarek

a

b

d

e

c

g

h

i j

k

l m

<section>

for $X

returnin

$P

toc()

,

function toc($P)

$X/title

<toc>

for $S

in

doc("D")

toc()

$P

$S

$X

return

main

n $X/section

f $S/book

Fig. 2.Query 1 – Forest model.

declare function toc($P)
{ for $X in $P return <section> {

$X/title , toc($X/section) } </section>
};

<toc> {
toc(for $S in doc("D") return $S/book)

} </toc>

Fig. 1.Query 1.

Fig. 2 shows the abstract syntax forest corresponding
to the Query 1 at Fig. 1. Node adresses are shown as letters
left to the nodes.

For each AST nodeE, the setvars[E] contains the
names ofaccessible variables. In particular, whenE is the
root of a function AST,vars[E] contains the names of ar-
guments of the function, including implicit arguments like
the context node.

4 Principles of the transformation

The model is based on the following principles:

– Nodes within a tree are identified bynode identifiers
using Dewey ID labeling scheme. (See, for instance
[6].)

– A tree is encoded using a mapping of Dewey labels to
node properties.

– A tree created during XQuery evaluation is identified
by a tree identifierderived from the context in which
the tree was constructed.

– A node is globally identified by the pair of a tree iden-
tifier and a node identifier.

– A sequence (i.e. any XQuery expression value) is mod-
eled using a mapping ofsequence identifiersto se-
quence items. Since a sequence may mix atomic values

and document nodes, the mapping is divided into two
interweavedlists.

– Eachsequencecontaining document nodes is accom-
panied by atree environmentwhich contains the en-
coding of the document trees to which the nodes of the
sequence belong.

– Evaluating afor-expression corresponds to iteration
through all sequence identifiers in the value of thein-
clause.

– A particular context reached during XQuery evalua-
tion is identified by the pair of acall stack, containing
positions in the program code, and acontrol variable
stack, containing sequence identifiers selected by the
for-expressions along the call stack.

– Node identifiers, tree identifiers, sequence identifiers,
and control variable stacks share the same domain of
binary trees with values on leaves, allowing to con-
struct each kind of identifier from the others. In most
cases, a binary tree is used to encode a (generalized)
string – then, the rightmost path in the tree has the
length of the string and the children of the rightmost
path are the letters of the string.

4.1 Model predicates

Our model assigns a set of predicates to each AST node,
i.e. to each addressE:

– InvocationinvE(i,f) enumerates the contexts in which
the expressionE is evaluated. Argumenti represents
the call stack that brought the execution to the exam-
ined expressionE. f is the stack of sequence identi-
fiers selected by thefor-clauses throughout the de-
scent alongi to E. The two stacks together form the
identification of the dynamic context in which an ex-
pression is evaluated. While the XQuery standard de-
fines dynamic context as the set of variable assign-
ments (with some negligible additions), our notion of

Extending Datalog to cover XQuery 3

dynamic context is based on the stack pair that deter-
mines the descent through the code to the examined
expression, combining both the code path stored ini

and thefor-control variables inf . The key to the suf-
ficiency of this model is the observation that the vari-
able assignment is a function of the stack pair.

– Atomic listalstE(i, f, s, v) represents the atomic value
portion of the assignment of the result value of the ex-
pressionE to the contexts enumerate byinvE(i, f).
s is a sequence identifier,v is a value of an atomic
type as defined by the XQuery standard. The predicate
alstE(i, f, s, v) is true if the value of the expression
E in the context(i, f) contains the atomic valuev at
positions.

– Node listnlstE(i, f, s, t, n) represents the node portion
of the result value of the expressionE. The meaning of
i, f , ands is the same as inalstE . t is a tree identifier –
for external documents, it is a literal value, for tempo-
ral trees, it is the expressionT(i1, f1) corresponding
to the environment identification at the moment of tree
creation.n is a node identifier in the form of a Dewey
ID.

– EnvironmentenvE(i, t, n, a) represents the tree envi-
ronment associated to the result value of the expression
E. i determines the call context (note that the envi-
ronment is independent of the control variable stack).
t is a tree identifier,n is a node identifier,a is a tu-
ple of properties assigned to a node by the XML Data
Model, containing node kind, name, typed and string
values, etc. Particular properties are accessed using
predicatesname(a, v), string(a, v), etc.

– valst
E,$x(i, f, s, v), vnlst

E,$x(i, f, s, t, n), and
venv

E,$x(i,t,n,a) represent the assignment of the val-
ues of the variable$x ∈ vars[E] to the contexts sati-
fying invE(i, f). The meaning of the arguments is the
same as inalstE , nlstE , andenvE .

4.2 Example

The following example shows the Query 1 transformed to
a BTLog program. The subscripts in the predicate names
correspond to the adresses shown in Fig. 2; unused and
identity rules were removed. The main expression of the
Query 1 transforms to the following BTLog rules:

inva(1, 1). -- program start

enve(i,D, n, a) :– inve(i, f), doc(”D”, n, a).

-- doc(”D”) tree environment

vnlstf,$S(i,T(s, f), 1, t, n) :– nlsta(i, f, s, t, n).

-- variable$S

nlstf(i, f,T(t, n), t, n) :– vnlstf,$S(i, f, s, t,m),

enve(i, t, n,T(element, book)),

child(m,n).

-- $S/book node

nlstd(i, f,T(s, r), t, n) :– nlstf(i,T(s, f), r, t, n).

-- the result of the for-expression

vnlstg,$P(T(c, i), f, s, t, n) :– nlstd(i, f, s, t, n).

-- argument$P in toc

venvg,$P(T(c, i), t, n, a) :– enve(i, t, n, a).

-- environment of$P in toc

nlstc(i, f, s, t, n) :– nlstg(T(c, i), f, s, t, n).

-- the return value oftoc

envc(i, t, n, a) :– envg(T(c, i), t, n, a).

-- the return value environment

nlstb(i, f, 1,T(i, f), 1) :– inva(i, f).

-- the<toc> node

envb(i,T(i, f), 1,T(element, toc)) :– inva(i, f).

envb(i,T(i, f),T(s, p), a) :– nlstc(i, f, s, t,m),

envc(i, t, n, a), cat(n,m, p).

-- the<toc> node environment

out(i, t, n, a) :– envb(i, t, n, a).

-- the output tree

The following rules correspond to the functiontoc:

invj(i,T(s, f)) :– vnlstg,$P(i, f, s, t, n).

-- the invocation of the return clause

vnlstj,$X(i,T(s, f), 1, t, n) :– vnlstg,$P(i, f, s, t, n).

-- variable$X

nlstl(i, f,T(t, n), t, n) :– vnlstj,$X(i, f, s, t,m),

venvg,$P(i, t, n,T(element, title)),

child(m,n).

-- $X/title expression

nlstn(i, f,T(t, n), t, n) :– vnlstj,$X(i, f, s, t,m),

venvg,$P(i, t, n,T(element, section)),

child(m,n).

-- $X/section expression

vnlstg,$P(T(m, i), f, s, t, n) :– nlstn(i, f, s, t, n).

-- argument$P in toc

venvg,$P(T(m, i), t, n, a) :– venvg,$P(i, t, n, a).

-- environment of$P in toc

nlstm(i, f, s, t, n) :– nlstg(T(m, i), f, s, t, n).

-- the return value oftoc

envm(i, t, n, a) :– envg(T(m, i), t, n, a).

-- the return value environment

nlstk(i, f,T(1, s), t, n) :– nlstl(i, f, s, t, n).

nlstk(i, f,T(2, s), t, n) :– nlstm(i, f, s, t, n).

-- the concatenated value

envk(i, t, n, a) :– venvg,$P(i, t, n, a).

envk(i, t, n, a) :– envm(i, t, n, a).

4 David Bedńarek

-- the environment of the concatenation

nlstj(i, f, 1,T(i, f), 1) :– invj(i, f).

-- the<section> node

envj(i,T(i, f), 1,T(element, toc)) :– invj(i, f).

envj(i,T(i, f),T(s, p), a) :– nlstk(i, f, s, t,m),

envk(i, t, n, a), cat(n,m, p).

-- the<section> node environment

nlsth(i, f,T(s, r), t, n) :– nlstj(i,T(s, f), r, t, n).

-- the result of the for-expression

nlstg(i, f, s, t, n) :– nlsth(i, f, s, t, n).

-- the result of the function

envg(i, t, n, a) :– envj(i, t, n, a).

-- the result environment

Figure 3 show the dependence graph for the predicates
of Query 1. There are three strongly connected components
(shown in bold) – the first one carries the environment of
argument$P (i.e. the input document) down through the
recursion of the functiontoc. The second component
corresponds to the recursive descent of the variable$P
through the document. The third component collects the
constructed nodes back, unwinding the call stack.

5 Representation of Core XQuery
Operators

There are several variants ofcore subsets of XQuery, in-
cluding thecore grammardefined in the W3C standard
[9], the LixQuery framework [4], and others [2]. Since the
XSLT and XQuery are related languages and the transla-
tion from XSLT to XQuery is known (see [2]), the model
may be applied also to XSLT.

Note: Most XQuery operators do not change the as-
signment of variable values; therefore, we will omit the
propagation rules in the subsequent description. We will
also omit the rules foralstE andvalst

E,$x whenever they
are similar tonlstE andvnlst

E,$x.

Function call – E0 = f(E1)
Assume thatEf is the root of the function and$x is the

name of the formal argument. The rules implement pushing
the call addressE0 onto the call stack and popping it back
upon return.

invEf
(T(E0, i), f) :– invE0

(i, f).

vnlst
Ef ,$x(T(E0, i), f, s, t, n) :– nlstE1

(i, f, s, t, n).

venv
Ef ,$x(T(E0, i), t, n, a) :– envE1

(i, t, n, a).

nlstE0
(i, f, s, t, n) :– nlstEf

(T(E0, i), f, s, t, n).

envE0
(i, t, n, a) :– envEf

(T(E0, i), t, n, a).

For Expression – E0 = for $y in Ein return Eret

The for-expression generates a new dynamic context
for each member of the sequenceEin; in our model, it is
represented by pushing the sequence identifiers onto the
control stackf :

invEret
(i,T(s, f)) :– nlstEin

(i, f, s, t,m).

At the same time, the variable$y is added to the dy-
namic context, defined as follows:

vnlst
Eret,$y(i,T(s, f), one, t, n) :–

nlstEin
(i, f, s, t, n).

venv
Eret,$y(i, t,m, a) :– envEin

(i, t,m, a).

For older variables, the following rules are defined for
each$x ∈ vars[E0] \ {$y}:

vnlst
Eret,$x(i,T(s, f), r, u,m) :– nlstEin

(i, f, s, t, n),

vnlst
E0,$x(i, f, r, u,m).

venv
Eret,$x(i, u,m, a) :– venv

E0,$x(i, u,m, a).

Finally, the value of the for-expression is created by the
concatenation of the return clause values:

nlstE0
(i, f,T(s, r), t, n) :– nlstEret

(i,T(s, f), r, t, n).

envE0
(i, t, n, a) :– envEret

(i, t, n, a).

Let Expression – E0 = let $y := Edef return Eret

The let-expression adds the variable$y to the dynamic
context. Nevertheless, the identification of the context is
not changed and the other variables are also preserved.

invEret
(i, f) :– invE0

(i, f).

vnlst
Eret,$y(i, f, s, t, n) :– nlstEdef

(i, f, s, t, n).

venv
Eret,$y(i, t,m, a) :– envEdef

(i, t,m, a).

Where Clause – E0 = for $y in Ein where
Ewh return Eret

Adding where clause to a for-expression affects the set
of contexts generated for the return clause; similarly, vari-
able models are affected:

invEret
(i,T(s, f)) :– alstEwh

(i, f, s, true).

vnlst
Eret,$y(i,T(s, f), one, t, n) :– nlstEin

(i, f, s, t, n),

alstEwh
(i, f, s, true).

vnlst
Eret,$x(i,T(s, f), r, u,m) :– nlstEin

(i, f, s, t, n),

alstEwh
(i, f, s, true), vnlst

E0,$x(i, f, r, u,m).

Equality Test – E0 = E1 eq E2

eqE0
(i, f) :– alstE1

(i, f, s, v), alstE2
(i, f, r, v).

alstE0
(i, f, 1, true) :– eqE0

(i, f).

alstE0
(i, f, 1, false) :–¬eqE0

(i, f).

Extending Datalog to cover XQuery 5

nlst[e]

inv[a]

env[e]

doc vnlst[f,$S]

nlst[f]

nlst[d] vnlst[g,$P]

venv[g,$P]

nlst[g]

nlst[c]

env[g]

env[c]

env[b] out

inv[j]

vnlst[j,$X]

nlst[l]

nlst[n]

nlst[m]

env[m]

nlst[k]

env[k]

nlst[j] env[j]

nlst[h]

Fig. 3.Query 1 – Predicate dependence graph.

Node Construction – E0 = <A>{ E1 }

nlstE0
(i, f, one,T(i, f), one) :– invE0

(i, f).

envE0
(i,T(i, f), one, a) :– invE0

(i, f),

elementA(a).

envE0
(i,T(i, f),T(s, p), a) :– nlstE1

(i, f, s, t,m),

envE1
(i, t, n, a), cat(n,m, p).

The auxiliary predicatecat corresponds to the concate-
nation of Dewey identifiersn = m.p and it is defined as
follows:

cat(p, one, p).

cat(T(s, n),T(s,m), p) :– cat(n,m, p).

Navigation – E0 = E1 / axis::*

nlstE0
(i, f,T(t, n), t, n) :– nlstE1

(i, f, s, t,m),

envE1
(i, t, n, a), axis(m,n).

envE0
(i, t, n, a) :– envE1

(i, t, n, a).

The selection operator is driven by a predicateaxis

corresponding to theaxis used in the navigation operator.
These predicates are defined as follows:

child(one,T(s, one)).

child(T(s,m),T(s, n)) :– child(m,n).

parent(m,n) :– child(n,m).

descendant(one,T(s, n)).

descendant(T(s,m),T(s, n)) :– descendant(m,n).

ancestor(m,n) :– descendant(n,m).

descendantorself(m,n) :– cat(n,m, p).

ancestororself(m,n) :– descendantorself(n,m).

Node-Set Union – E0 = E1 union E2

nlstE0
(i, f,T(t, n), t, n) :– nlstE1

(i, f, s, t, n).

nlstE0
(i, f,T(t, n), t, n) :– nlstE2

(i, f, s, t, n).

envE0
(i, t, n, a) :– envE1

(i, t, n, a).

envE0
(i, t, n, a) :– envE2

(i, t, n, a).

Note that the sequence identifierss are not referenced
at the head of the rule; instead, the identifierT(t, n) repre-
senting document order is used.

Node-Set Intersection– E0 = E1 intersection E2

nlstE0
(i, f,T(t, n), t, n) :–

nlstE1
(i, f, r, t, n), nlstE2

(i, f, s, t, n).

envE0
(i, t, n, a) :–

envE1
(i, t, n, a), envE2

(i, t, n, a).

Node-Set Difference– E0 = E1 except E2

nlstE0
(i, f,T(t, n), t, n) :–

nlstE1
(i, f, r, t, n),¬nlstE2

(i, f, s, t, n).

envE0
(i, t, n, a) :–

envE1
(i, t, n, a).

Concatenation – E0 = E1 , E2

nlstE0
(i, f,T(one, s), t, n) :– nlstE1

(i, f, s, t, n).

nlstE0
(i, f,T(two, s), t, n) :– nlstE2

(i, f, s, t, n).

envE0
(i, t, n, a) :– envE1

(i, t, n, a).

envE0
(i, t, n, a) :– envE2

(i, t, n, a).

Note that whenever the two environmentsenvE1
and

envE2
contain the same tree identifiert, the corresponding

6 David Bedńarek

tree information is merged by theenvE0
rules. Since the

tree identifier exactly determines the context in which the
tree was created, trees having the same identifier must be
identical; therefore, merging the tree environments do not
alter them anyway.

6 Conclusion

We have presented a model of XQuery evaluation based
on Horn clauses under the BTLog¬ syntax. From the syn-
tactic point of view, this model comprehends the follow-
ing XQuery structures: Declare function, function call, for-
clause, let-clause, where-clause, stable-order-by-clause,
quantified expressions, equality operator on atomic val-
ues, Boolean operators including negation,union,
intersection, except operators, concatenation (,)
operator, statically named document references (fn:doc),
forward/reverse axis navigation, name tests,fn:root,
and element constructors.

There are two important omissions from the core
XQuery that are not covered by this model: Positional vari-
ables and aggregate functions. There are also some flaws in
error handling, namely the fact that the model may silently
process some situations that shall be signalled as an error.
These issues will be addressed by our future research.

The universal quantified expression (every), the
equality operator, and the node-set subtraction operator
(except) involve negation in their BTLog rules. Some
XQuery programs are not stratifiable after conversion to
BTLog¬. This is not necessarily a weakness of the ap-
proach – since the XQuery language is Turing-complete,
we shall not expect general stratifiability. This way, the
stratifiability of its BTLog¬ equivalent may be used
as a borderline between “easy” and “difficult” cases. Fortu-
nately, it shows that most of the real-life XQuery programs
fall in the “easy” stratifiable category – for instance, all the
XML Query Use Cases [10] programs are stratifiable.

Since termination in XQuery is not guaranteed, it may
be expected that it is not generally guaranteed also in BT-
Log. Our future research will focus on static analysis meth-
ods trying to discover a termination guarantee in a BTLog
program (of course, due to the Turing-completeness, no
method can decide on the existence of a termination guar-
antee).

References

1. Chamberlin, D.: XQuery: Where Do We Go from Here? In:
XIMEP 2006, 3rd International Workshop on XQuery Imple-
mentation, Experiences and Perspectives. ACM Digital Li-
brary, New York (2006)

2. Fokoue, A., Rose, K., Siḿeon, J., Villard, L.: Compiling
XSLT 2.0 into XQuery 1.0. In: WWW ’05: Proceedings
of the 14th International Conference on World Wide Web,
pp. 682–691, ACM, New York (2005)

3. Groppe, S., B̈ottcher, S., Birkenheuer, G., Höing, A.: Refor-
mulating XPath Queries and XSLT Queries on XSLT Views.
Technical report, University of Paderborn (2006)

4. Hidders, J., Michiels, P., Paredaens, J., Vercammen, R.: Lix-
Query: A Formal Foundation for XQuery Research. SIG-
MOD Rec., 34(4):21–26, ACM, New York (2005)

5. Hinrichs, T., Genesereth, M.: Herbrand Logic. Technical
report LG-2006-02, Stanford University (2006)

6. Lu, J., Ling, T.W., Chan, C.-Y., Chen, T.: From Region En-
coding to Extended Dewey: On Efficient Processing of XML
Twig Pattern Matching. In: VLDB ’05: Proceedings of
the 31st International Conference on Very Large Data Bases,
pp. 193–204. ACM, New York (2005)

7. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query
Language and Algebra for Semistructured Data Based on
Structural Recursion In: The VLDB Journal, pp. 76-110,
Springer-Verlag (2000)

8. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T.,
Segoufin, L.: Two-Variable Logic on Data Trees and XML
Reasoning In: PODS’06, ACM, New York (2006)

9. XQuery 1.0 and XPath 2.0 Formal Semantics, W3C (2007)
10. XML Query Use Cases, W3C (2007),

http://www.w3.org/TR/xquery-use-cases/

