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Abstract. We introduce a new compact model of XML Schema
called a schema tree. Given an XSLT transformation xsl and an
XML schema xsd, we present a method which statically analyzes
the schema tree constructed according to xsd and determines
whether xsl can be processed in a streaming manner on a set
of XML documents defined by xsd. We consider streaming pro-
cessing that uses a stack of the size proportional to the depth of
the input document - this processing is highly efficient in practice
since real-world XML documents are shallow. The schema anal-
ysis is performed via stepwise application of templates of xsl on
the schema tree. We present the implementation of a schema tree
and the static XSLT analyzer on .NET platform.

1 Introduction

Many applications need to employ streaming approach
when processing huge data in XML format. Most typi-
cally, the languages XSLT [10] and XQuery [13] are used
to specify XML transformations. Both of them enable the
user to write a high-level specification based on tree ma-
nipulation. Common processors of these languages (e.g.,
Saxon, Xalan, AltovaXML) are tree-based, i.e., read the
whole input document into memory and then perform the
transformation itself.

The XSLT and XQuery tree-based processors are ap-
parently not suitable when transforming XML streams or
huge XML data. In this case, the transformation can be ei-
ther written by hand using an event-base parser (e.g., SAX,
StAX) or using some streaming transformation language
(STX [1], XStream [5]). In both cases, writing the speci-
fication is a non-trivial task since the user must explicitly
handle storing parts of the input document in the memory
buffers for later processing.

In this paper we focus on the problem how to enable the
user to write a tree manipulation specification in the XSLT
language, and at the same time to process it in a streaming
manner automatically. Such automatic streaming processor
is supposed to apply the tree-manipulation functions over
a continuous stream of data while the buffering is treated
automatically. An important issue is to design the processor
in such a way that the size of memory buffers is minimized
for the given transformation and the input document.

We describe the implementation of the Xord frame-
work which represents a prototype XSLT automatic stream-
ing processor. The Xord framework is based on the formal

framework for streaming XML transformations introduced
in [3]. The framework is capable to process automatically a
class of top-down XSLT transformations which captures a
significant number of practically needed XML transforma-
tions. The processing is done using a stack of the size pro-
portional to the depth of the input XML document - such
processing is highly efficient in practice since real XML
documents are shallow [9].

We focus especially on the schema-based analyzer
which represents a powerful tool used within the Xord frame-
work to determine the most efficient way of processing the
given XSLT transformation. For a given XSLT stylesheet
xsl and an XML schema xsd1, it automatically analyzes
the memory usage of the streaming processing of xsl on a
set of documents defined by xsd.

The existing models for XML schemas (DOM, .NET
XmlSchema) appeared inconvenient for the purpose of the
streamability analysis, we therefore introduce the Xord
Schema Model - a new compact model for schema repre-
sentation. The model is abstract, and thus not bounded to a
particular schema language. However, in the prototype im-
plementation we employ W3C XSD notation [11, 12] for
XML schemas.

Related work. Several streaming processors for XSLT and
XQuery have been implemented. However, their efficiency
was demonstrated only by experiments on a small number
of XML transformations and input XML documents. It is
thus not known how much memory is consumed on clearly
characterized transformation classes.

XML Streaming Machine (XSM) [8] processes a subset
of XQuery on XML streams without attributes and recur-
sive structures. It is based on a model called XML stream-
ing transducer. The processor have been tested on XML
documents of various sizes against a simple query. Using
XSM the processing time grows linearly with the document
size, while in the case of standard XQuery processors the
time grows superlinearly. More complex queries have not
been tested.

BEA/XQRL [4] is a streaming processor that implements
full XQuery. The processor was compared with Xalan-J
XSLT processor on the set of 25 transformations and an-
other test was carried on XMark Benchmarks. BEA pro-

1 We use the term XML schema for a general schema for XML
documents.
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Fig. 1. The Xord framework.

cessor was fast on small input documents, however, the
processing of large documents was slower since the opti-
mizations specially designed for XML streams are limited
in this engine.

FluXQuery [7] is a streaming XQuery processor based
on a new internal query language FluX which extends
XQuery with constructs for streaming processing. XQuery
query is converted into FluX and the memory size is opti-
mized by examining the query as well as the input DTD.
FluXQuery supports a subset of XQuery. The engine was
benchmarked against XQuery processors Galax and AnonX
on selected queries of the XMark benchmark. The results
show that FluXQuery consumes less memory and runtime.

SPM (Streaming Processing Model) [6] is a one-pass
streaming XSLT processor without an additional memory.
Authors present a procedure that tries to converts a given
XSLT stylesheet into SPM. No algorithm for testing the
streamability of XSLT is introduced, and therefore the class
of XSLT transformations captured by SPM is not clearly
characterized.

2 Xord Framework

The Xord framework for analyzing and transforming XML
data is implemented on .NET platform. Its application in-
terface is formed by a set of interface classes for traversing
analyzed data structures. The core of the framework con-
sists of these abstract models (see Fig. 1):

1. Template Model for transforming templates implemen-
ted by the XfXslt classes,

2. Schema Model for XML schemas implemented by the
XfSchema classes,

3. Algorithm Model for streaming algorithms implemen-
ted by the XfSsxt classes,

4. Analyzer Model for static analyzers implemented by the
XfXsdSsxtAnalyzer and XfTemplateAnalyzer classes.

Since the models are abstract, the Template Model may be
adopted to model templates of any template-based XML
transformation language and the Schema Model may be

adopted to model any XML schema language based on
structure definition.

Furthermore, the framework is complemented by a set
of auxiliary helper classes. The algorithmic part of the API
supports:

SsxtAlgorithm algorithm derived from the abstract Al-
gorithm model, and

XsdSsxtAnalyzer algorithm derived from the abstract An-
alyzer model, and using the Schema Model and the
Template Model.

The implementation of the above mentioned models are de-
scribed in more detail in following sections.

3 XSLT representation

The Xord framework is currently restricted to process sim-
ple XSLT transformations on XML documents without data
values.

Simple XSLT stylesheets. Simple XSLT stylesheet con-
sists of an initializing template and several transforming
templates. The initializing template sets the current mode
to the initial mode m0 and calls processing of the root ele-
ment of the input document. It is of the form:
<xsl:template match="/">

<xsl:apply-templates mode="m0"/>
</xsl:template>

The transforming templates are of the form:
<xsl:template match="name" mode="m">

... template body ...

</xsl:template>

The template body contains output elements (possibly nested)
and apply-templates calls. Output elements are of the form:
<name> . . .element content . . .</name>

The apply-templates construct has a select attribute
that contains selecting expression, and a mode attribute.
<xsl:apply-templates select="selexp" mode="m’"/>

A subset of XPath expression is allowed in templates -
they contain child and descendant axis, and select nodes
by name:
XPath := Step | Step/XPath
Step := child::name | descendant::name

where name refers to an element name.

Xord Template Model. In the Xord framework, XSLT sty-
lesheets are represented by a set of classes, an Xord Tem-
plate Model. Its simplified object structure is depicted in
Fig. 2.

Each template from the XSLT contains a sequence of
template calls. A template call consists of the parsed XPath
expression and the template called by the apply-templates
mechanism. The input template file is parsed into these
structures before the analysis. Then the analysis algorithm
directly traverses the DAG, evaluates the expressions etc.
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4 Hierarchical XML schema representation

We represent an XML schema hierarchically as a schema
tree. The representation does not depend on a particular
schema notation (DTD, XSD). The schema tree consists of
two kinds of nodes:

– element nodes: correspond to an element type defined
within schema

– constructor nodes: correspond to constructors used in
the schema (sequence, choice, *, +, ?)

The relationships among element types and constructors
are represented by the structure of the tree.

Some subtrees of schema tree may be identical - this
situation occurs if we derive the schema tree from DTD or
XSD containing shared element types. When designing the
analyzer, the tree representation is more convenient. How-
ever in the implementation of schema-based analyzer each
type is represented as a single node and the whole schema
is represented as a DAG (see Schema Object Model be-
low).

In the schema-based analysis, we consider XML sche-
mas without the choice constructor and recursive defini-
tions. Such schema can be represented as a single regular
expression. This representation is useful in the extraction
part of the analyzer algorithm (see Section 5).

Xord Schema Model. Although there are well established
and widely used XML parsers, we have found no suitable
parser for XSD. To perform schema manipulation, the .NET
Framework provides a set of classes called the Schema Ob-
ject Model, or SOM for short. The SOM is for schemas
what DOM is for XML documents: the SOM classes repre-
sent various parts of a schema, for example XmlSchemaSim-
pleType, XmlSchemaElement, there are many other classes
that represent attributes, facets, groups, complex types, and
so on. This model is especially useful for creating schemas
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programmatically, but its application interface is not very
useful for parsing and analyzing existing schemas.

Since the schema analysis using standard XML schema
DOM model would be very complicated and tangled, we
have designed an Xord Schema Model which is targeted to
effective representation and analysis of existing schemas.
A simplified object structure of that model is depicted in
Fig. 3.

The whole schema is represented as an associative ar-
ray of simple or complex type nodes. Each complex node
contains a list of references to its child nodes with their
cardinality. Using this recursive structure that form a DAG
(or a tree with one particular node selected as a root), the
parsed schema could be easily traversed and processed.

5 Schema-based analyzer

The schema-based analyzer applies the given XSLT style-
sheet xsl to the schema tree xsd, starting at the root node.
First, let us remind the principles of the XSLT application
to the XML document tree. Let tmp be the current tem-
plate of the XSLT stylesheet (at the beginning of the trans-
formation, it is the template matching the root element in
the initial mode m0)

1. The node sequence selected by the XPath expressions
in the rule calls of the current template are found.

2. The templates called by the rule calls are applied to the
selected nodes.

However, in case of the schema tree, a modification of the
first step of this simple algorithm is needed:

1. All possible node sequences selected by the XPath ex-
pressions in the rule calls of the current template are
found.



2. The templates called by the rule calls are applied to the
selected nodes.

Since the set of all possible node sequences selected by
XPath expressions in the first step may be infinite, we rep-
resent it in the form of regular expression regexp. Such
regular expression is basically a fragment of the schema
tree, i.e., a set of its nodes (not necessarily connected) which
is a fragment of the regular expression representing the
whole schema tree.

The regular expression regexp may contain both ele-
ment nodes and constructor nodes. It is extracted as fol-
lows: First, the node sequence selected by the XPath ex-
pressions are found in the same way as in the XML docu-
ment tree (constructor nodes are skipped). Second, all con-
structors appearing in the branch of the schema tree from
the root to the selected nodes are added to the sequence.
The hierarchy of the nodes is preserved by delimiting the
nodes appearing at the same level of the schema tree by
parentheses.

We say that regexp represents possible reading orders
of the element names selected by the expressions in tmp,
i.e., the order in which the elements are accessed when a
document defined by the schema xsd is read sequentially.
Now let names be a sequence of element names in the or-
der they are called in tmp - clearly, the sequence can be
constructed statically by examining the last steps of the
XPath expressions in tmp. The names sequence repre-
sents the processing order of the elements. In case one of
the reading orders does not conform to the processing or-
der, the order-preservation of the xsl is violated and the
SSXT algorithm is not applicable2. It is thus only neces-
sary to compare regexp to the names sequence in order to
check applicability ot the stack-based algorithm.

Implementation. The core of the schema-based analyzer
is the AnalyzeNode function which takes two arguments
- a template of xsl and a node of the schema tree xsd.
It performs the application of the template to the schema
tree node as described above. Using the Template Model
and the Schema Models allows the analyzer algorithm to
be simple and straightforward - see Fig. 4.

The comparison of the regexp to the names sequence
is accomplished by the Compare function. Its implemen-
tation is based on inherent properties of its arguments. In-
stead of an expensive checking of swapping for each pair
of names, the predicate is a compound of two simple steps.
First, regexp is checked for existence of two distinct names
within any ’+’ or ’*’ sequence. Second, the last names in
names are stripped to those contained in the schema be-
ing used, adjacent duplicities are reduced to a single name,
and the resulting list is linearly compared to names con-
tained in regexp. Since each name appearing regexp must
be contained in names, any difference cause a fail.

2 See [3] for further details.

bool AnalyzeNode(XfTemplate t,XfSchema.Node n) {
if(t.Empty)

return true;
XfLastNames li = t.GetLastNames();
XfRegexp re = sch.ExtractFragment(n, t);
if(re.Empty())

return true;
if(! sch.Compare(re, li))

return false;
foreach(XfCall call in t.calls) {

List<XfSchema.Node> ln =
new List<XfSchema.Node>();

ln = sch.EvalExp(n, call.select);
foreach(XfSchema.Node ni in ln) {

AnalyzeNode(call.template, ni);
}

}
return true;

}

Fig. 4. The code of the AnalyzeNode function.

6 Stack-based streaming algorithm

The stack-based algorithm is based on a formal model called
simple streaming XML transducer (SSXT), therefore we call
it the SSXT algorithm. The transducer has a single input
head that reads the input document sequentially, and a sin-
gle output head that generates the output document sequen-
tially. The SSXT is equipped with a stack to store tempo-
rary data.

The SSXT takes an input document din and a top-down
XSLT stylesheet xsl as the input. It reads din sequentially
in one pass and apply the stylesheet xsl stepwise. First,
the template matching the root element of din in the initial
mode m0 is set to be the currently processed template (cur-
rent template). The processing proceeds in cycles. During
a single cycle, a single template call of the current template
is processed.
Processing cycle. All XPath expression within a template
are evaluating concurrently. The evaluation is realized by
deterministic finite automata (DFA)3. A single DFA is con-
structed for each expression. When the processing of a tem-
plate starts, the sequence of the initial states of DFAs is
pushed on the stack. The input head of SSXT reads the
elements of din in document order. When a start-tag is en-
countered, new sequence of DFAs is computed. Three sit-
uations may occur:

a) new sequence contains no final state - the input head
continues in evaluation,

b) new sequence contains a single final state which be-
longs to the DFA evaluating the lastly-matched expres-
sion or an expression located after the lastly-matched
expression - the corresponding template call is pro-
cessed,

c) new sequence contains a final state which belongs to
the DFA evaluating expression located before the lastly-
matched expression, or it contains two or more final
states - error.

3 We refer the reader to [2] for a more detailed description of
this evaluating method.



In case b), the current cycle configuration (template id,
matched expression id) is pushed on the stack and new
cycle for processing the called template starts. The cycle
configuration is popped after the whole called template has
been processed and the control moves back to the current
template. In case a), the evaluation continues. Here if an
end-tag is encountered, the sequence of the DFA states lo-
cated at the top of the stack is popped. Hence, the XPath ex-
pression of the current template are evaluated on “branches”
of din.

Implementation. The implementation of the SSXT algo-
rithm uses both Template Model and Algorithm Model classes.
Since the algorithm is stack-based, the main data struc-
ture used is a polymorphic stack stk of sequences of DFA
states (SIDfaSequence) and cycle configurations (SICycle-
Config), see Fig. 8.

Until the transformation is finished the top of stack
is checked and the stack item is processed, see the func-
tion RunSsxt in Fig. 5. In case of an empty stack and
nonempty remaining input new DFA sequence is pushed
on the stack.

void RunSsxt(XfXml xml)
{

XfTemplate currTemplate = xslt.Start();
XfCall currCall = null;
bool transformed = false;
while(!transformed) {
if(!stk.Empty()) {
switch(stk.Type()) {
case XfStack.ItemType.DfaSequence:
ProcessDfaSequence();
break;

case XfStack.ItemType.CycleConfig:
ProcessCycleConfig();
break;

}
} else {
switch(xml.currType) {
case XmlNodeType.Element:
stk.Push(new SIDfaSequence(currTemplate));
xml.Advance();
break;

case XmlNodeType.EndElement:
currTemplate.Generate(currCall, null);
transformed = true;
break;

}
}

}
}

Fig. 5. The code of the SSXT algorithm.

The core of the DFA sequence processing (Fig. 6) is
accomplished when start tags of elements are encountered.
A new DFA sequence is generated on the stack in case the
current DFA sequence contains no final states. Otherwise
the output is generated and a new cycle configuration is
placed on the stack. In case of a template without calls, its
output is generated immediately.

void ProcessDfaSequence(XfXml xml)
{

SIDfaSequence ds = stk.GetDfaSequence();
switch(xml.currType) {
case XmlNodeType.Element:
SIDfaSequence new ds = ds.Transition(xml.currName);
if(!new ds.HasFinalStates()) {
stk.Push(new ds);
xml.Advance();

}
else {
XfCall myCall = new ds.GetCallWithFinalState();
currTemplate.Generate(currCall, myCall);
XfTemplate calledTemplate =

xslt.SelectTemplate(xml.currName, myCall.mode);
if(calledTemplate.Empty) {
calledTemplate.Generate(null, null);
currCall = myCall;
if(xml.laType == XmlNodeType.Element)
stk.Push(new ds);

xml.Advance();
} else {
stk.Push(new SICycleConfig(currTemplate,
myCall));

currTemplate = calledTemplate;
currCall = null;

}
}
break;

case XmlNodeType.EndElement:
if(xml.laType == XmlNodeType.EndElement)
stk.Pop();

xml.Advance();
break;

default:
stk.Pop();
break;

}
}

Fig. 6. The code of the ProcessDfaSequence function used in the SSXT algorithm.

The cycle configuration processing (Fig. 7) depends on
the current XML node type. A start tag pushes a new DFA
sequence while an end tag generates output.

void ProcessCycleConfig(XfXml xml)
{

SICycleConfig cc = stk.GetCycleConfig();
switch(xml.currType) {
case XmlNodeType.Element:
if(xml.laType == XmlNodeType.Element)
stk.Push(new SIDfaSequence(currTemplate));

xml.Advance();
break;

case XmlNodeType.EndElement:
currTemplate.Generate(currCall, null);
currTemplate = cc.template;
currCall = cc.call;
stk.Pop();
break;

}
}

Fig. 7. The code of the ProcessCycleConf function used in the SSXT algorithm.

7 Evaluation

The evaluation and measurements of the SSXT algorithm
implementation confirmed our expectation that it requires
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a memory proportional to a depth of the input XML doc-
ument. Since most documents are relatively shallow, our
memory requirements are independent to the document size.
Even for huge documents like DBLP, the SSXT algorithm
required few hundreds KB while the commonly used XSLT
processors like Saxon or Xalan crashed or hanged after al-
locating about 1.5 GB of memory.

8 Conclusion and future work

We have presented a prototype implementation of the Xord
framework which represents an automatic streaming pro-
cessor for the XSLT language. It incorporates a powerful
schema-based analyzer which, for a given XSLT transfor-
mation xsl and an XML schema xsd, analyzes memory
requirements of the streaming processing of xsl on a set
of XML documents defined by xsd. The analyzer employs
a special hierarchical model of XML schema called Xord
Schema Model. We have implemented the Xord framework
on .NET platform for a specific streaming processing using
stack of the size proportional to the depth of the input XML
document.

Our schema-based analyzer is restricted in several as-
pects - first, a subset of XSLT and XML schema defini-
tions is considered, and second, it currently gives us only
true/false answer whether the stack-based processing is ap-
plicable. However, we intend to extend it in the future re-
search - if we examine particular pairs of elements for which
the comparing function returns false and the possible size
of their content, we may compute exact size of the mem-
ory buffers needed for processing such elements. Then it
is only necessary to extend the basic stack-based stream-

ing algorithm with such buffers and we obtain much more
powerful automatic streaming XSLT processor.
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of Real XML Data Collections. In COMAD’06: Proc. of the
13th Int. Conf. on Management of Data, pages 20–31, New
Delhi, India, 2006. Tata McGraw-Hill Publishing Company
Limited.

10. W3C. XSL Transformations (XSLT) Version 1.0, W3C Rec-
ommendation, 1999. http://www.w3.org/TR/xslt.

11. W3C. XML Schema Part 1: Structures Sec-
ond Edition, W3C Recommendation, 2004.
http://www.w3.org/TR/xmlschema-1.

12. W3C. XML Schema Part 2: Datatypes Sec-
ond Edition, W3C Recommendation, 2004.
http://www.w3.org/TR/xmlschema-2.

13. W3C. XQuery 1.0: An XML Query Language, W3C Recom-
mendation, 2007. http://www.w3.org/TR/xquery.


