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Abstract. We present an algorithm for asymptotically ef-
ficient multiway blockwise in-place merging. Given an ar-
ray A containing sorted subsequences A1, . . . , Ak of respec-
tive lengths n1, . . . , nk, where

∑k

i=1
ni = n, we assume

that extra k ·s elements (so called buffer elements) are po-
sitioned at the very end of array A, and that the lengths
n1, . . . , nk are positive integer multiples of some param-
eter s (i.e., multiples of a given block of length s). The
number of input sequences k is a fixed constant parameter,
not dependent on the lengths of input sequences. Then our
algorithm merges the subsequences A1, . . . , Ak into a single
sorted sequence, performing Θ(log k·n) + O((n/s)2) + O(s·
log s) element comparisons and 3 ·n + O(s · log s) element
moves.1

Then, for s = dn2/3/(log n)1/3e, this gives an algorithm
performing Θ(log k ·n) + O((n·log n)2/3) comparisons and
3·n + O((n·log n)2/3) moves. That is, our algorithm runs
in linear time, with an asymptotically optimal number of
comparisons and with the number of moves independent
on the number of input sequences. Moreover, our algo-
rithm is “almost in-place”, it requires only k extra blocks
of size s = o(n).

1 Introduction

Given an array A[1..n] consisting of sorted subsequen-
ces A1, . . . , Ak each containing n1, . . . , nk elements re-
spectively, where

∑k
i=1 ni = n, the classical multiway

in-place merging problem is to rearrange these ele-
ments to form a single sorted sequence of n elements,
assuming that only one extra storage location (in ad-
dition to the array A) is available for storing elements.
To store array indices, counters, etc. only O(1) stor-
age locations are available. The efficiency of a merg-
ing algorithm is given by two quantities: the number
of pairwise element comparisons and the number of
element moves carried out in the worst case, both ex-
pressed as a function of n. In merging, these are the
only operations permitted for elements.

In this paper we study the computational complex-
ity of the multiway blockwise in-place merging prob-
lem. More precisely, we assume that the entire array A
is divided into blocks of equal size s, and that k ex-
tra blocks of size s are positioned at the very end of

1 Throughout the paper, log x denotes the binary loga-
rithm of x.

array A. Moreover, the lengths n1, . . . , nk of input se-
quences are positive integer multiples of s, and hence,
there is always a block boundary between the last el-
ement of Ai and the first element of Ai+1, for each
i ∈ 1, . . . , k−1. We shall also assume, that before the
merging starts, blocks can be mixed up quite arbitrar-
ily, so we no longer know the original membership of
blocks in the input sequences A1, . . . , Ak.

So far, the problem has been resolved for two-way
merging, i.e., for k = 2 [4]. This algorithm uses 2n +
o(n) comparisons, 3n + o(n) element moves and O(1)
extra locations for storing elements, in the worst case.
Thus, by repeated application of this algorithm, we
could carry out k-way merging in linear time, for ar-
bitrary k ≥ 2. However, implemented this way, the k-
way merging would perform 3·dlog ke·n+o(n) element
moves and 2·dlog ke·n+o(n) element comparisons. We
shall show that the number of moves does not depend
on k, if the lengths n1, . . . , nk are integer multiples
of the block size s. Namely, using the algorithm of
Geffert et. al [4] as our starting point, we show that
multiway blockwise in-place merging is possible with
dlog ke·n+O((n/s)2)+O(s·log s) element comparisons
and 3·n + O(s·log s) moves. For s = dn2/3/(log n)1/3e,
this gives an algorithm with dlog ke·n+O((n·log n)2/3)
comparisons and 3·n+O((n·log n)2/3) moves, and the
number of element moves independent on the number
of input sequences. (It is also easy to show that the
number of comparisons cannot be improved.)

2 Comparisons in a simple multiway
merging

To explain how elements are compared, we first solve
a simpler task. Assume that we are given an array A,
consisting of k sorted subsequences A1, A2, . . . , Ak ,
that are to be merged into a single sorted sequence.
The lengths of these subsequences are n1, n2, . . . , nk

respectively, with
∑k

i=1 ni = n.
Assume also that, together with the given array A,

we are also given an extra array B of the same size n,
which will be used as an output zone.

During the computation, the algorithm uses aux-
iliary index variables i1, . . . , ik and oc, where ij , for
j ∈ {1, . . . , k}, points to the smallest element of the



sequence Aj not yet processed. This element will be
called the current input element of the j-th sequence,
or simply the j-th input element. The index oc points
to the leftmost empty position in the array B.

Then the straightforward implementation of the
merge routine proceeds as follows. We find the small-
est element not yet processed, by comparing elements
at the positions i1, . . . , ik, and move this element to
the output zone in B. After that, we update the nec-
essary index variables and repeat the process until all
the elements have been merged. Implemented this way,
each element will be moved just once and the number
of comparisons, per each element, will be k−1. This
gives us (k−1)·n comparisons and n element moves in
total.

The number of comparisons can be reduced by im-
plementing a selection tree of depth dlog ke above the
k current input elements. Initially, to build a selec-
tion tree, k− 1 comparisons are required. Then the
smallest element, not yet processed, can be moved to
the output zone. After this, the element following the
smallest element in the same subsequence is inserted
in the tree and the selection tree is updated. To do
this, only dlog ke comparisons are needed. To avoid el-
ement moves, only pointers to elements are stored in
the selection tree. (For more details concerning this
data structure, see [1–3].) The number of moves re-
mains unchanged, but now we have k− 1 compar-
isons for the first element and only dlog ke compar-
isons per each other element. This gives us a total of
(k−1)+ dlog ke·(n−1) ≤ dlog ke·n+O(1) comparisons.

3 Comparisons in a blockwise merging

This section describes one of the cardinal tricks used in
our algorithm. Again, we are given the array A con-
sisting of the sorted subsequences A1, . . . , Ak, to be
merged together. We still have the extra array B, used
as an output zone.

However, now the entire array A is divided into
blocks of equal size s (the exact value of s will be
determined later, so that the number of comparisons
and moves is minimized) and, before the merging can
start, these blocks are mixed up quite arbitrarily. Be-
cause of the permutation of blocks in A, we no longer
know the original membership of blocks in the input
sequences A1, . . . , Ak.

Still, the relative order of elements inside individ-
ual blocks is preserved. Moreover, we shall also assume
that n1, . . . , nk, the respective lengths of input se-
quences, are positive integer multiples of s, and hence,
before mixing the blocks up, there was always a block
boundary between the last element of Ai and the first
element of Ai+1, for each i ∈ 1, . . . , k−1.

Before passing further, we define the following rel-
ative order of blocks in the array A. Let X be a block
with the leftmost and the rightmost elements denoted
by xL and xR, respectively. Such block can be repre-
sented in the form X = 〈xL, xR〉. Similarly, let Y =
〈yL, yR〉 be an another block. We say that the block X
is smaller than or equal to Y , if xL < yL, or xL = yL

and xR ≤ yR. Otherwise, X is greater than Y . In other
words, the blocks are ordered according to their left-
most elements and, in the case of equal leftmost el-
ements, the elements at the rightmost positions are
used as the second order criterion.

Now the modified merging algorithm proceeds as
follows. First, using the above block ordering, find the
smallest k blocks in the array A. These blocks will ini-
tially become the k current input blocks, their leftmost
elements becoming the k current input elements. The
j-th current input block will be denoted by Xj , simi-
larly, the j-th current input element by xj . The posi-
tions of current input elements are kept in index vari-
ables i1, . . . , ik. Above the k current input elements,
we build a selection tree. All blocks that are not input
blocks are called common blocks.

After that, the merging process can proceed in the
same way as described in Section 2. That is, using
the selection tree, determine ij , the position of the
smallest input element not yet processed, among the
k current input elements, and move this element to
the output zone in the array B. Then the element po-
sitioned immediately on the right of xj , within the
same block Xj , becomes a new j-th current input el-
ement, its index pointer is inserted into the selection
tree, and the tree is updated, with dlog ke compar-
isons. This can be repeated until one of the current
input blocks becomes empty.

When this happens, i.e., each time the element xj ,
just moved to the output zone, was the last (right-
most) element in the corresponding input block Xj ,
the block Xj is “discarded” and the smallest (accord-
ing to our relative block ordering) common block not
yet processed will be used as the new j-th current
input block. The leftmost element in this block will
become the new j-th current input element. Since the
blocks are mixed up in the array A, we need to scan
sequentially all blocks (actually, all blocks not yet pro-
cessed only) to determine which one of them is the
smallest. This search for a new input block consumes
O((n/s)2) additional comparisons: there are at most
n/s blocks and such search is activated only if one of
the input blocks has been discarded as empty, i.e., at
most n/s times. (For the time being, just assume that
we can distinguish discarded blocks from those not yet
processed, at no extra cost.)



However, before merging, the blocks have been mi-
xed up quite arbitrarily and hence their origin in the
input subsequences A1, . . . , Ak cannot be recovered.
The proof that the above algorithm behaves correctly,
that is, the elements are transported to the output
zone in sorted order, will be published in the full ver-
sion of the paper. (** The proof can also be found in
the Appendix for the Program Committee. **)

The number of element moves remains unchanged,
but now we use dlog ke ·n + O((n/s)2) comparisons,
under assumption that we can distinguish discarded
blocks from those not yet processed at no extra cost.

4 In-place merging, simplified case

Now we shall convert the above merging algorithm
into a procedure working “almost” in-place. More pre-
cisely, we are again given the array A containing the
sorted subsequences A1, . . . , Ak, of respective lengths
n1, . . . , nk, with

∑k
i=1 ni = n. All these lengths are

positive integer multiples of the given parameter s.
However, we no longer have a separate array B of

size n. Instead, we have some extra k ·s elements po-
sitioned at the very end of the array A, behind Ak.
The elements in this small additional area are greater
than any of the elements in A1, . . . , Ak. During the
computation, they can be mixed with other elements,
but their original contents cannot be destroyed. These
elements will be called buffer elements. To let the el-
ements ever move, we have also one extra location
where we can put a single element aside.

The sorted output should be formed within the
same array A, in the locations occupied by the input
sequences A1, . . . , Ak. (As a consequence, the buffer el-
ements should also end up in their original locations.)
Therefore, the moves are performed in a different way,
based on the idea of internal buffering, used in a two-
way in-place merging [4]. Nevertheless, the compar-
isons are performed in the same way as described in
Section 3.

4.1 Initiation

Divide the entire array A into blocks of equal size s.
Since the lengths of all input sequences A1, . . . , Ak are
positive integer multiples of s, there is always a block
boundary between the last element of Ai and the first
element of Ai+1, for each i ∈ 1, . . . , k−1. Similarly,
the buffer elements, positioned in the small additional
area at the very end, form the last k blocks.

Initially, the last k blocks will be used as free blocks,
their starting positions are stored in a free block stack
of height k. After that, the position of one free block
is picked out of the stack and this block is used as

a so-called escape block. We also maintain a current
escape position ec, which is initially the position of
the first (leftmost) element in the escape block. We
create a hole here by putting the buffer element at
this position aside.

Now, find the smallest k blocks2 in the area oc-
cupied by A1, . . . , Ak, according to the relative block
ordering defined in Section 3. This can be done with
O(k2) ≤ O(1) comparisons, by the use of some k cur-
sors (index variables) moving along in A, since each
of the sequences A1, . . . , Ak is sorted. The smallest k
blocks will initially become the k current input blocks
X1, . . . , Xk. For each j = 1, . . . , k, the first element xj

in the block Xj becomes a j-th current input element,
and its position is kept in the index variable ij . Above
the k input elements, we build a selection tree of depth
dlog ke. To do that, k−1 ≤ O(1) initial comparisons
are needed.

The very first block of the array A becomes an
output block and a position oc = 1 pointing there
becomes a current output position. The initial out-
put position may—quite likely— coincide with a po-
sition of some current input element. Observe that
ec mod s = oc mod s, which is an invariant we shall
keep in the course of the entire computation. All other
blocks are called common blocks.

In general, the algorithm maintains current posi-
tions of the following special blocks: free blocks, the
number of which ranges between 0 and k, their left-
most positions are stored in the free block stack; ex-
actly k input blocks, the current input positions inside
the respective blocks are stored in the index variables
i1, . . . , ik; one output block with the current output
position oc inside this block; and one escape block with
the current escape position ec inside. The values of oc

and ec are synchronized modulo s.

Usually, the optional free blocks, the k current in-
put blocks, the output block, and the escape block are
all disjoint, and the merging proceeds as described in
Section 4.2. However, after the initiation, the output
block may overlay one of the current input blocks, if
the leftmost block in A1 has been selected as an in-
put block. If this happens, the current output position
coincides with a position of one of the current input
elements, and the computation starts in a very special
mode of Section 4.9.

2 Picking simply the leftmost blocks in the sequences
A1, . . . , Ak would do no harm. In addition, this would
not require any initial element comparisons. However,
we are presenting the algorithm in a form that is suitable
for application in the general case, comparing elements
in accordance with the strategy presented in Section 3.



4.2 Standard situation

The standard situation is illustrated by Fig. 1. Dur-
ing the computation, the k ·s buffer elements can be
found at the following locations: to the left of the j-
th input element xj in the j-th input block Xj , for
j ∈ {1, . . . , k}, to the right of ec in the escape block,
with the hole at the position ec, and also in free blocks,
consisting of buffer elements only.

The elements merged already, from all the input
blocks, form a contiguous output zone at the very be-
ginning of A, ending at position oc−1. Hence, the next
element to be output will go to the position oc in the
output block.

All elements not merged yet are scattered in blocks
between the output zone and the end of the array A.
The permutation of these blocks is allowed, however,
elements to be merged keep their relative positions
within each block. On the other hand, the origin of
the blocks in the subsequences A1, . . . , Ak cannot be
recovered. So optional free blocks, input blocks, es-
cape block, and common blocks can reside anywhere
between the output zone and the end of the array A.

...
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Fig. 1. Standard situation

The output block spans across the current output
position oc, so its left part belongs to the output zone.
As the output grows to the right, the elements lying
to the right of oc are moved from the output block to
the corresponding positions in the escape block, i.e.,
to the right of ec. The positions of oc and ec are syn-
chronized, i.e., we have always oc mod s = ec mod s.
Hence, the relative positions of escaping elements are
preserved within the blocks. Moreover, oc and ec reach
their respective block boundaries at the same time.

Now we are ready for merging. Using the selection
tree, we determine xj , the smallest element among the
k current input elements in the blocks X1, . . . , Xk, and
move this element to the output zone as follows:

Step A. The element at the position oc in the output
block escapes to the hole at the position ec.

Step B. The smallest input element xj not yet pro-
cessed is moved from the position ij to its final
position at oc.

Step C. A new hole is created at the position ec+1 by
moving its buffer element to the place released by
the smallest input element just moved. After that,
all necessary index variables are incremented and
the selection tree is updated.

This gives 3 moves and dlog ke comparisons per each
element transported to its final location. Now there
are various special cases that should be detected and
handled with care. All exceptions are checked up on
after the execution of Step B, in the order of their
appearance, unless stated otherwise. Most of the ex-
ception handling routines replace Step C by a different
action.

4.3 Escape block becomes full

If the rightmost element of the output block is moved
to the last position of the escape block, the new hole
cannot be created at the position ec+1 in Step C.
Instead, one free block at the top of the stack becomes
the new escape block and a new hole is created at
the beginning of this block. This is accomplished by
removing its starting position from the free block stack
and assigning it to ec.

The subsequent move of the buffer element from
the new position of ec to the place released by the
smallest input element does not increase the number
of moves; it replaces the move in Step C. The selection
tree is updated in the standard way.

It should be pointed out that, at this moment,
there does exist at least one free block in the stack. As-
sume, for example, that the j-th input element xj has
just been transported to the output zone. After that,
we have rj ∈ {1, . . . , s} buffer elements in the j-th in-
put block Xj , including the hole, but rh ∈ {0, . . . , s−1}
buffer elements in other input blocks Xh, for each
h ∈ {1, . . . , k}, h 6= j, since each input block, except
for Xj , contains at least one input element. Moreover,
the escape block is full, and hence it does not contain
any buffer elements at all. Assuming there is no free
block available, this gives at most s + (k−1)·(s−1) <
k ·s buffer elements in total. But this is a contradic-
tion, since the number of buffer elements, including
the hole, is always equal to k ·s.

4.4 Current input block becomes empty

We check next whether the smallest element xj , just
moved from the position ij to the output zone, was
the last element of the corresponding input block Xj .



If so, we have an entire block consisting of buffer el-
ements only, with hole at the end after Step B. This
hole is filled in the standard way, described in Step C,
but the old input block Xj becomes a free block and
its starting position is saved in the stack. Since we
have k ·s buffer elements in total, a stack of height k
is sufficient.

Next, we have to find a new j-th input block Xj ,
and assign a new value to ij . Since the blocks are
mixed up, we scan sequentially the remaining com-
mon blocks to determine which common block should
become the new j-th current input block. The smallest
common block, according to the block ordering intro-
duced in Section 3, is the next one to be processed.
As already shown in Section 3, the elements are trans-
ported to the output zone in sorted order even though
this strategy does not necessarily pick up the j-th in-
put block from the j-th input sequence Aj .

Free blocks, as well as all remaining current input
blocks, are ignored in this scanning. Moreover, the el-
ements to the left of ec in the escape block (if not
empty) together with the elements to the right of oc in
the output block are viewed as a single logical block. In
a practical implementation, we can start with the left-
most escape-block element and the rightmost output-
block element as a starting key and search the rest
of the array for a common block with a smaller key.3

If the logical block composed of the left part of the
escape block and the right part of the output block
should be processed next, the program control will be
switched to the mode described in Section 4.5.

If the escape block is empty, then both ec and oc

point to the beginning of their respective blocks. Then
the escape block is skipped and the output block is
handled as a common block, so we may even find out
that the new input block should be located at the same
position as the output block. This special mode is ex-
plained in Section 4.9.

The search for new input blocks costs O((n/s)2)
additional comparisons: there are O(n/s) blocks in
total and such search is activated only if one of the
input blocks is exhausted, i.e., at most O(n/s) times.
The same upper bound holds for arithmetic operations
with indexes as well.

3 It is quite straightforward to detect whether a block be-
ginning at a given position ` is common: the value of `
must not be saved in the free block stack, and b`/scmust
be different from bi1/sc, . . . , bik/sc (excluding bij/sc),
and also from bec/sc. For each given block, this can
be verified in O(k) ≤ O(1) time, performing auxiliary
arithmetic operations with indexes only, but no element
comparisons or moves.

4.5 One of the input blocks overlays the
escape block

If the common block that should be processed next
is the logical block composed of the left part of the
escape block and the right part of the output block,
then both the new current input block Xj and the es-
cape block are located within the same physical block.
Here xj is always positioned to the left of ec and the
buffer elements are both to the left of xj and to the
right of ec.

Once the position of xj is properly initiated, all
actions are performed in the standard way described in
Section 4.2. That is, the elements are transported from
the output block to the position of ec, from the input
blocks to the position of oc, and buffer elements from
ec+1 to locations released in the input blocks. Since ec

moves to the right “faster” than does ij , this special
case returns automatically to the standard mode as
soon as ec reaches a block boundary. Then the escape
block separates from the current input block Xj as
described in Section 4.3.

4.6 Output block overlays the escape block

Next we check whether the output zone, crossing a
block boundary, does not bump into any “special”
block. It is easy to see that this may happen only if
ec points to the beginning of the escape block that is
empty, using the fact that the positions of oc and ec

are synchronized and that the special handling of Sec-
tion 4.3 is performed first.

Now consider that the output block overlays the
escape block, i.e., they are both located within the
same physical block. In this mode, we always have
oc = ec. The element movement corresponds now to a
more efficient scheme:

Step B’. The smallest input element xj not yet pro-
cessed is moved to the hole at the position oc = ec.

Step C’. A new hole is created at the position oc+1 =
ec +1 by moving its buffer element to the place
released by xj . Then all necessary index variables
are incremented and the selection tree is updated.

Step A is eliminated, since oc = ec. This mode is ter-
minated as soon as oc and ec reach a block boundary.
We also need a slightly modified version of the routine
described in Section 4.4. If one of the input blocks be-
comes empty, it becomes free as usual, but the com-
bined output/escape block is skipped in the search for
the next input block.

4.7 Output block overlays a free block

If the output zone crosses a block boundary and the
value of oc is equal to some f`, the leftmost position of



a block stored in the free block stack, the new output
block and the corresponding free block are overlaid.
This can be verified in O(k) ≤ O(1) time. By the same
argument as in Section 4.6, we have that ec must point
to the beginning of an empty escape block.

Therefore, we can easily swap the free block with
the escape block by swapping the pointers stored in
f` and ec, since both these blocks contain buffer ele-
ments only. Second, one move suffices to transport the
hole from one block to another. Note that this element
move is for free, we actually save some moves because
the next s transports to the output zone will require
only 2s moves, instead of 3s as in the standard case.
Thus, the program control is switched to the mode
described in Section 4.6.

4.8 Output block overlays a current input
block

If the output position oc points to some Xj after cross-
ing a block boundary, the output block overlays the j-
th input block Xj . Again, by the argument presented
in Section 4.6, oc can point to the beginning of an
input block only if ec points to the beginning of an
empty escape block. There are now two cases to con-
sider.

First, if the j-th current input element xj is the
leftmost element of Xj , the program control is switch-
ed immediately to the special mode to be described in
Section 4.9.

Second, if xj is not the leftmost element of Xj , we
dispose of the empty escape block as free by storing
its starting position ec in the stack, create a hole at oc

by moving a single buffer element from the position oc

to ec, and overlay the output block by a new escape
block, by assigning the value of oc to ec. The additional
transportation of the hole is for free, not increasing the
total number of moves, because we can charge it as
(nonexistent) Step A for the next element that will be
transported to the output zone. Since xj is not placed
at the beginning of the block, we can guarantee that
at least one transport to the output will use only two
moves in the next future.

This special mode can be viewed as if three blocks
were overlaid, namely, the output, escape, and the cur-
rent input block Xj . The buffer elements are between
the hole at ec = oc and the current input element xj .
The elements are moved according to Step B’ and
Step C’ of Section 4.6. However, there is a different
exception handling here.

(1) If the rightmost input element of this combined
block has been transported to the output zone,
then the input block Xj separates from the out-
put/escape block, since we search for the next in-
put block to be processed. But here, unlike in Sec-

tion 4.4, the combined output/escape block is not
disposed of as free, moreover, it is skipped out dur-
ing the search. The program control is switched to
the mode of Section 4.6 as the output and escape
blocks are still overlaid.

(2) Let us now consider that this combined block be-
comes full. This may happen only if, for some
h 6= j, an element xh from another input block Xh

is moved to the output zone and, after Step B’, the
output position oc “bumps” into xj . In this case,
we take one free block from the top of the stack
and change it into a new escape block. We defi-
nitely have at least one free block available, since
we disposed one block as free at the very beginning
of this mode. The hole, located in Xh at the posi-
tion of the last element transported to the output,
jumps to a position ec in the new escape block,
so that ec mod s = oc mod s. This move replaces
Step C’ for the last element just merged. Hence, it
does not increase the total number of moves. Then
we follow the instructions of Section 4.9.

4.9 Output zone bumps into a current input
element

The program control can jump to this special mode
from several different places (Sections 4.1, 4.4, and two
different places in Section 4.8). In any case, we have an
empty escape block, containing the hole and buffer ele-
ments only. The output block and a block Xj , which is
one of the input blocks, are overlaid. Moreover, there
is no room in between, the output position oc is point-
ing to the current input element xj . The position of
hole in the escape block is synchronized with oc, i.e.,
we have ec mod s = oc mod s.

As long as the elements to be output are selected in
the input block Xj , they can be moved to the output
zone. This needs no actual transportation, just the
positions of oc and ij are moved synchronously to the
right. To keep ec synchronized with oc, we move the
hole along the escape block in parallel, which gives us
one move per element. There are two ways out of this
loop.

(1) If oc and ij reach the block boundary, we sim-
ply search for the next input block to be pro-
cessed; the current configuration is the same as
if, in the standard mode, oc, ec, and ij reached
the block boundaries at the same time (with the
old input block Xj disposed of as free, by Sec-
tion 4.4). Thus, unless something “exceptional”
happens, the program control returns to the stan-
dard mode. (The possible exceptions are those dis-
cussed in Sections 4.6–4.8, and 4.10.) The single
move required to place the hole back to the begin-



ning of the escape block is for free, it substitutes
Step C for the last element merged.

(2) If the element to be transported to the output zone
is an element xh from another input block Xh,
for some h 6= j, some rearrangements are neces-
sary. Recall that the hole position ec in the es-
cape block is synchronized with oc, i.e., we have
ec mod s = oc mod s. First, the input element xj

is moved from position oc to position ec. Now we
can transport xh to the output position oc. Fi-
nally, a new hole is created4 at the position ec+1
by moving its buffer element to the place released
by xh.
The result is that the current input block Xj , over-
laid by the output block, jumps and overlays the
escape block. Thus, the control is switched to the
mode of Section 4.5.
Clearly, this rearrangement needs only three mo-
ves. Since one more element has been transported
to the output zone, the number of moves is the
same as in the standard case.

4.10 Common blocks are exhausted

If one of the current input blocks becomes empty, but
there is no common block to become a new input
block, the above procedure is stopped. At this point,
the output zone, consisting of the elements merged al-
ready in their final locations, is followed by a residual
zone of size n′ starting at the position oc. This zone
consists of the right part of the output block, k−1 un-
merged input blocks, at most k free blocks, and one
escape block. Thus, the total length of this residual
zone is n′ ≤ s + (k−1)·s + k ·s + s = (2k+1)·s.

The residual zone can be sorted by the use of Heap-
sort (including also the buffer element put aside at the
very beginning of the computation, to create a hole).
This will cost only O(k ·s·log(k ·s)) ≤ O(s·log s) com-
parisons and the same number of moves [5–9]. Alterna-
tively, we could also use an algorithm sorting in-place
with O(s·log s) comparisons but only O(s) moves [10].

Now we are done: the buffer elements are greater
than any other element, and hence the array now con-

4 Unless the position ec+1 itself is across the block bound-
ary. If xj is moved to the rightmost position in the escape
block, the escape block jumps immediately and one free
block becomes a new escape block. This nested excep-
tion thus returns the algorithm to the standard mode; all
“special” blocks now reside in pairwise disjoint regions.
However, we jump to the point where the standard rou-
tine checks the exceptions of Sections 4.4–4.10. Among
others, we have to check whether the input block Xh

has not become empty, or if the output zone, just cross-
ing a block boundary, has not bumped into any other
“special” block again.

sists of the subsequences A1, . . . , Ak merged into a sin-
gle sorted sequence, followed by a sorted sequence of
buffer elements.

4.11 Summary

Summing up the costs paid for maintaining the se-
lection tree, transporting the elements to the output
zone, searching for smallest input blocks, and for sort-
ing the residual zone, it is easy to see that the above
algorithm uses dlog ke·n + O((n/s)2) + O(s·log s) el-
ement comparisons and 3 ·n + O(s · log s) moves. For
s = dn2/3/(log n)1/3e, this gives an algorithm with
dlog ke ·n + O((n · log n)2/3) comparisons and 3 ·n +
O((n·log n)2/3) moves.

5 Conclusion

In this paper we have shown that k-way blockwise
in-place merging can be accomplished efficiently with
almost optimal number of element comparisons and
moves. Moreover, the number of element moves is in-
dependent on k, the number of input sequences. Note
that this algorithm does not merge stably, that is, the
relative order of equal elements may not be preserved.
Whether there exist a stable multiway blockwise in-
place merging algorithm is left as an open problem.

We conjecture that, using the algorithm described
here as a subroutine, it is possible to devise an asymp-
totically efficient multiway in-place merging algorithm.
We dare to formulate this conjecture since the work on
such algorithm is currently in progress.
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Appendix for the Program Committee

In this appendix, we give a proof of correctness of the
blockwise merging algorithm described in Section 3.

Recall that the algorithm starts with the smallest
k blocks of the array A and, each time one of the k in-
put blocks becomes empty, the smallest common block
not yet processed becomes the new input block, not
taking into account its origin in one of the sequences
A1, . . . , Ak.

Let us assume, for contradiction, that an element
xC has just been transported to the output zone, but
there still exists an unprocessed element y, such that
y < xC. Clearly, the element xC was a current input
element in some current input block. Originally, this
input block was represented in the form X = 〈xL, xR〉,
which gave its relative block order. Here xL repre-
sents the original leftmost element of X (transported
to the output even earlier than xC) and xR the right-
most element (still residing in X). Since all blocks are
sorted, we have that xL ≤ xC ≤ xR (not excluding
the possibility that xC coincides with xL or xR). Simi-
larly, the element y resides in a block characterized by
Y = 〈yL, yR〉, with yL ≤ y ≤ yR. (The current status of
the original leftmost element yL is not known: it can
still reside in Y but, potentially, it may be a part of
the output zone already.) Now there are the following
possibilities to consider:

(a) The block Y is one of the current input blocks
(not excluding the possibility that Y coincides with X).
This case is straightforward. Let yC denotes the cur-
rent input element in the input block Y . Clearly, yC ≤
y, since y has not been processed yet. But then yC ≤
y < xC, that is, yC < xC, which is a contradiction,
since xC has just been moved to the output, and hence
determined to be the smallest one among all current
input elements.

(b) The block Y is one of the common blocks (not
yet being processed) and, at the present moment, all
k current input blocks have their origin in different
input sequences A1, . . . , Ak. This does not necessarily
mean that the i-th input block Xi originated from Ai,
since it could have its origin in a different sequence.
Nevertheless, this does imply that one current input
block Z ∈ {X1, . . . , Xk} originated from the same se-
quence A` as did the block Y .

Let Z = 〈zL, zR〉 represents the original character-
ization of this current input block, and let zC be its
current input element. Clearly, zL ≤ zC ≤ zR. Using
the fact that the block Z has been selected as an in-
put block prior to selecting the block Y = 〈yL, yR〉, and
that these two blocks originated from the same sorted
sequence A`, we have that zR ≤ yL. (For, if zR > yL,
the sequence A` could not be sorted.) But this gives



that zC ≤ zR ≤ yL ≤ y < xC. Therefore, zC < xC,
which is a contradiction, since the element xC has been
determined to be the smallest one among all current
input elements.

(c) Finally, let Y be one of the common blocks
and, at the present moment, at least two current in-
put blocks have their origin in the same input se-
quence. That is, we have V, W ∈ {X1, . . . , Xk}, com-
ing from A`, for some ` ∈ {1, . . . , k}. Let the respective
characterizations of these two blocks be V = 〈vL, vR〉
and W = 〈wL, wR〉, their respective current input ele-
ments be vC and wC. Clearly, vL ≤ vC ≤ vR and wL ≤
wC ≤ wR. Without loss of generality, we can also as-
sume that the block V was smaller than or equal to W .
But then vR ≤ wL, since these two blocks came from
the same sorted sequence A`. Moreover, at the present
moment, the element xC has just been selected as the
smallest one from among all current input elements,
and hence we also have that xC ≤ vC. Putting these
facts together, we get yL ≤ y < xC ≤ vC ≤ vR ≤ wL.
Therefore, yL < wL, which contradicts the fact that
the block W had been selected as an input block prior
to selecting the block Y .

Summing up, all cases have led us to contradic-
tions, and hence the elements are always transported
to the output zone in sorted order.5

5 Notice that the algorithm would behave correctly even if
the number of used current input blocks exceeded k, the
number of original input sequences. This only eliminates
Case (b) in the proof of correctness.


