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Abstract. The paper deals with quality measures of whole
sets of rules extracted from data, as a counterpart to more
commonly used measures of individual rules. This research
has been motivated by increasingly frequent extraction of
non-classification rules, such as association rules and rules
of observational logic, in real-world data mining tasks. The
paer sketches the typology of rules extraction methods and
of their rulesets, and recalls that quality measures for whole
sets of rules have been so far used only in the case of clas-
sification rulesets. It then proposes three possible ways how
such measures can be extended to general rulesets. The pa-
per also recalls the possibility to measure the dependence
of classification ruleset on parameters of the classification
method by means of ROC curves, and proposes a general-
ization of ROC curves to general rulesets. Finally, a brief
illustration on rulesets extracted by means of the method
GUHA is given.

1 Introduction

Logical formulas of specific kinds, usually called rules,
are a traditional way of formally representing knowl-
edge. Therefore, it is not surprising that they are also
the most frequent representation of the knowledge dis-
covered in data mining. Existing methods for rules ex-
traction are based on a broad variety of paradigms
and theoretical principles. However, methods relying
on different underlying assumptions can lead to the
extraction of different or even contradictory rulesets
from the same data. Moreover, the set of rules ex-
tracted with a particular method can substantially de-
pend on some tunable parameter or parameters of the
method, such as significance level, thresholds, size pa-
rameters, trade-off coefficients etc. For that reason, it
is desirable to have measures of various qualitative as-
pects of the extracted rulesets. So far, such measures
are available only for sets of classification rules, and
their dependence on tunable parameters can be de-
scribed only for classification into two classes [10, 15].
As far as more general kinds of rules are concerned,
measures of quality have been proposed only for in-
dividual rules [6, 11, 24, 26, 29], or for contrast sets of
rules, which finally can be replaced with a single rule
[2, 16]; if a whole ruleset is taken into consideration,
then only as a context for measuring the quality of an
individual rule [27, 28].

The research reporeted in this paper has been mo-
tivated by increasingly frequent extraction of non-clas-

sification rules in real-world data mining tasks. The
paper discusses three possible ways of extending exist-
ing ruleset quality measures from classification to gen-
eral rulesets. The proposed extensions are introduced
in Section 4, after the basic typology of rules extrac-
tion methods and examples of measures for classifica-
tion rulesets are recalled in the following two sections,
and before a generalization of ROC curves is proposed
in Section 5. The paper concludes with a brief illus-
tration on rulesets extracted with the method GUHA.

2 Typology of rules extraction
methods

The most natural base for differentiating between ex-
isting rules extraction methods is the syntax and se-
mantics of the extracted rules. Syntactical differences
between them are, however, not very deep since prin-
cipally, any rule r has one of the forms Sr ∼ S′r, or
Ar → Cr, where Sr, S′r, Ar and Cr are formulas of
the considered logic, and ∼, → are symbols of the
language of that logic. The difference between both
forms concerns semantic properties of the symbols ∼
and →: Sr ∼ S′r is symmetric with respect to Sr, S′r in
the sense that its validity always coincides with that
of Sr ∼ S′r whereas Ar → Cr is not symmetric with
respect to Ar, Cr in that sense. In the case of a proposi-
tional logic, ∼ and → are the connectives equivalence
and implication, respectively, whereas in the case of
a predicate logic, they are generalized quantifiers. To
distinguish the formulas involved in the asymmetric
case, Ar is called antecedent and Cr consequent of r.

The more important is the semantic of the rules
(cf. [6]), especially the difference between rules of the
Boolean logic and rules of a fuzzy logic. Due to the
semantics of Boolean and fuzzy formulas, the former
are valid for crisp sets of objects, whereas the validity
of the latter is a fuzzy set on the universe of all consid-
ered objects. Boolean rulesets are extracted more fre-
quently, especially some specific types of them, such as
classification rulesets [11, 15]. Those are sets of impli-
cations such that (Ar)r∈R and {Cr}r∈R partition the
set O of considered objects, where R is the considered
ruleset, and {Cr}r∈R stands for the set of distinct for-
mulas in (Cr)r∈R. Abandoning the requirement that
(Ar)r∈R partitions O (at least in the sense of a crisp



partitioning) allows to generalize those rulesets also to
fuzzy antecedents. For Boolean antecedents, however,
this requirement entails a natural definition of the va-
lidity of a whole classification ruleset R for an object
x. Assuming that all information about x conveyed by
R is conveyed by the single rule r covering x (i.e., with
Ar valid for x), the validity of R for x can be defined
to coincide with the validity of Ar → Cr for that r,
which in turn equals the validity of Cr for x.

As far as the Boolean predicate logic is concerned,
generalized quantifiers both for symmetric and for a-
symmetric rules were studied in the 1970s within the
framework of the observational logic [13], which is a
Boolean predicate logic with generalized quantifiers.
For a set of data about n objects, the truth evaluation
of the Boolean predicate ϕ on those objects is a vector
‖ϕ‖ ∈ {0, 1}n, whereas the truth evaluation of a sen-
tence (Qx)(ϕ1(x), . . . , ϕm(x)) consisting of m Boolean
predicates ϕ1, . . . , ϕm and an m-ary generalized quan-
tifier Q is the function value

‖(Qx)(ϕ1(x), . . . , ϕm(x))‖ = TfQ(‖ϕ1‖, . . . , ‖ϕm‖),
(1)

of a {0, 1}-valued function TfQ on the set of m-column
binary matrices, which is called truth function of the
quantifier Q. Observational logic underlies one of the
earliest methods for the extraction of general rules
from data, called General Unary Hypotheses Automa-
ton (GUHA). In GUHA, the truth function TfQ of a
generalized quantifier Q is always a function of the
4-fold table

S′r ¬S′r
Cr ¬Cr

Sr Ar a b
¬Sr ¬Ar c d

. (2)

Hence, TfQ is a {0, 1}-valued function on quadruples
of nonnegative integers. For symmetric rules, GUHA
uses quantifiers fulfilling

a′ ≥ a & b′ ≤ b & c′ ≤ c & d′ ≥ d &
& TfQ(a, b, c, d) = 1 → TfQ(a′, b′, c′, d′) = 1. (3)

They are called associational quantifiers. For asym-
metric rules, it uses quantifiers fulfilling the stronger
condition

a′ ≥ a & b′ ≤ b &
& TfQ(a, b, c, d) = 1 → TfQ(a′, b′, c′, d′) = 1. (4)

which are called implicational quantifiers. This con-
dition covers also the frequently encountered associa-
tion rules [1, 6, 40] (since methods for the extraction
of association rules have been developed outside the

framework of observational logic, the terminology is
a bit confusing here: although associational rules are
asymmetric, their name evokes the quantifier for the
symmetric ones).

Orthogonally to the typology according to the se-
mantics of the extracted rules, all extraction methods
can be divided into two large groups:

– Methods that extract logical rules from data di-
rectly, without any intermediate formal represen-
tation of the discovered knowledge. Such methods
have always formed the mainstream of the extrac-
tion of Boolean rules: from the observational logic
methods [13] and the method AQ [30, 31] in the
late 1970s, through the extraction of association
rules [1, 40] and the method CN2 [4], relying on a
paradigm similar to that of AQ, to recent methods
based on inductive logic programming [5, 33] and
genetic algorithms [9]. They include also impor-
tant methods for fuzzy rules, in particular ANFIS
[22, 23] and NEFCLASS [34, 35], fuzzy generaliza-
tions of observational logic [18, 19] and a recent
method based on fuzzy transform [36].

– Methods that employ some intermediate represen-
tation of the extracted knowledge, useful by itself.
This group includes two important kinds of meth-
ods: classification trees [3, 37] and methods based
on artificial neural networks (ANN). The latter
are used both for Boolean and for fuzzy rules [7,
21, 39] (cf. also the survey papers [32, 38]).

3 Existing measures for classification
rulesets

A survey of measures of quality for classification rule-
sets (with possibly fuzzy antecedents) has been given
in the monograph [15]. All measures have been divided
there into four groups: inaccuracy, imprecision, insep-
arability and resemblance. Space limitation allows to
recall here only the main representatives of the more
important groups:

Inaccuracy measures the discrepancy between the
true class of the considered objects and the class pre-
dicted by the ruleset. Its most frequently encountered
representative is the quadratic score (also called Brier
score):

Inacc =
1
|O|

∑
x∈O

∑
C∈{Cr}r∈R

(
δC(x)− δ̂C(x)

)2

, (5)

where | | denotes cardinality, O is the considered set of
objects, δC(x) ∈ {0, 1} is the validity of the proposi-
tion C for x ∈ O, and δ̂C(x) is the agreement between
C and the class predicted for x by R. In the general



case of a fuzzy logic, δ̂C(x) = maxCr=C‖Ar‖x, with
‖Ar‖x ∈ 〈0, 1〉 denoting the truth grade of Ar for x.

Imprecision measures the discrepancy between the
probability distribution of the classes, conditioned on
the values of attributes occurring in antecedents, and
the class predicted by the ruleset. Its most common
representative is

Impr =

=
1

|O|
X
x∈O

X
C∈{Cr}r∈R

“
δC(x)− δ̂C(x)

” “
1− δ̂C(x)

”2

.

(6)

As was already mentioned in the introduction, the
extracted ruleset can substantially depend on tunable
parameters of the employed method. This was so far
systematically studied only for dichotomous classifica-
tion with R = {A → C,¬A → ¬C}. In that case,
putting Ar = A,Cr = C allows the information about
the validity of A and C for O to be again summarized
by means of the 4-fold table (2), which also depends
on the parameter values. The influence of the param-
eter values on the result of dichotomous classification
is usually investigated by means of the measures sen-
sitivity = a

a+c and specificity = d
b+d [15]. Connecting

points (1-specificity,sensitivity) = ( b
b+d , a

a+c ) for the
considered parameter values forms a curve with graph
in the unit square, called receiver operating charac-
teristic (ROC), due to the area where such curves
have first been in routine use. In machine learning, a
modified version of those curves has been proposed, in
which the points connected for considered parameter
values are (b, a) [10]. The graph of such a curve then
lies in the rectangle with vertices (0, 0) and (b+d, a+c),
and is called coverage graph.

The graphs of ROC curves and coverage graphs can
provide information about the influence of parameter
values not only on the sensitivity and specificity, but
also on other measures. It is sufficient to complement
the graph with isolines of the measure and to investi-
gate their intersections with the original curve [10].

4 Three extensions to more general
kinds of rules

In the particular case of classification rulesets with
Boolean antecedents, some algebra allows to substan-
tially simplify (5)–(6):

Inacc =
2|O−|
|O|

= 1− |O+| − |O−|
|O|

,

Impr =
|O−|
|O|

= 1− |O+|
|O|

,

(7)

where

O+ = {x ∈ O : R is valid for x},
O− = {x ∈ O : R is not valid for x}.

(8)

This not only shows that, in the case of Boolean an-
tecedents, the quadratic score is sufficient to describe
also the imprecision, but also suggests an approach
how to extend those measures to general rulesets: to
use (7)–(8) as the definition of measures (5)–(6). More
generally, any measure of quality of classification rule-
sets with Boolean antecedents (e.g., any measure sur-
veyed in [15]) that can be reformulated by means of
O+ and O−, can be extended in such a way that the
reformulation is used as the definition of that measure
for general rulesets.

For sets of asymmetric rules, also the notion of
covering an object by a rule, which was recalled in
Section 2, can be generalized. Notice, however, that
for fuzzy antecedents, the validity of Ar, r ∈ R is a
fuzzy set on O. Consequently, the set OR of objects
covered by R is a fuzzy set on O with the membership
function

µR(x) = ‖(∃r ∈ R) Ar‖x = max
r∈R

‖Ar‖x. (9)

Observe that according to (9), OR = O for classifica-
tion rulesets with Boolean antecedents. Therefore, var-
ious generalizations of classification measures to gen-
eral rulesets of asymmetric rules are possible: wherever
O occurs in the definition of a measure for classifica-
tion rulesets, either O or OR can occur in its general
definition, provided OR 6= ∅. To allow unified treat-
ment of symmetric and asymmetric rules, the concept
of covering an object by a rule will be extended also
to symmetric rules, in such a way that an object x is
covered by Sr ∼ S′r if either Sr or S′r is valid for x.
Hence, a counterpart of (9) for a set R is a fuzzy set
with the membership function

µR(x) = ‖(∃r ∈ R)(Sr ∨ S′r)‖x =
= max

r∈R
max(‖Sr‖x, ‖S′r‖x). (10)

According to (8), the proposed way of extending
measures of quality from classification rulesets with
Boolean antecedents to general rulesets requires to
generalize the concept of validity of a general ruleset
for an object. However, there are multiple possibilities
for such a generalization. Indeed, at least any of the
following points of view is possible:

Boolean validity of the ruleset based on si-
multaneous validity of all covering rules. Accord-
ing to this point of view, the validity of a ruleset R
for a covered object x is a Boolean property express-
ing the simultaneous validity of all rules that cover x.



Consequently, the sets O+ and O− defined in (8) are
crisp sets

O+ = {x ∈ O : µR(x) > 0 &

(∀r∈R) ‖r covers x & r is valid for x‖ = ‖r covers x‖},
(11)

O− = {x ∈ O : µR(x) > 0 &

(∃r∈R) ‖r covers x & r is valid for x‖ < ‖r covers x‖},
(12)

where

‖r covers x‖ =

(
‖(Sr ∨ S′r)‖x for symmetric rules ,

‖Ar‖x for asymmetric rules ,

(13)

and similarly

‖r covers x & r is valid for x‖ =

=

(
‖(Sr ∨ S′r)&r‖x for symmetric rules ,

‖Ar&r‖x for asymmetric rules .
(14)

The following consequences of this point of view
are worth noticing:
(i) It is immaterial how the truth grade ‖r‖x of a rule

r being valid for an object x is evaluated (thus also
how ‖¬r‖x is evaluated).

(ii) If µR(x) = 0, then x 6∈ O+ ∪ O−.
(iii) For classification rulesets with Boolean antece-

dents, the validity of R according to this point of
view coincides with the definition in Section 2 be-
cause in that case, there is exactly one rule that
covers x.
Boolean validity of the ruleset based on the

validity of the majority of covering rules. Ac-
cording to this point of view, the validity of a ruleset
R for a covered object x is a Boolean property ex-
pressing the validity of most of the rules that cover x.
Consequently, the sets O+ and O− in (8) are crisp sets

O+ = {x ∈ O : µR(x) > 0 &

&
X
r∈R

‖r covers x & r is valid for x‖ >

>
X
r∈R

‖r covers x & ¬r is valid for x‖}, (15)

O− = {x ∈ O : µR(x) > 0 &

&
X
r∈R

‖r covers x & r is valid for x‖

≤ |
X
r∈R

‖r covers x & ¬r is valid for x‖}, (16)

where the truth grade ‖r covers & ¬r is valid for x‖
is again evaluated according to (14), replacing r with

¬r. Observe that also this point of view has the above
consequences (i)–(iii), the last one again due to the
fact that there is exactly one rule covering x.

Fuzzy validity of the ruleset based on the
relative validity of covering rules. In this case,
the validity of a ruleset R for a covered object x is a
fuzzy property expressing the ratio of the validity of
rules from R for x to the covering of x with those rules.
Consequently, the sets O+ and O− are fuzzy sets on O
with memberships µ+ and µ−, respectively, such that
if µR(x) > 0,

µ+(x) =
∑

r∈R ‖r covers x & r is valid for x‖∑
r∈R ‖r covers x|‖

(17)

µ−(x) =
∑

r∈R ‖r covers x & ¬r is valid for x‖∑
r∈R ‖r covers x|‖

(18)

where the involved truth grades are again evaluated
according to (13) and (14). Moreover, (17)–(18) will be
complemented with the definition µ+(x) = µ−(x) = 0
if µR(x) = 0, to get again the validity of (ii) above,
whereas (i) and (iii) are consequences also of this point
of view. Further, the fact that O+ and O− are now
fuzzy sets implies that whenever |O+| or |O−| occur
in the definitions of quality measures for Boolean clas-
sification rulesets, fuzzy cardinalities have to be used
in their generalizations to general rulesets according
to this point of view. Hence,

|O+| =
∑
x∈O

µ+(x), |O−| =
∑
x∈O

µ−(x). (19)

For example, the measure

Inacc = 1−

∑
x∈O

(µ+(x)− µ−(x))

|O|
(20)

is a generalization of (5), whereas the measures

Impr1 = 1−

∑
x∈O

µ+(x)

|O|
, (21)

Impr2 = 1−

∑
x∈O

µ+(x)

|OR|
= 1−

∑
x∈O

µ+(x)∑
x∈O

µR(x)
(22)

are generalizations of (6).

5 Extensions of ROC curves to more
general kinds of rules

Observe that in the case of Boolean classification with
R = {A → C,¬A → ¬C}, the information about the



validity of R for objects x ∈ O can be also viewed as
information about the validity of a ruleset R′ = {A →
C}. However, R′ is not any more a classification rule-
set, but only a general one, which can be described
only by means of the above introduced sets OR, O+,
O−. In particular, |O+| = a and |O−| = b, which
suggests the possibility to generalize coverage graphs
introduced in Section 3 to general rulesets by means of
a curve connecting points (|O−|, |O+|) for each of the
values of the considered parameters. For a generaliza-
tion of ROC curves to general rulesets, those points
have to be scaled to the unit square. Since the result-
ing curve will be used to investigate the dependence
on parameter values, the scaling factor itself must be
independent of those values. The only available fac-
tor fulfilling this condition is the number of objects,
|O| (the other available factors, |OR|, |O+| and |O−|
depend on the evaluations ‖Sr‖ and ‖S′r‖, or ‖Ar‖
and ‖Cr‖, which in turn depend on the parameter
values). Consequently, the proposed generalization of
ROC curves will connect points ( |O

−|
|O| , |O

+|
|O| ).

For practical construction of the proposed gener-
alization of ROC curves, the following proposition,
proven in [17], can be quite useful:

Proposition 1. Let the covering of individual objects
with individual rules be a Boolean property (i.e., the
set of rules covering a particular object x be a crisp
subset of R). Then irrespectively of which of the above
points of view of ruleset validity is adopted, there al-
ways exists a constant c ∈ (0, 1〉 and an increasing
bijection g : 〈0, c〉 → 〈0, 1〉 such that

|O+|+ |O−| ≤ max(1, max
x∈〈0,c〉

x + g−1(1− g(x)))|O|.

(23)

Moreover, in the particular cases of Boolean logic and
of all three fundamental fuzzy logics ( Lukasiewicz, Gö-
del, product), (23) holds with c = 1 and g equal to
identity,

|O+|+ |O−| ≤ |O|. (24)

Thus in those cases, the points ( |O
−|

|O| , |O
+|

|O| ), forming
the generalization of ROC curves, lie below the diago-
nal (〈0, 1〉, 〈1, 0〉).

The proposition is illustrated in Figure 1, together
with isolines of the three example measures introduced
in (20)–(22). Observe that the isolines of Impr2 de-
pend on the relationship between the three cardinal-
ities |O+| =

∑
x∈O µ+(x), |O−| =

∑
x∈O µ−(x) and

|OR| =
∑

x∈O µR(x). The isolines depicted in Figure
1(c) correspond to the relationship |OR| = |O+| +
|O−|, which is true in  Lukasiewicz logic (thus in par-
ticular also in Boolean logic).

6 Experimentally testing the
approach

The proposed approach has been so far experimentally
tested for six rules extraction methods on three bench-
mark data sets, as well as on data from one real-world
knowledge discovery task [20]. For each method, 1–3
parameters were tuned, the values of them being cho-
sen among 2–10 possibilities. For some data sets, some
combinations of parameter values did not extract any
rules. Whenever a particular combination of parame-
ter vaules extracted a nonempty ruleset from the con-
sidered data, it was tested on those data by means of
a 10-fold crossvalidation. Consequently, the number of
rulesets extracted from each data set varied between
1000 and 1500.

Fig. 1. Isolines of the three measures introduced in (20)–

(22), drawn with respect to the coordinates ( |O
−|

|O| , |O
+|

|O| ) of
points forming the proposed generalization of ROC curves

.

As a very brief illustration, Figure 2 shows the pro-
posed generalization of ROC curves for two rulesets
extracted from the best known benchmark set, the iris



Fig. 2. Example of generalized ROC curves for rulesets ex-
tracted from the iris data by means of the GUHA quantifier
founded implication

data, originally used in 1930s by R.A. Fisher [8], by
means of the GUHA quantifier founded implication.
This quantifier, denoted→s,θ, s, θ ∈ (0, 1〉 has its truth
function Tf→s,θ

defined in such a way that the rule
Ar →s,θ Cr is valid exactly for those data for which
the conditional probability p(Cr|Ar) of the validity of
Cr conditioned on Ar, estimated with the unbiased es-
timate a

a+b , is at least θ, whereas Ar and Cr are simul-
taneously valid in at least the proportion s of the data
[13]. Hence, Tf→s,θ

= 1 iff a
a+b ≥ θ & a

a+b+c+d ≥ s.
As was pointed out in [14], rules with this quantifier
are actually association rules with support s and confi-
dence θ. Each curve corresponds to changing only one
of the parameters s, θ, the value of the other is fixed.

7 Conclusions

The paper has dealt with quality measures of rules
extracted from data, though not in the usual context
of individual rules, but in the context of whole rule-
sets. Three kinds of extensions of measures already in
use for classification rulesets have been proposed. In
addition, the concept of ROC-curves has been general-
ized, to enable investigating the dependence of general
rulesets on the values of parameters of the extraction
method.

The paper actuallly discusses some general aspects
related to an ongoing investigation into the possibility

to reflect uncertain validity of rulesets extracted from
data when measuring their quality. The outcomes of
that investigation are intended to be published else-
where [17]. They comprise theoretical elaboration of
the last proposed kind of extensions of ruleset quality
measures, as well as results of extensive experimental
tests on rulesets extracted from benchmark and real-
world data sets by means of six methods attempting
to cover a possibly broad spectrum of rules extraction
methods. Those results indicate that the approach is
feasible and can contribute to the ultimate objective
of quality measures: to allow comparing the knowledge
extracted with different data mining methods and in-
vestigating how the extracted knowledge depends on
the values of their parameters.
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