
Learning Algorithms for Small Mobile Robots: Case Study on

Maze Exploration

Stanislav Slušný and Roman Neruda and Petra Vidnerová

Institute of Computer Science
Academy of Sciences of the Czech Republic

Pod vodárenskou věž́ı 2, Prague 8, Czech Republic
slusny@cs.cas.cz

Abstract. An emergence of intelligent behavior within a

simple robotic agent is studied in this paper. Two control

mechanisms for an agent are considered — new direction

of reinforcement learning called relational reinforcement

learning, and a radial basis function neural network trained

by evolutionary algorithm. Relational reinforcement learn-

ing is a new interdisciplinary approach combining logical

programming with traditional reinforcement learning. Ra-

dial basis function networks offer wider interpretation pos-

sibilities than commonly used multilayer perceptrons. Re-

sults are discussed on the maze exploration problem.

1 Introduction

One of the key question of Artificial Intelligence is how
to design intelligent agents. Several approaches have
been studied so far. In our previous work, we have
been examining mainly Evolutionary robotics (ER).

The ER approach attacks the problem through a
self-organization process based on artificial evo-lu-ti-
on [13]. Robot control system is typically realized by
a neural network, which provides direct mapping from
robot’s sensors to effectors. Most of current applica-
tions use traditional multi-layer perceptron networks.
In our approach we utilize local unit network architec-
ture called radial basis function (RBF) network, which
has competitive performance, more learning options,
and (due to its local nature) better interpretation pos-
sibilities [18, 19].

This article gives summary of our experiences and
comparison to Reinforcement Learning (RL) - another
widely studied approach in Artificial Intelligence. RL
is focusing on agent, that is interacting with the envi-
ronment by its sensors and effectors. This interaction
process helps agent to learn effective behavior. These
kinds of tasks are commonly studied on miniature mo-
bile robots of type Khepera [2] and E-puck [1].

2 Related work

The book [16] provides comprehensive introduction to
the ER, with focus on robot systems. Recently, effort is
made to study emergence of intelligent behavior within
the group of robots.

Pioneering work was done by Martinoli [14]. He
solved the task, in which group of simulated Khep-
era robots were asked to find “food items” randomly
distributed on an arena. The control system was devel-
oped by the artificial evolution. Our work with single
robot and robot teams were published in [19, 18].

Reinforcement learning is gaining increasing atten-
tion in recent years. The basic overview of the field can
be found in [20].

3 Evolutionary robotics

The evolutionary algorithms (EA) [13, 12] represent a
stochastic search technique used to find approximate
solutions to optimization and search problems. They
use techniques inspired by evolutionary biology such
as mutation, selection, and crossover. The EA typ-
ically works with a population of individuals repre-
senting abstract representations of feasible solutions.
Each individual is assigned a fitness that is a mea-
sure of how good solution it represents. The better
the solution is, the higher the fitness value it gets.
The population evolves toward better solutions. The
evolution starts from a population of completely ran-
dom individuals and iterates in generations. In each
generation, the fitness of each individual is evaluated.
Individuals are stochastically selected from the cur-
rent population (based on their fitness), and modified
by means of operators mutation and crossover to form
a new population. The new population is then used in
the next iteration of the algorithm.

Feed forward neural used as robot controllers are
encoded in order to use them in the evolutionary algo-
rithm. The encoded vector is represented as a floating-
point encoded vector of real parameters determining
the network weights.

Typical evolutionary operators for this case have
been used, namely the uniform crossover and the mu-
tation which performs a slight additive change in the
parameter value. The rate of these operators is quite
big, ensuring exploration capabilities of an evolution-
ary learning. A standard roulette-wheel selection is
used together with a small elitist rate parameter. De-

tailed discussions about fitness function are presented
in the next section.

4 Relational Reinforcement Learning

The lack of theoretical insight into EA is the most
serious problem of the previous approach. The RL is
based on dynamic programming [6], which has been
studied more than 50 years already. It has solid the-
oretical backgrounds built around Markov chains and
several proved fundamental results. On the other side,
it is not possible usually to fulfill theoretical assump-
tions in the experiments.

The general model of agent-environment interac-
tion is modeled through the notion of rewards. The
essential assumption of RL states, that agent is able
to sense rewards coming from the environment. Re-
wards evaluate taken actions, agent’s task is to maxi-
mize them. The next assumption is that agent is work-
ing in discrete time steps. Symbol S will denote finite
discrete set of states and symbol A set of actions. In
each time step t, agent determines its actual state and
chooses one action. Therefore, agent’s life can be writ-
ten as a sequence

o0a0r0s1a1r1... (1)

where st denotes state, which is determined by pro-
cessing sensors input, at ∈ A action and finally symbol
rt ∈ R represents reward, that was received at time t.

Formally, agent’s task is to maximize

V π(st) = rt + γrt+1 + γ2rt+2 + ... =
∑

i=0

γirt+i (2)

where the quantity V π(st) [16] is called discounted
cumulative reward. It is telling us, what reward can
be expected, if the agent starts in state st and follows
policy π, 0 ≤ γ < 1 is a constant that determines the
relative value of delayed versus immediate rewards.

The most serious assumption of RL algorithms is
the Markov property, which states, that agent does not
need history of previous states to make decision. The
decision of the agent is based on the last state st only.
When this property holds, we can use theory coming
from the field of Markov decision processes (MDP).

The policy π, which determines what action is cho-
sen in particular state, can be defined as function π :
S → A, where π(st) = at. Now, the agent’s task is to
find optimal strategy π∗. Optimal strategy is the one,
that maximalizes expected reward. In MDP, single op-
timal deterministic strategy always exists, no matter
in what state has the agent started.

Optimal strategy π∗ can now be defined as

π∗ = argmaxπV π(s), ∀s ∈ S (3)

To simplify the notation, let’s write V ∗(s) instead
of symbol V π∗

, value function corresponding to opti-
mal strategy π∗.

V ∗(s) = maxπV π(s) (4)

The first breakthrough of RL was the Q-learning
algorithm [21, 4], which computes optimal strategy in
described conditions.

The key idea of the algorithm is to define the so-
called Q-values. Qπ(s, a) is the expected reward, if the
agent takes action a in state s and then follows policy
π.

Qπ(s, a) = r(s, a) + γV π(s′), (5)

where s′ is the state, in which agent occurs taking
action a in state s (s′ = δ(s, a)).

It is probably most commonly used algorithm of
RL, mainly because of its simplicity. However, sev-
eral improvements have been suggested to speed up
the algorithm. In real life applications, state space is
usually too big and convergence toward optimal strat-
egy is slow. In recent years, there have been a lot of
efforts devoted to rethinking idea of states by using
function approximators [7], defining notion of options
and hierarchical abstractions [5]. Relational reinforce-
ment learning [11] is approach that combines RL with
Inductive Logical Programming.

The distinction between classical RL and Rela-
tional Reinforcement Learning is the way how the Q-
values are represented. In classical Q-learning algo-
rithm are Q-values stored in the table. In relational
version of the algorithm, they are stored in the struc-
ture called Logical decision tree [8]. In our experi-
ments, we have used logical decision trees as imple-
mented in the programs TILDE [8] from package ACE-
ilProlog [9].

5 Evolutionary RBF Networks

Evolutionary robotics combines two AI approaches:
neural networks and evolutionary algorithms. Neural
network receives input values from robot’s sensors and
it outputs control signals to the wheels. This way it re-
alizes a control system of the robot.

Evolutionary algorithms [13, 12] are then used to
train such a network. It would be difficult to utilize the
training by traditional supervised learning algorithms
since they require instant feedback in each step. Here
we typically can evaluate each run of a robot as a
good or bad one, but it is impossible to assess each one
move as good or bad. Thus, the evolutionary algorithm

– for each s, a do
• initialize the table entry Q′(s, a) = 0
• e = 0

– do forever
• e = e + 1
• i = 0
• generate a random state s0

• while not goal(si) do
∗ select an action ai and execute it
∗ receive an immediate reward ri = r(si, ai)
∗ observe the new state si+1

∗ i = i + 1
• endwhile
• for j = i− 1 to 0 do
∗ update Q′(sj , aj) = rj + γ maxa′ Q′(sj+1, a

′)

Fig. 1. Scheme of Q-learning algorithm, taken from [11].

represent one of the few possibilities, how to train the
network.

The RBF network [17, 15, 10], used in this work, is
a feed-forward neural network with one hidden layer
of RBF units and linear output layer. The network
function is given by Eq. (7).

y(x) = ϕ

(

‖ x − c ‖

b

)

(6)

fs(x) =

h
∑

j=1

wjsϕ

(

‖ x − cj ‖

bj

)

, (7)

where fs is the output of the s-th output unit, y is the
output of a hidden unit, ϕ is an activation function,
typically Gaussian function ϕ(s) = e−s2

.

Fig. 2. A scheme of a Radial Basis Function Network.

The evolutionary algorithm is summarised in Fig. 3.
It works with a population of individuals representing
abstract representations of feasible solutions. Each in-
dividual is assigned a fitness that is a measure of how
good solution it represents. The evolution starts from
a population of completely random individuals and
iterates in generations. Individuals are stochastically
selected from the current population (based on their
fitness), and modified by means of genetic operators
mutation to form a new generation.

1. START: Create population P (0) = {I1, · · · , IN}.
2. FITNESS EVALUATION: For each individual evalu-

ate fitness function.
3. TEST: If the stop criterion is satisfied, return the so-

lution.
4. NEW GENERATION: Create empty population

P (i + 1) and repeat the following procedure until
P (i + 1) has N individuals.
i) Selection: Select two individuals from P (i) :

I1 ← selection(Pi),
I2 ← selection(Pi).

ii) Crossover: With probability pc:
(I1, I2)← crossover(I1, I2)

iii) Mutation: With probability pm:
Ik ← mutate(Ik), k = 1, 2

iv) Insert: Insert I1, I2 into Pi+1

5. LOOP: Go to step 2.

Fig. 3. Scheme of an evolutionary algorithm.

In case of RBF networks learning, each individual
encodes one RBF network. The individual consists of
h blocks:

IRBF = {B1, . . . , Bh}, (8)

where h is a number of hidden units. Each of the blocks
contains parameter values of one RBF units:

Bk = {ck1, . . . , ckn, bk, wk1, . . . , wkm}, (9)

where n is the number of inputs, m is the number of
outputs, ck = {ck1, . . . , ckn} is the k-th unit’s centre,
bk the width and wk = {wk1, . . . , wkm} the weights
connecting k-th hidden unit with the output layer. The
parameter values are encoded using direct floating-
point encoding.

We use standard tournament selection, 1-point

crossover and additive mutation. Additive mutation
changes the values in the individual by adding small
value randomly drawn from 〈−ǫ, ǫ〉.

The fitness function should reflect how good the
robot is in given tasks and so it is always problem
dependent. Detailed description of the fitness function
is included in the experiment section.

6 Experiments

In order to compare performance and properties of
described algorithms, we conducted simulated exper-
iment. Miniature robot of type e-puck[1] was trained
to explore the environment and avoid walls. E-puck
is a mobile robot with a diameter of 70 mm and a
weight of 50 g. The robot is supported by two lat-
eral wheels that can rotate in both directions and two
rigid pivots in the front and in the back. The sensory

Fig. 4. Miniature e-puck robot.

system employs eight “active infrared light” sensors
distributed around the body, six on one side and two
on other side. In “passive mode”, they measure the
amount of infrared light in the environment, which is
roughly proportional to the amount of visible light. In
“active mode” these sensors emit a ray of infrared light
and measure the amount of reflected light. The closer
they are to a surface, the higher is the amount of in-
frared light measured. The e-puck sensors can detect a
white paper at a maximum distance of approximately
8 cm. Sensors return values from interval [0, 4095]. Ef-
fectors accept values from interval [−1000, 1000]. The
higher value, the faster the motor is moving.

Sensor value Meaning

0-50 NOWHERE
51-300 FEEL
301-500 VERYFAR
501-1000 FAR
1001-2000 NEAR
2001-3000 VERYNEAR
3001-4095 CRASHED

Table 1. Sensor values and their meaning.

Without any further preprocessing of sensor’s and
effector’s values, the state space would be too big.
Therefore, instead of raw sensor values, learning al-
gorithms worked with “perceptions”. Instead of 4095
raw sensor values, we used only 5 perceptions(table 1).
Effector’s values were processed in similar way: instead
of 2000 values, learning algorithm chosen from values
[−500,−100, 200, 300, 500]. To reduce the state space
even more, we grouped pairs of sensors together and
back sensors were not used at all.

The agent was trained in the simulated environ-
ment of size 100 x 60 cm and tested in more complex
environment of size 110 x 100 cm. We used Webots
[3] simulation software. Simulation process consisted
of predefined number of steps. In each simulation step
agent processed sensor values and set speed to the left
and right motor. One simulation step took 32 ms.

Fig. 5. Agent was trained in the simulated environment of
size 100 x 60 cm.

Fig. 6. Simulated testing environment of size 110 x 100
cm.

6.1 Evolutionary RBF Networks

The evolutionary RBF networks were applied to the
maze exploration task. The network input and output
values are preprocessed in the same way as for the
reinforcement learning.

To stimulate maze exploration, agent is rewarded,
when it passes through the zone. The zone is randomly
located area, which can not be sensed by an agent.
Therefore, ∆j is 1, if agent passed through the zone
in j-th trial and 0 otherwise. The fitness value is then
computed as

Fitness =

4
∑

j=1

(Sj + ∆j), (10)

where quantity Sj is computed by summing normal-
ized trial gains Tk,j in each simulation step k and trial
j.

Sj =

800
∑

k=1

Tk,j

800
. (11)

The three component Tk,j motivates agent to move
and avoid obstacles.

Tk,j = Vk,j(1 −
√

∆Vk,j)(1 − ik,j) (12)

First component Vk,j is computed by summing ab-
solute values of motor speed in k-th simulation step
and j-th trial, generating value between 0 and 1. The
second component (1 −

√

∆Vk,j) encourages the two
wheels to rotate in the same direction. The last com-
ponent (1 − ik,j) supports agent’s ability to avoid ob-
stacles. The value ik,j of the most active sensor in k-th
simulation step and j-th trial provides a conservative
measure of how close the robot is to an object. The
closer it is to an object, the higher the measured value
in range from 0 to 1. Thus, Tk,j is in range from 0 to
1, too.

The experiment was repeated 10 times, each run
lasted 200 generations (each generation corresponding
to 800 simulation steps). In all cases the successful
behavior was found, i.e. the evolved robot was able to
explore the whole maze without crashing to the walls.
See Fig. 7 for the mean, minimal and maximal fitness
over 10 runs.

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160 180 200

F
itn

es
s

Generations

Fitness function

min
max

mean

Fig. 7. The mean, minimal and maximal fitness function
over 10 runs of evolution. Fitness is scaled in a way that
successful walk through the whole maze corresponds to the
fitness 600 and higher.

Table 2 and Figure 8 show parameters of an evolved
network with five RBF units. For the sake of clarity,
the parameters listed are also discretized. We can un-
derstand them as rules providing mapping from input
sensor space to motor control. However, these ‘rules’
act in accord, since the whole network computes linear
sum of the five corresponding gaussians.

6.2 Reinforcement learning

The same experiment has been performed by means of
relational reinforcement learning algorithm described
above under the same simulated environment and iden-
tical conditions. The performance of the Reinforce-
ment learning agent is shown on figure 9. The graph

Sensor Width Motor
left front right left right

VERYNEAR NEAR VERYFAR 1.56 500 -100
FEEL NOWHERE NOWHERE 1.93 -500 500
NEAR NEAR NOWHERE 0.75 500 -500
FEEL NOWHERE NEAR 0.29 500 -500
VERYFAR NOWHERE NOWHERE 0.16 500 500

Table 2. Rules represented by RBF units (listed values
are original RBF network parameters after discretization).

Fig. 8. The evolved RBF network (see also Tab. 2). Local
units responses plotted in 2D input space corresponding to
left and right sensory inputs.

shows average number of steps from each learning epi-
sode. It can be seen that after 10000 episodes, the
agent has learned the successful behavior. This num-
ber roughly corresponds to the time complexity of the
GA, where 200 populations of 50 individuals also re-
sult in 10000 simulations. The fitness of the solution
found by RL is slightly better than the GA-found so-
lution, on the other hand the inner representation of
the neural network is much more compact.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
te

ps

Episode

Fig. 9. Learning curve for Reinforcement Learning agent
averaged on 10 runs.

7 Discussion

This article presented survey of popular approaches
in mobile robotics used to robot behavior synthesis.
In our future work, we would like to design hybrid
intelligent system, combining the advantages of these
approaches. This way, agent would benefit from using
three widely studied fields: Inductive Logic Program-
ming, Neural Networks and Reinforcement Learning.
The Reinforcement Learning has strong mathematical
background. On the other side, in real experiments,
some of the assumptions are not realistic. Neural net-
works are very popular in robotics, because they pro-
vide straightforward mapping from input signals to
output signals, several levels of adaptation and are
robust to noise. Inductive logic programming allows
agent to reason about states, thus concentrating at-
tention on the most promising parts of the state space.

The experiments showed that a preprocessing plays
rather important role in the case of robotic agent con-
trol. In our approach we have chosen a rather strong
processing of inputs and outputs, which is suitable for
RL algorithms mainly. In our future work we would
like to study control with less preprocessed inputs/out-
puts which can be used mainly for the neural network
controller. Also, another immediate work is to extract
the most frequently used state transitions from the
RL algorithm and interpret them as rules in a similar
fashion we did with the RBF network.

Acknowledgements

This work has been supported by the Ministry of Edu-
cation of the Czech Republic under the project Center
of Applied Cybernetics No. 1M684077004 (1M0567),
S. Slušný been partially supported by
by the Czech Science Foundation under the contract
no. 201/05/H014G.

References

1. E-puck, online documentation. http://www.e-
puck.org.

2. Khepera II documentation. http://k-team.com.

3. Webots simulator. http://www.cyberbotics.com/.

4. A. Barto, S. Bradtke, and S. Singh. Learning to act
using real-time dynamic programming. Artificial In-

telligence, pages 81–138.

5. A. G. Barto and S. Mahadevan. Recent advances in
hierarchical reinforcement learning. 13:341–379.

6. R. E. Bellman. Dynamic Programming. Princeton Uni-
versity Press, 1957.

7. D. Bertsekas and J. Tsitsiklis. Neuro-dynamic pro-

gramming. Ahtena Scientific, 1996.

8. H. Blockeel and L. De Raedt. Top-down induction of
first order logical decision trees. Artificial Intelligence,
101:285–297, 1998.

9. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens,
J. Ramon, and H. Vandecasteele. Improving the ef-
ficiency of inductive logic programming through the
use of query packs. Journal of Artificial Intelligence

Research, 16:135–166.
10. D.S. Broomhead and D. Lowe. Multivariable func-

tional interpolation and adaptive networks. Complex

Systems, 2:321–355, 1988.
11. S. Dzeroski, L. De Raedt, and K. Driessens. Relational

reinforcement learning. Machine Learning 43, pages
7–52, 2001.

12. D. B. Fogel. Evolutionary Computation: The Fossil

Record. MIT-IEEE Press, 1998.
13. J. Holland. Adaptation In Natural and Artificial Sys-

tems. MIT Press, reprinted edition, 1992.
14. A. Martinoli. Swarm intelligence in autonomous Col-

lective robotics: from tools to the analysis and synthesis

of distributed control strategies. Lausanne: Computer
Science Department, EPFL, 1999.

15. J. Moody and C. Darken. Fast learning in networks of
locally-tuned processing units. Neural Computation,
1:289–303, 1989.

16. S. Nolfi and D. Floreano. Evolutionary Robotics — The

Biology, Intelligence and Techology of Self-Organizing

Machines. The MIT Press, 2000.
17. T. Poggio and F. Girosi. A theory of networks for

approximation and learning. Technical report, Cam-
bridge, MA, USA, 1989. A. I. Memo No. 1140, C.B.I.P.
Paper No. 31.

18. S. Slušný and R. Neruda. Evolving homing be-
haviour for team of robots. Computational Intelli-

gence, Robotics and Autonomous Systems. Palmerston

North : Massey University, 2007.
19. S. Slušný, R. Neruda, and P. Vidnerová. Evolution

of simple behavior patterns for autonomous robotic
agent. System Science and Simulation in Engineering.

- : WSEAS Press, pages 411–417, 2007.
20. Richard S. Sutton and Andrew G. Barto. Reinforce-

ment Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

21. C. J. Watkings. Learning from Delayed Rewards. PhD
thesis, Cambridge University, 1989.

