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Abstract. The work1 reported in this article aims towards computing web 

services’ data semantics. The paper provides extensive experimental results 

towards the automatic semantic annotation of WSDL specifications. 

Specifically, this paper reports on combinations of state-of-the-art methods for 

automatically mapping the part elements of the WSDL input and output 

messages to ontology classes: These combinations result to a specific method 

for Uncovering web Services Data Semantics (USDS). We study the 

performance of USDS even in challenging cases where lexical items are rather 

scarce and misleading. Experimental results are being thoroughly discussed, 

showing the potential and limitations of USDS.  

Keywords: semantic annotation, mapping methods, WSDL specification, data 

semantics 

1   Introduction 

The automatic discovery of Web services is a highly important service manipulation 

task. WSDL is mainly focusing on operational and syntactic details regarding the 

implementation and execution of Web services. The lack of explicit semantics in 

WSDL specifications makes them insufficient to satisfy the requirements for flexible 

and effective Web service ‘manipulation’ tasks, as they force the relevant 

mechanisms to be based mostly on keyword matches. While we may relate different 

types of semantics to the web services, we can distinguish two widely recognized 

types of semantics: (a) Data semantics (introducing the semantic signature of services: 

semantics of input/output messages of service operations), (b) Functional Semantics 

(function of operations and of the service itself). We may further add to this list: 

Protocol semantics, execution semantics, non-functional semantics (security, QoS), 

and others. This paper focuses on data semantics, which is generally accepted to be 

one of the most critical aspects regarding services’ semantic description. Although 

other important aspects exist with respect to web services’ signature (e.g. goals, 

pre/post conditions [10], services’ classification [2]), mainly due to their strong 

dependence on data semantics, they have not received the attention that data 

semantics do.  

                                                           
1 This work has been supported by the European Commission project Grid4All under grant 

number FP6, project IST-Grid4All-2006-034567 



The main objective of this paper is to study the automatic semantic annotation of 

WSDL specifications, given ontologies related to the services’ domains. Towards this 

objective, we devise a method for mapping input/output messages’ part names to 

ontology classes and study its performance to variations of the OWL-TC corpus 2 [6]. 

This method, aiming to uncovering the data semantics of web services (USDS), 

combines state-of-the-art string similarity methods and vector-based methods, aiming 

to mitigate difficulties and limitations of other approaches, even in challenging cases. 

The aim is for services to be automatically translated to semantically enriched 

specifications, and thus be registered to semantic registries automatically.   

As pointed in [11], the process of semantic annotation of services requires input 

from multiple sources, including the source code of the service, the API 

documentation and description, as well as “external” information sources such as 

users’ license agreements and sources of background knowledge [2]. The main 

assumption behind this article is that these information sources, in conjunction to 

service specification elements, can provide valuable information for the automatic 

annotation of web services. It is within the goals of this work to reduce human 

intervention to the subsidiary tasks that humans can do better: introduce descriptive 

documentation of WSDL specifications and validate results.  

This paper is structured as follows: Section 2 states the problem that this article 

deals with. Section 3 presents related work and motivates the proposed method. 

Section 4 presents in detail the mapping techniques used and the overall proposed 

method. Section 5 presents the experimental setup and results, and section 6 

concludes the paper, sketching future work. 

2   Problem Statement 

The problem that this paper deals with is as follows: “Given (a) a WSDL specification 

and (b) an ontology O= (S,A), S being the set of terms lexicalizing ontology elements 

and A the ontology axioms, provide mappings of WSDL messages’ part names to 

ontology classes with respect to the intended semantics of the service”. 

We deal only with services’ signatures specified in WSDL (i.e. with data 

semantics). More specifically we consider the following specifications: 

- The signature of a service s specifies a set of input/output messages. These 

are denoted <service_id, message_type, message_id>, where message_type can be 

input or output. 

- Each message <service_id, message_type, message_id> has one or more 

parameters: <service_id, message_id, name, data_type>, where name is the name of 

the parameter, and data_type specifies the (atomic or complex) data type of the 

parameter. 

- Each parameter is associated with textual annotations: <service_id, 

message_id, name, annotation_type, text>, where the type of annotation is description 

or comment, and text is the actual annotation text. Each parameter may be associated 

with more than one annotation. 

Computed mappings between WSDL messages’ part names and ontology elements 

are of the form <service_id, message_id,name,element,rel>where name is the name of 

the parameter, element is a term in the ontology signature S, and rel is the assessed 



relation between element and name: This may be equivalence, subsumes or subsumed. 

For the purposes of this paper we restrict our attention to the equivalence case.  

We have to notice that the above problem statement follows the WSDL 1.1 

specification (also addressing the great number of existent services): However, this 

can be easily restated for WSDL 2.0 specifications considering that no message part 

names exist.  

3 Related Work and Motivation 

3.1 Related Work 

The work reported in this article, aims to provide services with data semantics by 

exploiting of domain ontologies, services’ WSDL specifications and textual 

annotations. Close to the aims of this work are efforts that exploit textual descriptions 

of services for the annotation, classification, and for the assessment of similarities 

between web-services.  

The METEOR-S Annotation Framework [1] is one of the most prominent 

approaches, aiming at semi-automatically marking up web service descriptions with 

ontologies, by means of a schema matching algorithm: Ontologies and XML 

schemata used by WSDL specifications are converted to SchemaGraphs that are 

compared by computing linguistic similarities between elements and structural 

similarities between the schemata. For the purposes of linguistic similarity, the 

proposed algorithm consults WordNet to find synonyms. In this paper we emphasize 

on the exploitation of textual information for uncovering the semantics of WSDL 

parts. In contrast to our approach which aims, among others, to compute latent 

features that explicate the semantics of WSDL parts, METEOR-S exploits “shallow” 

features concerning XML schema and ontology elements’ names: This for instance 

affects methods’ efficacy in cases where polysemous terms appear, or in cases where 

specifications are at different granularity levels, as far as the conceptualization of the 

domain is concerned.  

The work reported in [2] aims at assessing WSDL specifications’ similarity by 

exploiting the structure of data types and operations of services, as well as the 

semantics of natural language descriptions and identifiers. Although the aim of this 

work is to support query-by-example discovery of services, the emphasis on semantic 

matching given textual descriptions of services, and the exploitation of identifiers’ 

semantics, brings this work close to our work. This approach uses a vector model, 

exploiting the textual descriptions of services, and consults WordNet to calculate the 

semantic distances between identifiers of WSDL elements. While semantic matching 

is restricted to the exploitation of identifiers, identifiers’ senses are not disambiguated, 

making the calculation of semantic distances rather problematic. Disambiguation is a 

vital task in our research since we aim to match WSDL elements to specific ontology 

concepts, explicating their semantics.  

Aiming to show how content-based approaches can contribute to semantic 

matching of OWL-S service specifications, OWLS-MX [3], aims to exploit the 

implicit semantics of any part of OWL-S service description by representing it as a 



weighted category-index term vector. Index terms are stemmed lexical items from a 

shared minimal vocabulary. This vocabulary results from the canonical unfolding in 

an underlying ontology of the words or concepts that exist in text categories that 

correspond to OWL-S elements (hasInput, ServiceName, TextDescription etc). 

Although the aims of this work are quite different from our aims, it provides firm 

evidence towards our conjecture: That the use of textual descriptions of service parts 

in conjunction to their specifications can help to uncovering their implicit semantics. 

However, as shown in [4], there are pitfalls to the logic-based and syntactic 

matchmaking methods (due to granularity of ontology specifications, surjective 

mapping of concepts, and incomplete coverage of service semantics) that require 

explicating the semantics of services’ input/output parameters, before these are being 

compared by logic-based matchmakers.  

Further evidence is provided by experiments with the ASSAM’s annotation wizard 

[9]. ASSAM casts the problem of classifying operations and datatypes in a Web 

Service as a text classification problem. The tool learns from Web Services with 

existing semantic annotations. Given this training data, a machine learning algorithm 

can generalize and predict semantic labels for previously unseen Web Services. The 

approach described in the current paper does not require the pre-existence of semantic 

annotations to decide the mapping of WSDL elements to ontology concepts. 

3.2 Motivation and overview of the method 

Our work is being motivated by the view that, for web-service matchmakers to 

perform accurately, they need the precise, intended meaning of web services’ 

signature in a fine-grained way: This means that parts of web service messages must 

be mapped to specific terms that are being axiomatized in a formal ontology. 

To do so, we need to mitigate pitfalls related to phenomena concerning synonym 

terms, homonym terms (i.e. polysemy), typographic variations of terms, differences 

between the granularity of services and ontological specifications.  

In conjunction to these pitfalls, we need to take also into account the “nature” of  

WSDL specifications, which are being produced from program code, with few and, in 

most of the cases, misleading comments, descriptions, and “tricky” names of the 

parameters being involved, with improper or faulty use of domain terminology. 

To mitigate these pitfalls and avoid difficulties that are inherent to the 

specifications of web services, we employ the combination of different methods 

towards a system for uncovering the data semantics of web services (USDS): The 

core configuration of this system comprises two state of the art methods: COCLU [8], 

and LSA-based-mapping [13]. Specifically, COCLU is expected to tolerate 

typographic variations of terms, assessing similarities between terms whose 

appearance is quite similar, even if one of them is an abbreviation or a concatenation 

of the other term parts: These are variations that edit-distance measures are hard to 

capture.  

The LSA-based-mapping aims to mitigate problems concerning synonym and 

homonym terms, as its aim is to disambiguate the meaning of web service parameters, 

mapping them to WordNet senses that best capture their intended meaning, according 

to their own lexicalization, their associated types, as well as according to descriptions 



and comments given. The same method maps ontology classes to WordNet senses 

that are assessed to capture the human-intended meaning of the formal specifications: 

Having done these mappings, and in case the intended meanings (WordNet senses) of 

an ontology class and of a service parameter are related, then these can be mapped. 

More specifically, in case the corresponding WordNet senses coincide, or they are 

related via a synonym relation, then the method assesses an exact match. In case their 

corresponding terms are being related via a hyponym relation, then given that there is 

a short distance between them (in terms of the number of hyponym/hyperonym 

relations between them) then the method may assume that there is a subsumption 

relation between the parameter term and the ontology class. Doing so, the method 

facilitates tackling problems related to having specifications (WSDL and ontology) at 

different granularity levels, and relating elements with a “semantic distance”. 

However, in this paper we only consider cases of exact matches. 

To evaluate USDS, we provide extensive experimental results with different 

configurations of string-matching based and vector-model based methods in different 

sets of WSDL specifications.  

4   Semantic Annotation of WSDL specifications 

4.1 Annotating WSDL 

As pointed out, we consider that the overall semantic annotation of WSDL 

specifications comprises three distinct stages: The annotation stage, the mappings 

stage, and the validation stage. However, for the purposes of this paper we require 

human intervention only in the annotation stage. 

  

 
Fig. 1 Annotating WSDL specifications  

 

During the annotation stage, humans provide textual descriptions for elements of 

the WSDL specification. The annotation stage takes as input the WSDL specification 

and produces an external xml annotation file (EAF) based on a specific annotation 



schema that we have specified for this purpose. This is an annotation-template file 

that provides “slots” for the description of WSDL elements: For the service itself, for 

each interface, operation and input/output messages’ elements it provides elements for 

“comments”, “description”, as well as support for mapping mechanisms between 

WSDL elements and ontologies. As Fig.1 shows, the EAF is aligned with the WSDL 

specification via XPATH expressions. The annotation schema can be extended for 

supporting other types of textual information that are necessary for the annotation of 

WSDL elements.   

Although we plan to incorporate SAWSDL [5] into our framework, we do not 

commit to the use of SAWSDL at this stage, emphasizing mostly on the use of textual 

descriptions/comments for WSDL elements. 

4.2 The USDS Semantic Annotation Method  

The USDS semantic annotation system takes as input a WSDL document together 

with the corresponding xml annotation file, as well as a domain ontology. As already 

specified in section 2, the output of this system is a set of assessments concerning 

exact mappings between messages’ part names and ontology classes. USDS, in 

addition to the part names of the input/output messages, exploits services’ types’ 

specifications, as well as textual descriptions and comments in the annotation file.  

As already pointed out, the core of USDS comprises the combination of two state 

of the art methods: COCLU, and LSA-based-mapping. COCLU is a compression-

based clustering algorithm (COmpression-based CLUstering). The algorithm is based 

on the assumption that different lexicalizations of a term (typographic variants) use a 

common set of `core' characters. Therefore, typographic variants that `mostly' use this 

set are potential alternative lexicalizations of the same concept, while those ones that 

are `far' from this set are potentially related to the lexicalization of a different concept. 

Further details for this model and partition-based clustering algorithm are provided in 

[8].COCLU has been used for the comparison of (a) the description of each WSDL 

input/output message part, with the labels of ontology classes, (b) the elements in the 

atomic/complex types specifications of messages’ part elements with the name and 

labels of ontology classes, and (c) the comment of each WSDL input/output massage 

part with the comments of ontology classes.  

The LSA-based-mapping [13] aims to disambiguate the meaning of WSDL 

messages’ part names, mapping them to WordNet senses that best capture their 

intended meaning, according to their lexicalization, their associated types, as well as 

according to descriptions and comments given. As already said, the same method 

maps ontology classes to WordNet senses that capture the human-intended meaning 

of the formal specifications: Having done these mappings, and in case the intended 

meanings (WordNet senses) of a class and of a service parameter coincide, then these 

are mapped. The Latent Semantic Indexing (LSI) method assumes that there is an 

underlying latent semantic space that it estimates by means of statistical techniques 

using an association matrix (n×m) of terms-documents: Documents in our case 

correspond to WordNet senses. Terms are selected from the vicinity of WordNet 

senses (i.e. from the senses themselves and from their hyponym/hypernyms). Latent 

Semantic Analysis (LSA) computes the arrangement of a k-dimensional semantic 



space to reflect the major associative patterns in the data. This is done by deriving a 

set of k uncorrelated indexing factors, which may be considered as “latent concepts”. 

Then, each term and document is represented by its vector of factor values, indicating 

its strength of association with each of these “latent concepts”. By virtue of dimension 

reduction from the N terms space to the k factors space, where k<N, terms that did not 

actually appear in a document may still end up close to the document, if this is 

consistent with the major patterns of association in the data.  

When one searches an LSI-indexed database of documents, it provides a query (i.e. 

a pseudo-document), which is a list of terms. The similarity between two documents 

is computed by means of the dot product between the corresponding representation 

vectors. Doing so, LSI returns a set of graded documents, according to their similarity 

to the query.  

In our case the semantic space is constructed by terms in the vicinity of the senses S1, 

S2,…Sm of the WordNet entry matching an ontology class name C, or a WSDL 

message part name C. The set of terms in the semantic space include: 

- The term C’ that corresponds to C. C’ is a lexical entry in WordNet that is a 

linguistic variation of C. 

- Terms that appear in C’ WordNet senses S1, S2,…Sm. 

- Terms that constitute hyperonyms / hyponyms of each C’ sense. 

- Terms that appear in hyper(hyp)onyms of C’ senses.  

As far as ontology classes is being concerned, each query is being constructed by 

extracting terms from the label, and the comment of an ontology class, as well as from 

the names of its properties’. Concerning the WSDL specifications, for each 

input/output message part element we extract terms from its name attribute, from the 

names of the elements defined in the complex types of the type attribute, as well from 

its related annotation elements (description and comments). Specifically, terms may 

result from the tokenization of phrases and may be either simple terms, or compound 

terms.   

To combine the above mentioned methods we have used the AUTOMS-F 

framework [7]: Specifically, in our implementation the combination of methods 

produces the union of the mappings produced by each of them. This improves the 

recall of the final method, but it may result to less precise results. Although more 

sophisticated types of methods’ combinations have been tested, these have given less 

encouraging results: Future work concerns the thorough investigation of these 

techniques.  

Two additional string-matching based methods have been also employed. These 

methods compare the names of ontology classes and the part names of the service 

messages. Comparisons take place for every potential mapping pair. The better 

matches (those with the largest similarity values) are selected for every WSDL part. 

The Exact String Matching (ExactString) identifies a match if the compared names 

are exactly the same. This allows us to show the “difficulty” of our cases, given that 

such a simple method fails to exhibit effective performance.The Levenshtein 

matching method incorporates a distance measure that specifies the minimum number 

of operations needed to transform one string into another. The valid operations are: 

insertion, deletion, or substitution of a single character. Our implementation considers 

a match between two strings if and only if at most two operations are required for 

their transformation. 



In addition to the above, we have also used a Vector Space Model – based (VSM) 

method, which computes the matching of documents pairs. Each document is 

represented by a vector of n weighted index terms. Index terms correspond to the 

simple terms that are extracted from all documents. Here we construct (pseudo-) 

documents that correspond to ontology classes and WSDL messages’ part elements: 

As it is done in the LSA-based method, these pseudo-documents include terms from 

the label, and the comment of an ontology class, as well as from the names of its 

properties’. Concerning the WSDL specifications, for each input/output message part 

element we extract terms from its name attribute, from the names of the elements 

defined in the complex types of the type attribute, as well from its related annotation 

elements (description and comments). The VSM-based method builds the vector of a 

pseudo-document by assigning to the weight of a term the frequency of its appearance 

in the document. The similarity between two vectors (each corresponding to a WSDL 

message part name and to an ontology class) is computed by means of the cosine 

similarity measure. This computation ranges in [0, 1]: A threshold (currently set to 

0.35) is set for deciding when a match occurs. 

5   Experiments and Discussion 

5.1 Experimental Setting 

To evaluate our approach, we have used the OWL-S Service Retrieval Test Collection 

(OWLS-TC) version 2 [6]. From the OWLS-TC collection, we have translated to 

WSDL a subset of 87 services, due to problems we faced with OWL-S-to-WSDL 

translation, and due to duplicate WSDL part elements. In total, we have been 

experimenting with 5 different domains and 6 different domain ontologies, which 

result to several different sets of experiments, with an initial given varied degree of 

difficulty. Additionally, we have produced additional experiments by creating 

variations of the corpus in order to test the robustness of the USDS different 

configurations.  
 

Table 1.  Information about the experimental domains, ontologies and services.  

 
Domain Domain Ontology (.owl) # Services 

(WSD) 

Total # of part 

elements. 

Distinct part elements 

to be annotated 

 Ontology #concepts #properties    

(1): Travel Travel 34 6 9 22 (4) 10 

 Portal 171 104 9 27 (4) 17 

(2): Education Books 60 11 8 19 (4) 19 

 Portal 171 104 31 63 (3) 63 

(3): Economy Books 60 11 11 31 (4) 19 

 Concept 17 3 11 31 (4) 12 

   (4): Weapon SUMO 613 208 3 7 (3) 7 

(5): Medical Hospital Physician 64 45 5 39 (10) 39 

 

Table 1 summarizes information concerning the initial sets of experiments and 

characteristics of the services and ontologies used. The first and the second column 

present the domain and the ontology used. The third and fourth columns provide 

information concerning the number of concepts and properties in each ontology. The 

fifth column provides the number of services (WSDL specifications) that exist in each 



set, while the sixth one presents the total number of part elements that exist in a set, 

and the maximum number of part elements that exist in a WSDL specification. The 

last column specifies the total number of the distinct part elements that should be 

annotated in each set of experiments. 

Concerning WSDL specifications for domains 1 to 4, message part names are 

mainly composed by a single-word term capitalized and an underscore character as a 

prefix (e.g. _COUNTRY). This variation slightly differentiates part names from 

ontology class names. For the domain 5, the messages part names are composed by 

multi-word terms, either separated with an underscore or with no separator, or using a 

combination of these (e.g. GetPatientMedicalRecords_AuthorizedMedicalRecords). 

Such terms are not included in the related domain ontologies, however, their 

substrings match to ontology class names (e.g. MedicalRecords). We handle 

individual, distinct terms of multi-word terms separately, only in cases these are 

separated by an underscore separator, which is one of the most generic case 

considered.  

The characteristics of the domain ontologies are important for the experiments: 

These include the size of the ontologies, the annotation of classes/properties, i.e. 

labels and comment annotations, as well as the richness of specifications for each 

class/property, i.e. the number of subclasses or related properties, depth of hierarchy 

for each class, etc. Apart from SUMO, which is an upper, widely-accepted ontology, 

ontologies accompanying the OWL-TC corpus have been developed independently 

from OWL-TC. Our analysis for these ontologies shows that there are ontologies with 

some annotations for their classes (e.g. the Travel ontology provides only comments 

for the defined classes, and the Portal ontology provides comments or labels for some 

of the classes), and ontologies with no annotations at all (e.g. the HospitalPhysician 

ontology). As far as richness of specifications is concerned, there are ontologies 

whose elements are mildly interrelated, such as SUMO (max parents: 3, mean 

parents: 2, max siblings: 15, mean siblings: 7, all properties have a domain and range 

specified), but there are others not so rich, such as the HospitalPhysician (max 

parents: 1, mean parents: 1, max siblings: 8, mean siblings: 4) or the Books ontology 

(none property have a domain and range specified). 

WSDL part names have been manually annotated by human annotators that have 

adequate knowledge of the related domains. They have been advised to carefully 

choose the annotations in order to indicate as close as possible the intended meaning 

of the input/output message parts annotated. Where possible, annotators have been 

advised to get feedback from xsd-schema complex types included in the WSDL 

specifications. More specifically, we can identify 3 different annotation cases that 

have been applied in the corpus: (a) Annotations that are formed by “free text 

including terms from xsd-schema types and from the WSDL message part name 

element”. (b) Annotations that are formed by “free text including terms only from the 

WSDL message part name element”. (c) Annotations that are formed by “a single 

term”. Annotators choose a single term without considering xsd-schema types or 

WSDL message part name element information. For instance, for the “wsdl:part 

name="Capital_City"”, the annotator creates the description annotation 

“<description> Capital </description>”, which is the intended meaning (or 

synonym) of the entity “Capital City”. 



The result of this process is a set of annotations with terms belonging in one of the 

following three categories:  a) terms from xsd-schema types, b) terms from WSDL 

message part names, or c) terms chosen by human annotators.  

 The use of “free text” in combination with xsd-schema types’ terms and/or WSDL 

message part names’ terms, means that the annotator is allowed to form a natural 

language sentence: E.g. “<description> The service requests accommodation using 

country information </description>”. Although the use of free text may distract the 

matching methods, the freedom that the approach gives to the annotator is important 

and realistic. In this example of annotation, the annotator has combined terms (e.g. 

“country”) from messages’ part names (case b). As another example, in the comment 

“<comment> The country name is a string. A country is described with its capital, its 

currency, and its government </comment>” the annotator has included terms (terms 

“capital”, “currency”, “government”) from the xsd-schema type that corresponds to 

the specific message part name that is annotated (case a). Table 2 summarizes 

information concerning annotations per domain. It must be noticed that all 

annotations contain 5 to 7 “significant” terms ie. non stop-words that may drive the 

computation of the intended mappings. In addition to the above, motivated by our 

experience with vector-model-based ontology alignment methods (perform better 

with ontologies that have rich information, i.e. with ontologies that contain labels and 

comments for every ontology class), we artificially enriched the annotation 

information of ontology classes with textual information. All experiments (“enriched 

ontologies” cases) have been run with these “enriched” ontologies. 
 

Table 2.  Information concerning annotations per domain 

 
Domain Id Annotation case Terms that match a class name 

1 Descriptions: case (b), Comments: case (a) Approx. 50% 

2 Descriptions: case (b), Comments: case (a) NA 

3 Descriptions: case (b), Comments: case (a) Approx. 70% 

4 Descriptions: case (b), Comments: case (a) Approx. 40% 

5 Descriptions: case (c), Comments: case (a) Approx. 70% 

 

Furthermore, we have modified the WSDL specifications by replacing the name of 

their input/output message part elements with a unique random string which ranges in 

length between 9 and 11 characters. These new specifications double the number of 

experiments that have been contacted. Such a setting aims to unveil the importance of 

the natural language descriptions of the input/output message parts for our approach.  

5.2 Results and Discussion 

Due to space limitations, we present the precision and recall for all experiments 

contacted with the annotated WSDL specifications and the enriched ontologies (Fig. 

2): These provide the best results for all experiments’ configurations. Figure 2 shows 

that (as it was expected) the higher recall is achieved by the combination of all 

methods. The recall of an individual method for a specific domain/ontology pair may 

not be high due to the characteristics of the specific domain/ontology pair (e.g. due to 

the compound terms in name values of the WSDL part elements). For instance, the 

recall for the Domain5/hospitalPhysician.owl pair is low even for combined methods 



(e.g. LSA+COCLU). So even if the composition of the “core methods” of USDS 

(LSA+COCLU) achieves recall equal to 0.8 for all the domains (in average), it 

achieves 0.1 for this specific domain/ontology pair.  

  

 
Fig. 2. Precision and recall for different USDS configurations using annotated WSDL 

specifications and enriched versions of ontologies. 

 

 
Fig. 3. Average precision and recall for each configuration  

  

The higher precision is achieved by the composition of LSA and VSM. 

Specifically, the VSM+LSA configuration gives the higher average precision for all 

the domains. This is shown in Fig. 3. However this configuration achieves low 

precision in cases that most of the other methods do so as well. For instance, this is 

the case for the Domain2/portal.owl pair shown in Fig. 2, where most of the other 

methods achieve precision equal to 0.3. It seems that some methods are much better 

for specific ontologies. This can shape the conjecture that the performance of the 

method chosen for the automatic annotation of services is closely related to the choice 

of the domain ontology used. This may also help us to reach a criterion for the 



selection of the most “proper” ontology to annotate a service. However this is part of 

our future work.  

The exact matching method fails to deliver valid results in almost any set of 

experiment, as it was expected. Amongst the other two string matching methods, 

Levenshtein (Leven) outperforms COCLU in all sets of experiments (Fig. 3). This is 

mainly due to the existence of compound terms with many different characters. 

It must be noticed that the precision achieved by string matching techniques is 

larger than this achieved by the individual VSM method. This is due to the fact that 

VSM is being misled by the artificial annotations created for the OWL classes. This 

process adds one or two terms to a class’s virtual document, which may lead the VSM 

method astray. This supports the argument that ontology classes should be 

commented with rich and accurate natural language annotations for this method to 

perform adequately.  However this adds extra effort to the ontology developers. As far 

as the LSA-based method is concerned, it must be noticed that WSDL annotations 

that include descriptions irrelevant to WordNet senses distract in most of the cases 

this method from finding the correct mappings due to the inclusion of non-relevant 

terms. 

 

 
Fig. 4. Precision and Recall for all configurations in experiment Domain1/travel.owl with an 

artificially enriched version of the ontology  
 

As far as the enrichment of ontologies with informative labels and comments is 

concerned, as it is depicted in Fig. 4 for the case concerning the Domain 1/travel.owl - 

a representative case -, the enrichment affects the precision and the recall of the 

USDS configurations that use virtual documents in the computation of their similarity 

function. Such an experiment indicates that state-of-the-art mapping methods that are 

used for the automatic semantic annotation of WSDL documents are more effective 

when domain ontologies are rich with descriptive information.  

Concerning the cases where random strings replace part element names, the lexical 

mapping methods cannot perform effectively for obvious reasons: strings such as 

“1qazxsw2” cannot be directly mapped to an OWL class. Even the LSA method that 

relies on WordNet cannot perform well. This is due to the fact that part names do not 



have WordNet entries. In contrast to this, the VSM-based mapping method that does 

not rely on an external lexicon, can overcome this problem resulting in a mildly good 

performance. This is shown in the experiment configuration Domain3/Books.owl 

depicted in Fig. 5. This shows that the adequate and rich annotation of WSDL 

specifications is vital to the effective performance of the most adequate mapping 

methods. This is further evidenced by the results provided by VSM in the domain 5, 

where the “complexity” of the terms involved provides major obstacles to the other 

methods. 

As a final conclusion of the above results, we can state that the USDS 

configuration that results from the composition of different complimentary methods 

seems to be the most promising one.  

 
Fig. 5. Precision and Recall for experiments (a) Domain3/books.owl and (b) 

Domain5/HospitalPhysician.owl with random strings (e.g. “1qazxsw2”) as part names 

5.3   Top-k evaluation  

Although we have so far presented a quite extensive set of experiments showing the 

potential of the approach to support the effective automatic annotation of WSDL 

specifications, we have in addition measured the effectiveness of the approach to 

providing assistance to human annotators [17]. Therefore we have measured the 

accuracy of the approach. Results are presented and discussed in the following 

paragraphs. 

The top-k evaluation method has been used for the evaluation of Web information 

retrieval approaches (e.g. [14, 15]) and also in the evaluation of semantic services’ 

matchmaking systems (e.g. [16]). The top-k (or topK) evaluation method measures 

the percentage of correct results in the top k results in a list of ranked results 

(accuracy of returned ranked results). In our case, WSDL part names are matched 

against ontology classes, and the most relevant pairs are returned as suggested 

mappings, together with their ranking.  The higher ranked pairs of each pair are being 

assessed to provide the “correct” mappings. In case of conflict, the method that 

provided the first mapping wins. Of course this is not a proper policy. Rankings of 

different methods need to be normalized appropriately so as to rich a global list of 



ranked pairs. However, even in this case, a sophisticated policy for reconciling 

conflicts is necessary: This is something to be further investigated. Therefore, top-k 

(accuracy) evaluation method identifies if the “correct” pair (i.e. the one provided by 

the gold-mappings) is among the k ranked suggested mappings. Accuracy is a widely 

accepted metric in the Information Retrieval community and has been successfully 

used for the evaluation of many systems. An example of related work concerning the 

support of human annotators is reported in [17]. The work is more focused on the 

simplification of the manual annotation task of services rather than on the validation 

of top-k ranked semantic annotations. Furthermore, the work facilitates the detecting 

of mistakes in existing annotations, discovering however a relatively small number of 

annotations. 

 

 
 
Fig. 6. Top-3 precision for VSM+COCLU+LSA+Leven configuration 

 

The VSM+COCLU+LSA+Leven USDS configuration has produced the best 

precision/recall percentages in top-1 experiments. Although recall was really high, the 

precision of the method can be further improved to support full-automation of the 

annotation process. Fig. 6 shows the top-3 precision of this method. As it is shown, 

the top-3 precision is 100% for 7 of the domain/ontology pairs and 95% for the 

Domain2/portal.owl pair. The method failed to retrieve the correct ontology class for 

a specific part name, although some of its constituent methods successfully retrieved 

it. This is due to the restriction in the number of retrieved ontology classes in 

combination with the absence of a global normalisation method amongst the match 

values produced by each method.  

6   Concluding Remarks 

Automatic service registration, to facilitate web services’ semantic matchmaking, 

requires efficient and effective semantic annotation of services. In this paper we 

conjecture that this is possible when WSDL specifications are adequately annotated 

with textual annotations, and in cases where the suitable mapping method(s) are 

selected for mapping WSDL elements to ontology classes. Since the efficiency of a 

mapping method is influenced by the characteristics of the ontology(ies) and the 

WSDL annotations used in task,  their careful selection and composition lead to better 

performance. In an application context, where users are being advised for the 

annotation of WSDL parts, the method resulting from the combination of lexical and 

vector-based methods (Coclu, VSM, LSA, Leven) proved to be extremely valuable 



since it manages to return with high accuracy the “proper” class for annotating each 

of the WSDL message parts among the 3 highly ranked matching pairs. 

In this paper we have presented extended experimentation cases with different 

configurations of the USDS method for uncovering web services’ data semantics. We 

have reached a configuration where different complimentary methods achieve very 

good performance is a set of experiments of varying difficulty. Future goals that have 

been indicated throughout the sections of this article provide the many different facets 

of future work that this work entails. 
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