
Uncovering WSDL Specifications’ Data Semantics

George A. Vouros, Alexandros Valarakos, Konstantinos Kotis

AI-Lab, University of the Aegean, Karlovassi, Samos, Greece

{georgev, alexv, kotis}@aegean.gr

Abstract. The work1 reported in this article aims towards computing web

services’ data semantics. The paper provides extensive experimental results

towards the automatic semantic annotation of WSDL specifications.

Specifically, this paper reports on combinations of state-of-the-art methods for

automatically mapping the part elements of the WSDL input and output

messages to ontology classes: These combinations result to a specific method

for Uncovering web Services Data Semantics (USDS). We study the

performance of USDS even in challenging cases where lexical items are rather

scarce and misleading. Experimental results are being thoroughly discussed,

showing the potential and limitations of USDS.

Keywords: semantic annotation, mapping methods, WSDL specification, data

semantics

1 Introduction

The automatic discovery of Web services is a highly important service manipulation

task. WSDL is mainly focusing on operational and syntactic details regarding the

implementation and execution of Web services. The lack of explicit semantics in

WSDL specifications makes them insufficient to satisfy the requirements for flexible

and effective Web service ‘manipulation’ tasks, as they force the relevant

mechanisms to be based mostly on keyword matches. While we may relate different

types of semantics to the web services, we can distinguish two widely recognized

types of semantics: (a) Data semantics (introducing the semantic signature of services:

semantics of input/output messages of service operations), (b) Functional Semantics

(function of operations and of the service itself). We may further add to this list:

Protocol semantics, execution semantics, non-functional semantics (security, QoS),

and others. This paper focuses on data semantics, which is generally accepted to be

one of the most critical aspects regarding services’ semantic description. Although

other important aspects exist with respect to web services’ signature (e.g. goals,

pre/post conditions [10], services’ classification [2]), mainly due to their strong

dependence on data semantics, they have not received the attention that data

semantics do.

1 This work has been supported by the European Commission project Grid4All under grant

number FP6, project IST-Grid4All-2006-034567

The main objective of this paper is to study the automatic semantic annotation of

WSDL specifications, given ontologies related to the services’ domains. Towards this

objective, we devise a method for mapping input/output messages’ part names to

ontology classes and study its performance to variations of the OWL-TC corpus 2 [6].

This method, aiming to uncovering the data semantics of web services (USDS),

combines state-of-the-art string similarity methods and vector-based methods, aiming

to mitigate difficulties and limitations of other approaches, even in challenging cases.

The aim is for services to be automatically translated to semantically enriched

specifications, and thus be registered to semantic registries automatically.

As pointed in [11], the process of semantic annotation of services requires input

from multiple sources, including the source code of the service, the API

documentation and description, as well as “external” information sources such as

users’ license agreements and sources of background knowledge [2]. The main

assumption behind this article is that these information sources, in conjunction to

service specification elements, can provide valuable information for the automatic

annotation of web services. It is within the goals of this work to reduce human

intervention to the subsidiary tasks that humans can do better: introduce descriptive

documentation of WSDL specifications and validate results.

This paper is structured as follows: Section 2 states the problem that this article

deals with. Section 3 presents related work and motivates the proposed method.

Section 4 presents in detail the mapping techniques used and the overall proposed

method. Section 5 presents the experimental setup and results, and section 6

concludes the paper, sketching future work.

2 Problem Statement

The problem that this paper deals with is as follows: “Given (a) a WSDL specification

and (b) an ontology O= (S,A), S being the set of terms lexicalizing ontology elements

and A the ontology axioms, provide mappings of WSDL messages’ part names to

ontology classes with respect to the intended semantics of the service”.

We deal only with services’ signatures specified in WSDL (i.e. with data

semantics). More specifically we consider the following specifications:

- The signature of a service s specifies a set of input/output messages. These

are denoted <service_id, message_type, message_id>, where message_type can be

input or output.

- Each message <service_id, message_type, message_id> has one or more

parameters: <service_id, message_id, name, data_type>, where name is the name of

the parameter, and data_type specifies the (atomic or complex) data type of the

parameter.

- Each parameter is associated with textual annotations: <service_id,

message_id, name, annotation_type, text>, where the type of annotation is description

or comment, and text is the actual annotation text. Each parameter may be associated

with more than one annotation.

Computed mappings between WSDL messages’ part names and ontology elements

are of the form <service_id, message_id,name,element,rel>where name is the name of

the parameter, element is a term in the ontology signature S, and rel is the assessed

relation between element and name: This may be equivalence, subsumes or subsumed.

For the purposes of this paper we restrict our attention to the equivalence case.

We have to notice that the above problem statement follows the WSDL 1.1

specification (also addressing the great number of existent services): However, this

can be easily restated for WSDL 2.0 specifications considering that no message part

names exist.

3 Related Work and Motivation

3.1 Related Work

The work reported in this article, aims to provide services with data semantics by

exploiting of domain ontologies, services’ WSDL specifications and textual

annotations. Close to the aims of this work are efforts that exploit textual descriptions

of services for the annotation, classification, and for the assessment of similarities

between web-services.

The METEOR-S Annotation Framework [1] is one of the most prominent

approaches, aiming at semi-automatically marking up web service descriptions with

ontologies, by means of a schema matching algorithm: Ontologies and XML

schemata used by WSDL specifications are converted to SchemaGraphs that are

compared by computing linguistic similarities between elements and structural

similarities between the schemata. For the purposes of linguistic similarity, the

proposed algorithm consults WordNet to find synonyms. In this paper we emphasize

on the exploitation of textual information for uncovering the semantics of WSDL

parts. In contrast to our approach which aims, among others, to compute latent

features that explicate the semantics of WSDL parts, METEOR-S exploits “shallow”

features concerning XML schema and ontology elements’ names: This for instance

affects methods’ efficacy in cases where polysemous terms appear, or in cases where

specifications are at different granularity levels, as far as the conceptualization of the

domain is concerned.

The work reported in [2] aims at assessing WSDL specifications’ similarity by

exploiting the structure of data types and operations of services, as well as the

semantics of natural language descriptions and identifiers. Although the aim of this

work is to support query-by-example discovery of services, the emphasis on semantic

matching given textual descriptions of services, and the exploitation of identifiers’

semantics, brings this work close to our work. This approach uses a vector model,

exploiting the textual descriptions of services, and consults WordNet to calculate the

semantic distances between identifiers of WSDL elements. While semantic matching

is restricted to the exploitation of identifiers, identifiers’ senses are not disambiguated,

making the calculation of semantic distances rather problematic. Disambiguation is a

vital task in our research since we aim to match WSDL elements to specific ontology

concepts, explicating their semantics.

Aiming to show how content-based approaches can contribute to semantic

matching of OWL-S service specifications, OWLS-MX [3], aims to exploit the

implicit semantics of any part of OWL-S service description by representing it as a

weighted category-index term vector. Index terms are stemmed lexical items from a

shared minimal vocabulary. This vocabulary results from the canonical unfolding in

an underlying ontology of the words or concepts that exist in text categories that

correspond to OWL-S elements (hasInput, ServiceName, TextDescription etc).

Although the aims of this work are quite different from our aims, it provides firm

evidence towards our conjecture: That the use of textual descriptions of service parts

in conjunction to their specifications can help to uncovering their implicit semantics.

However, as shown in [4], there are pitfalls to the logic-based and syntactic

matchmaking methods (due to granularity of ontology specifications, surjective

mapping of concepts, and incomplete coverage of service semantics) that require

explicating the semantics of services’ input/output parameters, before these are being

compared by logic-based matchmakers.

Further evidence is provided by experiments with the ASSAM’s annotation wizard

[9]. ASSAM casts the problem of classifying operations and datatypes in a Web

Service as a text classification problem. The tool learns from Web Services with

existing semantic annotations. Given this training data, a machine learning algorithm

can generalize and predict semantic labels for previously unseen Web Services. The

approach described in the current paper does not require the pre-existence of semantic

annotations to decide the mapping of WSDL elements to ontology concepts.

3.2 Motivation and overview of the method

Our work is being motivated by the view that, for web-service matchmakers to

perform accurately, they need the precise, intended meaning of web services’

signature in a fine-grained way: This means that parts of web service messages must

be mapped to specific terms that are being axiomatized in a formal ontology.

To do so, we need to mitigate pitfalls related to phenomena concerning synonym

terms, homonym terms (i.e. polysemy), typographic variations of terms, differences

between the granularity of services and ontological specifications.

In conjunction to these pitfalls, we need to take also into account the “nature” of

WSDL specifications, which are being produced from program code, with few and, in

most of the cases, misleading comments, descriptions, and “tricky” names of the

parameters being involved, with improper or faulty use of domain terminology.

To mitigate these pitfalls and avoid difficulties that are inherent to the

specifications of web services, we employ the combination of different methods

towards a system for uncovering the data semantics of web services (USDS): The

core configuration of this system comprises two state of the art methods: COCLU [8],

and LSA-based-mapping [13]. Specifically, COCLU is expected to tolerate

typographic variations of terms, assessing similarities between terms whose

appearance is quite similar, even if one of them is an abbreviation or a concatenation

of the other term parts: These are variations that edit-distance measures are hard to

capture.

The LSA-based-mapping aims to mitigate problems concerning synonym and

homonym terms, as its aim is to disambiguate the meaning of web service parameters,

mapping them to WordNet senses that best capture their intended meaning, according

to their own lexicalization, their associated types, as well as according to descriptions

and comments given. The same method maps ontology classes to WordNet senses

that are assessed to capture the human-intended meaning of the formal specifications:

Having done these mappings, and in case the intended meanings (WordNet senses) of

an ontology class and of a service parameter are related, then these can be mapped.

More specifically, in case the corresponding WordNet senses coincide, or they are

related via a synonym relation, then the method assesses an exact match. In case their

corresponding terms are being related via a hyponym relation, then given that there is

a short distance between them (in terms of the number of hyponym/hyperonym

relations between them) then the method may assume that there is a subsumption

relation between the parameter term and the ontology class. Doing so, the method

facilitates tackling problems related to having specifications (WSDL and ontology) at

different granularity levels, and relating elements with a “semantic distance”.

However, in this paper we only consider cases of exact matches.

To evaluate USDS, we provide extensive experimental results with different

configurations of string-matching based and vector-model based methods in different

sets of WSDL specifications.

4 Semantic Annotation of WSDL specifications

4.1 Annotating WSDL

As pointed out, we consider that the overall semantic annotation of WSDL

specifications comprises three distinct stages: The annotation stage, the mappings

stage, and the validation stage. However, for the purposes of this paper we require

human intervention only in the annotation stage.

Fig. 1 Annotating WSDL specifications

During the annotation stage, humans provide textual descriptions for elements of

the WSDL specification. The annotation stage takes as input the WSDL specification

and produces an external xml annotation file (EAF) based on a specific annotation

schema that we have specified for this purpose. This is an annotation-template file

that provides “slots” for the description of WSDL elements: For the service itself, for

each interface, operation and input/output messages’ elements it provides elements for

“comments”, “description”, as well as support for mapping mechanisms between

WSDL elements and ontologies. As Fig.1 shows, the EAF is aligned with the WSDL

specification via XPATH expressions. The annotation schema can be extended for

supporting other types of textual information that are necessary for the annotation of

WSDL elements.

Although we plan to incorporate SAWSDL [5] into our framework, we do not

commit to the use of SAWSDL at this stage, emphasizing mostly on the use of textual

descriptions/comments for WSDL elements.

4.2 The USDS Semantic Annotation Method

The USDS semantic annotation system takes as input a WSDL document together

with the corresponding xml annotation file, as well as a domain ontology. As already

specified in section 2, the output of this system is a set of assessments concerning

exact mappings between messages’ part names and ontology classes. USDS, in

addition to the part names of the input/output messages, exploits services’ types’

specifications, as well as textual descriptions and comments in the annotation file.

As already pointed out, the core of USDS comprises the combination of two state

of the art methods: COCLU, and LSA-based-mapping. COCLU is a compression-

based clustering algorithm (COmpression-based CLUstering). The algorithm is based

on the assumption that different lexicalizations of a term (typographic variants) use a

common set of `core' characters. Therefore, typographic variants that `mostly' use this

set are potential alternative lexicalizations of the same concept, while those ones that

are `far' from this set are potentially related to the lexicalization of a different concept.

Further details for this model and partition-based clustering algorithm are provided in

[8].COCLU has been used for the comparison of (a) the description of each WSDL

input/output message part, with the labels of ontology classes, (b) the elements in the

atomic/complex types specifications of messages’ part elements with the name and

labels of ontology classes, and (c) the comment of each WSDL input/output massage

part with the comments of ontology classes.

The LSA-based-mapping [13] aims to disambiguate the meaning of WSDL

messages’ part names, mapping them to WordNet senses that best capture their

intended meaning, according to their lexicalization, their associated types, as well as

according to descriptions and comments given. As already said, the same method

maps ontology classes to WordNet senses that capture the human-intended meaning

of the formal specifications: Having done these mappings, and in case the intended

meanings (WordNet senses) of a class and of a service parameter coincide, then these

are mapped. The Latent Semantic Indexing (LSI) method assumes that there is an

underlying latent semantic space that it estimates by means of statistical techniques

using an association matrix (n×m) of terms-documents: Documents in our case

correspond to WordNet senses. Terms are selected from the vicinity of WordNet

senses (i.e. from the senses themselves and from their hyponym/hypernyms). Latent

Semantic Analysis (LSA) computes the arrangement of a k-dimensional semantic

space to reflect the major associative patterns in the data. This is done by deriving a

set of k uncorrelated indexing factors, which may be considered as “latent concepts”.

Then, each term and document is represented by its vector of factor values, indicating

its strength of association with each of these “latent concepts”. By virtue of dimension

reduction from the N terms space to the k factors space, where k<N, terms that did not

actually appear in a document may still end up close to the document, if this is

consistent with the major patterns of association in the data.

When one searches an LSI-indexed database of documents, it provides a query (i.e.

a pseudo-document), which is a list of terms. The similarity between two documents

is computed by means of the dot product between the corresponding representation

vectors. Doing so, LSI returns a set of graded documents, according to their similarity

to the query.

In our case the semantic space is constructed by terms in the vicinity of the senses S1,

S2,…Sm of the WordNet entry matching an ontology class name C, or a WSDL

message part name C. The set of terms in the semantic space include:

- The term C’ that corresponds to C. C’ is a lexical entry in WordNet that is a

linguistic variation of C.

- Terms that appear in C’ WordNet senses S1, S2,…Sm.

- Terms that constitute hyperonyms / hyponyms of each C’ sense.

- Terms that appear in hyper(hyp)onyms of C’ senses.

As far as ontology classes is being concerned, each query is being constructed by

extracting terms from the label, and the comment of an ontology class, as well as from

the names of its properties’. Concerning the WSDL specifications, for each

input/output message part element we extract terms from its name attribute, from the

names of the elements defined in the complex types of the type attribute, as well from

its related annotation elements (description and comments). Specifically, terms may

result from the tokenization of phrases and may be either simple terms, or compound

terms.

To combine the above mentioned methods we have used the AUTOMS-F

framework [7]: Specifically, in our implementation the combination of methods

produces the union of the mappings produced by each of them. This improves the

recall of the final method, but it may result to less precise results. Although more

sophisticated types of methods’ combinations have been tested, these have given less

encouraging results: Future work concerns the thorough investigation of these

techniques.

Two additional string-matching based methods have been also employed. These

methods compare the names of ontology classes and the part names of the service

messages. Comparisons take place for every potential mapping pair. The better

matches (those with the largest similarity values) are selected for every WSDL part.

The Exact String Matching (ExactString) identifies a match if the compared names

are exactly the same. This allows us to show the “difficulty” of our cases, given that

such a simple method fails to exhibit effective performance.The Levenshtein

matching method incorporates a distance measure that specifies the minimum number

of operations needed to transform one string into another. The valid operations are:

insertion, deletion, or substitution of a single character. Our implementation considers

a match between two strings if and only if at most two operations are required for

their transformation.

In addition to the above, we have also used a Vector Space Model – based (VSM)

method, which computes the matching of documents pairs. Each document is

represented by a vector of n weighted index terms. Index terms correspond to the

simple terms that are extracted from all documents. Here we construct (pseudo-)

documents that correspond to ontology classes and WSDL messages’ part elements:

As it is done in the LSA-based method, these pseudo-documents include terms from

the label, and the comment of an ontology class, as well as from the names of its

properties’. Concerning the WSDL specifications, for each input/output message part

element we extract terms from its name attribute, from the names of the elements

defined in the complex types of the type attribute, as well from its related annotation

elements (description and comments). The VSM-based method builds the vector of a

pseudo-document by assigning to the weight of a term the frequency of its appearance

in the document. The similarity between two vectors (each corresponding to a WSDL

message part name and to an ontology class) is computed by means of the cosine

similarity measure. This computation ranges in [0, 1]: A threshold (currently set to

0.35) is set for deciding when a match occurs.

5 Experiments and Discussion

5.1 Experimental Setting

To evaluate our approach, we have used the OWL-S Service Retrieval Test Collection

(OWLS-TC) version 2 [6]. From the OWLS-TC collection, we have translated to

WSDL a subset of 87 services, due to problems we faced with OWL-S-to-WSDL

translation, and due to duplicate WSDL part elements. In total, we have been

experimenting with 5 different domains and 6 different domain ontologies, which

result to several different sets of experiments, with an initial given varied degree of

difficulty. Additionally, we have produced additional experiments by creating

variations of the corpus in order to test the robustness of the USDS different

configurations.

Table 1. Information about the experimental domains, ontologies and services.

Domain Domain Ontology (.owl) # Services

(WSD)

Total # of part

elements.

Distinct part elements

to be annotated

 Ontology #concepts #properties

(1): Travel Travel 34 6 9 22 (4) 10

 Portal 171 104 9 27 (4) 17

(2): Education Books 60 11 8 19 (4) 19

 Portal 171 104 31 63 (3) 63

(3): Economy Books 60 11 11 31 (4) 19

 Concept 17 3 11 31 (4) 12

 (4): Weapon SUMO 613 208 3 7 (3) 7

(5): Medical Hospital Physician 64 45 5 39 (10) 39

Table 1 summarizes information concerning the initial sets of experiments and

characteristics of the services and ontologies used. The first and the second column

present the domain and the ontology used. The third and fourth columns provide

information concerning the number of concepts and properties in each ontology. The

fifth column provides the number of services (WSDL specifications) that exist in each

set, while the sixth one presents the total number of part elements that exist in a set,

and the maximum number of part elements that exist in a WSDL specification. The

last column specifies the total number of the distinct part elements that should be

annotated in each set of experiments.

Concerning WSDL specifications for domains 1 to 4, message part names are

mainly composed by a single-word term capitalized and an underscore character as a

prefix (e.g. _COUNTRY). This variation slightly differentiates part names from

ontology class names. For the domain 5, the messages part names are composed by

multi-word terms, either separated with an underscore or with no separator, or using a

combination of these (e.g. GetPatientMedicalRecords_AuthorizedMedicalRecords).

Such terms are not included in the related domain ontologies, however, their

substrings match to ontology class names (e.g. MedicalRecords). We handle

individual, distinct terms of multi-word terms separately, only in cases these are

separated by an underscore separator, which is one of the most generic case

considered.

The characteristics of the domain ontologies are important for the experiments:

These include the size of the ontologies, the annotation of classes/properties, i.e.

labels and comment annotations, as well as the richness of specifications for each

class/property, i.e. the number of subclasses or related properties, depth of hierarchy

for each class, etc. Apart from SUMO, which is an upper, widely-accepted ontology,

ontologies accompanying the OWL-TC corpus have been developed independently

from OWL-TC. Our analysis for these ontologies shows that there are ontologies with

some annotations for their classes (e.g. the Travel ontology provides only comments

for the defined classes, and the Portal ontology provides comments or labels for some

of the classes), and ontologies with no annotations at all (e.g. the HospitalPhysician

ontology). As far as richness of specifications is concerned, there are ontologies

whose elements are mildly interrelated, such as SUMO (max parents: 3, mean

parents: 2, max siblings: 15, mean siblings: 7, all properties have a domain and range

specified), but there are others not so rich, such as the HospitalPhysician (max

parents: 1, mean parents: 1, max siblings: 8, mean siblings: 4) or the Books ontology

(none property have a domain and range specified).

WSDL part names have been manually annotated by human annotators that have

adequate knowledge of the related domains. They have been advised to carefully

choose the annotations in order to indicate as close as possible the intended meaning

of the input/output message parts annotated. Where possible, annotators have been

advised to get feedback from xsd-schema complex types included in the WSDL

specifications. More specifically, we can identify 3 different annotation cases that

have been applied in the corpus: (a) Annotations that are formed by “free text

including terms from xsd-schema types and from the WSDL message part name

element”. (b) Annotations that are formed by “free text including terms only from the

WSDL message part name element”. (c) Annotations that are formed by “a single

term”. Annotators choose a single term without considering xsd-schema types or

WSDL message part name element information. For instance, for the “wsdl:part

name="Capital_City"”, the annotator creates the description annotation

“<description> Capital </description>”, which is the intended meaning (or

synonym) of the entity “Capital City”.

The result of this process is a set of annotations with terms belonging in one of the

following three categories: a) terms from xsd-schema types, b) terms from WSDL

message part names, or c) terms chosen by human annotators.

 The use of “free text” in combination with xsd-schema types’ terms and/or WSDL

message part names’ terms, means that the annotator is allowed to form a natural

language sentence: E.g. “<description> The service requests accommodation using

country information </description>”. Although the use of free text may distract the

matching methods, the freedom that the approach gives to the annotator is important

and realistic. In this example of annotation, the annotator has combined terms (e.g.

“country”) from messages’ part names (case b). As another example, in the comment

“<comment> The country name is a string. A country is described with its capital, its

currency, and its government </comment>” the annotator has included terms (terms

“capital”, “currency”, “government”) from the xsd-schema type that corresponds to

the specific message part name that is annotated (case a). Table 2 summarizes

information concerning annotations per domain. It must be noticed that all

annotations contain 5 to 7 “significant” terms ie. non stop-words that may drive the

computation of the intended mappings. In addition to the above, motivated by our

experience with vector-model-based ontology alignment methods (perform better

with ontologies that have rich information, i.e. with ontologies that contain labels and

comments for every ontology class), we artificially enriched the annotation

information of ontology classes with textual information. All experiments (“enriched

ontologies” cases) have been run with these “enriched” ontologies.

Table 2. Information concerning annotations per domain

Domain Id Annotation case Terms that match a class name

1 Descriptions: case (b), Comments: case (a) Approx. 50%

2 Descriptions: case (b), Comments: case (a) NA

3 Descriptions: case (b), Comments: case (a) Approx. 70%

4 Descriptions: case (b), Comments: case (a) Approx. 40%

5 Descriptions: case (c), Comments: case (a) Approx. 70%

Furthermore, we have modified the WSDL specifications by replacing the name of

their input/output message part elements with a unique random string which ranges in

length between 9 and 11 characters. These new specifications double the number of

experiments that have been contacted. Such a setting aims to unveil the importance of

the natural language descriptions of the input/output message parts for our approach.

5.2 Results and Discussion

Due to space limitations, we present the precision and recall for all experiments

contacted with the annotated WSDL specifications and the enriched ontologies (Fig.

2): These provide the best results for all experiments’ configurations. Figure 2 shows

that (as it was expected) the higher recall is achieved by the combination of all

methods. The recall of an individual method for a specific domain/ontology pair may

not be high due to the characteristics of the specific domain/ontology pair (e.g. due to

the compound terms in name values of the WSDL part elements). For instance, the

recall for the Domain5/hospitalPhysician.owl pair is low even for combined methods

(e.g. LSA+COCLU). So even if the composition of the “core methods” of USDS

(LSA+COCLU) achieves recall equal to 0.8 for all the domains (in average), it

achieves 0.1 for this specific domain/ontology pair.

Fig. 2. Precision and recall for different USDS configurations using annotated WSDL

specifications and enriched versions of ontologies.

Fig. 3. Average precision and recall for each configuration

The higher precision is achieved by the composition of LSA and VSM.

Specifically, the VSM+LSA configuration gives the higher average precision for all

the domains. This is shown in Fig. 3. However this configuration achieves low

precision in cases that most of the other methods do so as well. For instance, this is

the case for the Domain2/portal.owl pair shown in Fig. 2, where most of the other

methods achieve precision equal to 0.3. It seems that some methods are much better

for specific ontologies. This can shape the conjecture that the performance of the

method chosen for the automatic annotation of services is closely related to the choice

of the domain ontology used. This may also help us to reach a criterion for the

selection of the most “proper” ontology to annotate a service. However this is part of

our future work.

The exact matching method fails to deliver valid results in almost any set of

experiment, as it was expected. Amongst the other two string matching methods,

Levenshtein (Leven) outperforms COCLU in all sets of experiments (Fig. 3). This is

mainly due to the existence of compound terms with many different characters.

It must be noticed that the precision achieved by string matching techniques is

larger than this achieved by the individual VSM method. This is due to the fact that

VSM is being misled by the artificial annotations created for the OWL classes. This

process adds one or two terms to a class’s virtual document, which may lead the VSM

method astray. This supports the argument that ontology classes should be

commented with rich and accurate natural language annotations for this method to

perform adequately. However this adds extra effort to the ontology developers. As far

as the LSA-based method is concerned, it must be noticed that WSDL annotations

that include descriptions irrelevant to WordNet senses distract in most of the cases

this method from finding the correct mappings due to the inclusion of non-relevant

terms.

Fig. 4. Precision and Recall for all configurations in experiment Domain1/travel.owl with an

artificially enriched version of the ontology

As far as the enrichment of ontologies with informative labels and comments is

concerned, as it is depicted in Fig. 4 for the case concerning the Domain 1/travel.owl -

a representative case -, the enrichment affects the precision and the recall of the

USDS configurations that use virtual documents in the computation of their similarity

function. Such an experiment indicates that state-of-the-art mapping methods that are

used for the automatic semantic annotation of WSDL documents are more effective

when domain ontologies are rich with descriptive information.

Concerning the cases where random strings replace part element names, the lexical

mapping methods cannot perform effectively for obvious reasons: strings such as

“1qazxsw2” cannot be directly mapped to an OWL class. Even the LSA method that

relies on WordNet cannot perform well. This is due to the fact that part names do not

have WordNet entries. In contrast to this, the VSM-based mapping method that does

not rely on an external lexicon, can overcome this problem resulting in a mildly good

performance. This is shown in the experiment configuration Domain3/Books.owl

depicted in Fig. 5. This shows that the adequate and rich annotation of WSDL

specifications is vital to the effective performance of the most adequate mapping

methods. This is further evidenced by the results provided by VSM in the domain 5,

where the “complexity” of the terms involved provides major obstacles to the other

methods.

As a final conclusion of the above results, we can state that the USDS

configuration that results from the composition of different complimentary methods

seems to be the most promising one.

Fig. 5. Precision and Recall for experiments (a) Domain3/books.owl and (b)

Domain5/HospitalPhysician.owl with random strings (e.g. “1qazxsw2”) as part names

5.3 Top-k evaluation

Although we have so far presented a quite extensive set of experiments showing the

potential of the approach to support the effective automatic annotation of WSDL

specifications, we have in addition measured the effectiveness of the approach to

providing assistance to human annotators [17]. Therefore we have measured the

accuracy of the approach. Results are presented and discussed in the following

paragraphs.

The top-k evaluation method has been used for the evaluation of Web information

retrieval approaches (e.g. [14, 15]) and also in the evaluation of semantic services’

matchmaking systems (e.g. [16]). The top-k (or topK) evaluation method measures

the percentage of correct results in the top k results in a list of ranked results

(accuracy of returned ranked results). In our case, WSDL part names are matched

against ontology classes, and the most relevant pairs are returned as suggested

mappings, together with their ranking. The higher ranked pairs of each pair are being

assessed to provide the “correct” mappings. In case of conflict, the method that

provided the first mapping wins. Of course this is not a proper policy. Rankings of

different methods need to be normalized appropriately so as to rich a global list of

ranked pairs. However, even in this case, a sophisticated policy for reconciling

conflicts is necessary: This is something to be further investigated. Therefore, top-k

(accuracy) evaluation method identifies if the “correct” pair (i.e. the one provided by

the gold-mappings) is among the k ranked suggested mappings. Accuracy is a widely

accepted metric in the Information Retrieval community and has been successfully

used for the evaluation of many systems. An example of related work concerning the

support of human annotators is reported in [17]. The work is more focused on the

simplification of the manual annotation task of services rather than on the validation

of top-k ranked semantic annotations. Furthermore, the work facilitates the detecting

of mistakes in existing annotations, discovering however a relatively small number of

annotations.

Fig. 6. Top-3 precision for VSM+COCLU+LSA+Leven configuration

The VSM+COCLU+LSA+Leven USDS configuration has produced the best

precision/recall percentages in top-1 experiments. Although recall was really high, the

precision of the method can be further improved to support full-automation of the

annotation process. Fig. 6 shows the top-3 precision of this method. As it is shown,

the top-3 precision is 100% for 7 of the domain/ontology pairs and 95% for the

Domain2/portal.owl pair. The method failed to retrieve the correct ontology class for

a specific part name, although some of its constituent methods successfully retrieved

it. This is due to the restriction in the number of retrieved ontology classes in

combination with the absence of a global normalisation method amongst the match

values produced by each method.

6 Concluding Remarks

Automatic service registration, to facilitate web services’ semantic matchmaking,

requires efficient and effective semantic annotation of services. In this paper we

conjecture that this is possible when WSDL specifications are adequately annotated

with textual annotations, and in cases where the suitable mapping method(s) are

selected for mapping WSDL elements to ontology classes. Since the efficiency of a

mapping method is influenced by the characteristics of the ontology(ies) and the

WSDL annotations used in task, their careful selection and composition lead to better

performance. In an application context, where users are being advised for the

annotation of WSDL parts, the method resulting from the combination of lexical and

vector-based methods (Coclu, VSM, LSA, Leven) proved to be extremely valuable

since it manages to return with high accuracy the “proper” class for annotating each

of the WSDL message parts among the 3 highly ranked matching pairs.

In this paper we have presented extended experimentation cases with different

configurations of the USDS method for uncovering web services’ data semantics. We

have reached a configuration where different complimentary methods achieve very

good performance is a set of experiments of varying difficulty. Future goals that have

been indicated throughout the sections of this article provide the many different facets

of future work that this work entails.

References

1. Oundhakar, P. S., Sheth, A., Verma, K.: METEOR-S Web Service Annotation Framework,

WWW 2004, 553-562 (2004)

2 Stroulia, E., Wang, Y.: Structural and Semantic Matching for Assessing Web-Service

similarity, IJCIS 5:14, 1-30 (2004).

3. Klusch, M., Fries, B., Khalid, M., Sycara, K.: OWLS-MX: Hybrid OWL-S Service

Matchmaking, AAAI (2005).

4. Klusch, M., Fries, B. Hybrid OWL-S service retrieval with OWLS-MX: Benefits and

Pitfals, SMR2, 2007.

5. SAWSDL, http://www.w3.org/2002/ws/sawsdl/ (2002)

6. OWLS-TC, http://projects.semwebcentral.org/projects/owls-tc/

7. Valarakos, A., Spiliopoulos, V., Kotis, K., Vouros, G.: AUTOMS-F: A Java Framework for

Synthesizing Ontology Mapping Methods, I-KNOW 2007 Special Track on Knowledge

Organization and Semantic Technologies 2007, September 5, (2007)

8. Valarakos, A., Paliouras, G., Karkaletsis, V., Vouros, G.: A Name Matching Algorithm for

Supporting Ontology Enrichment, In Proceedings of the 3rd Hellenic Conference on

Artificial Intelligence (SETN04), LNAI, Vol. 3025, pp. 381-589, Springer-Verlag, Samos,

Greece (2004)

9. Heß, A., Johnston, E., Kushmerick, N.: ASSAM: A Tool for Semi-Automatically

Annotating Semantic Web Services, ISWC 2004, LNCS 3298, 320–334, (2004).

10. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic Location of Services,

European Semantic Web Conference (ESWC’05) (2005)

11. Ringelstein, C., Franz, T., Staab, S.: ‘The Process of Semantic Annotation of Web

Services’, In: J. Cardoso (ed.) (2007) Semantic Web Services - Theory, Tools, and

Applications, Idea Publishing Group, USA, (2007)

12. OWL-S API, http://www.mindswap.org/2004/owl-s/api/ (2004)

13. Kotis, K., Vouros, G., Stergiou, K.: Towards Automatic Merging of Domain Ontologies:

The HCONE-merge approach. Elsevier's Journal of Web Semantics (JWS), vol. 4:1, pp. 60-

79 (2006)

14. Liu, J., Dong, X., Halevy, A.: Answering Structured Queries on Unstructured Data.

WebDB ’06 Chicago, Illinois USA (2006)

15. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., and Zhang, J. “Similarity Search for

Web Services”. Proceedings of the Thirtieth International Conference on Very Large Data

Bases (VLDB) (pp. 372-383), Toronto, (2004)

16. Basters, U. and Klusch, M.: RS2D: Fast Adaptive Search for Semantic Web Services in

Unstructured P2P Networks. 5th International Conference of Semantic Web (ISWC 2006),

Athens, GA, USA (2006)

17. Belhajjame, K., Embury, S. M., Paton, N. W., Stevens, R., and Goble, C. A.: Automatic

Annotation of Web Services based on Workflow Definitions, 5th International Conference

of Semantic Web (ISWC 2006), Athens, GA, USA (2006)

http://www.w3.org/2002/ws/sawsdl/
http://projects.semwebcentral.org/projects/owls-tc/
http://www.mindswap.org/2004/owl-s/api/
http://www.websemanticsjournal.org/ps/pub/2005-33
http://www.websemanticsjournal.org/ps/pub/2005-33

	3.1 Related Work
	3.2 Motivation and overview of the method
	4.1 Annotating WSDL
	4.2 The USDS Semantic Annotation Method
	5.1 Experimental Setting
	5.2 Results and Discussion
	5.3 Top-k evaluation

