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Abstract
This paper gives an overview of the existing link between the Mizar project for formalization

of mathematics and Automated Reasoning tools (mainly the Automated Theorem Provers (ATPs)).
It explains the motivation for this work, gives an overview of the translation method, discusses the
projects and works that are based on it, and possible future projects and directions.

1 Introduction and Motivation

1.1 Why Mizar?

The Mizar proof assistant [Rud92, RT99] was chosen by the author for experiments with automated rea-
soning tools because of its focus on building the large formal Mizar Mathematical Library (MML) [RT03].
This formalization effort was started in 1989 by the Mizar team, and its main purpose is to verify a large
body of mainstream mathematics in a way that is close and easily understandable to mathematicians,
allowing them to build on this library with proofs from more and more advanced mathematical fields.
This formalization goal has influenced:

• the choice of a relatively human-oriented formal language in Mizar

• the choice of the declarative Mizar proof style (Jaskowski-style natural deduction)

• the choice of first-order logic and set theory as unified common foundations for the whole library

• the focus on developing and using just one human-obvious [Rud87] first-order justification rule in
Mizar

• and the focus on making the large library interconnected, usable for more advanced formalizations,
and using consistent notation.

There are other systems and projects that are similar to Mizar in some of the above mentioned aspects.
For example, building large and advanced formal libraries seems to be more and more common today,
probably also because of the recent large formalization projects like Flyspeck [CLR06] that require a
number of previously proved nontrivial mathematical results. In the work that is described here, Mizar
thus should be considered as a suitable particular choice of a system for formalization of mathematics,
which uses relatively common and accessible foundations, and produces a large formal library written in
a relatively simple and easy-to-understand style. Some of the author’s systems described below also work
with other than Mizar data: for example, the learning from proofs has been experimentally instantiated
to learn from Hales’ proof of the Jordan Curve Theorem done in HOL Light1 [HSA06], while MaLARea
has already been successfully used for reasoning over problems from the large formal SUMO ontology2

[NP01].
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2http://www.ontologyportal.org/reasoning.html

1

http://lipa.ms.mff.cuni.cz/~urban/holpademo.html
http://www.ontologyportal.org/reasoning.html


Automated Reasoning for Mizar Urban

1.2 Benefits of cooperation

There are three kinds of benefits in linking proof assistants like Mizar and their libraries with Automated
Reasoning technology and particularly ATPs:

• The obvious benefits for the proof assistants and their libraries. Automated Reasoning can provide
a number of tools and strong methods that can assist formalization.

• The (a bit less obvious) benefits for the field of Automated Reasoning. For example, research
in automated reasoning over very large libraries is painfully theoretical (and practically useless)
until such libraries are really available for experiments. Mathematicians (and scientists, and other
human “reasoners”) typically know a lot of things about the domains of discourse, and use the
knowledge in many ways that include many heuristical methods. It thus seems unrealistic (and
limiting) to develop the automated reasoning tools solely for problems that contain only a few
axioms, make little use of previously accumulated knowledge, and do not attempt to further accu-
mulate and organize the body of knowledge.

• The benefits for the field of general Artificial Intelligence. These benefits are perhaps the least
mentioned ones3, however to the author they appear to be the strongest long-term motivation for
this kind of work. In short, the AI fields of deductive reasoning and the inductive reasoning
(represented by machine learning, data mining, knowledge discovery in databases, etc.) have so far
benefited relatively little from each other’s progress. This is an obvious deficiency in comparison
with the human mind, which can both inductively suggest new ideas and problem solutions based
on analogy, memory, statistical evidence, etc., and also confirm, adjust, and even significantly
modify these ideas and problem solutions by deductive reasoning and explanation, based on the
understanding of the world. Repositories of “human thought” that are both large (and thus allow
the inductive methods), and have precise and deep semantics (and thus allow deduction) should
be a very useful component for cross-fertilization of these two fields. Large formal mathematical
libraries are currently the closest approximation to such a computer-understandable repository of
“human thought” usable for these purposes. To be really usable, the libraries however again have
to be presented in a form that is easy for existing automated reasoning tools to understand.

As mentioned above, Mizar is not the only system that can be used for experiments with auto-
mated reasoning and AI methods, and the work described here is related to a number of other works
and projects. A lot of work on translating Mizar for automated reasoning tools was previously done
in the ILF project [DW97]. The Isabelle/HOL system has been recently linked to first-order ATP sys-
tems [MP08, MP06], and this link is already widely used by the Isabelle community. The SAD proof
verification system [VLP07] has been using ATP systems quite extensively. A translation of the Cyc
knowledge base to first-order logic exists [RPG05], as well as a translation of the above mentioned
SUMO ontology [PS07]. Machine learning and other complementary AI methods for formal mathemat-
ics have been studied, e.g., in [DFGS99, Len76, Col02, CMSM04, Faj88],

1.3 Structure of this paper

In Section 2 we give a brief overview of the Mizar extensions over pure first-order logic, like its type
system and second-order constructs. Section 3 summarizes the methods that are used for translating the
Mizar formalism and library to a pure first-order format suitable for automated reasoning tools. Section 4

3This may also be due to the frequent feeling of too many unfulfilled promises and too high expectations from the general AI,
that also led to the current lack of funding for projects mentioning Artificial Intelligence.
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shows several automated reasoning, proof assistance, and AI experiments and projects that are based on
the current translation. Section 5 discusses some future possibilities.

2 Main Mizar extensions to pure first-order logic

2.1 Mizar types

Mizar is to a large extent a first-order system (using set-theoretical axioms), enhanced with a num-
ber of extensions that (are supposed to) make the formalization in Mizar more human-friendly. The
largest of these extensions is the Mizar type system. Mizar allows defining types from first-order pred-
icates. The difference between types and predicates in Mizar is not semantic: both are first-order
predicates. The difference is technical and practical: representing some predicates as Mizar types al-
lows the use of several type-related automations in Mizar. An example of this is automated use of
type hierarchies, i.e., hierarchies saying that the descendant type is a subclass of the ancestor type.
Table 1 shows such a hierarchy of type definitions started at the Mizar type “Matrix of m,n,D” in
the article MATRIX 1 [Jan91]. The exact meaning of the symbols and definitions mentioned there can
be best explored in a linked presentation. A particular one (also used for linking with ATP tools) is
available at http://www.tptp.org/MizarTPTP, where the following type hierarchy starts at http:
//www.tptp.org/MizarTPTP/Articles/matrix_1.html#M1.

These type declarations allow Mizar to automatically infer that any term with the type “Matrix of
m,n,D” has also the following types, i.e., that the corresponding predicates hold about the term:

Matrix of D
tabular FinSequence of D*
FinSequence-like PartFunc of NAT,D*
Function-like Relation of NAT,D*
Subset of [:NAT,D*:]
Element of bool [:NAT,D*:]
set

It can be seen that these Mizar types consist of several parts: they can have one or more (un-
parameterized) adjectives like tabular, Finsequence-Like, and Function-like, and a (possibly
parametrized) type radix like Matrix of m,n,D, Matrix of D, FinSequence of D*, PartFunc of
NAT,D*, Relation of NAT,D*, etc. While only unidirectional widening hierarchies (like the one in
Table 1) are allowed for the type radices, the mechanisms used for Mizar adjectives allow practically
arbitrary Horn clauses (called clusters in Mizar), which results in fixpoint-like algorithms for comput-
ing the complete set of adjectives of a given term. For example, a term of the above mentioned type
“Matrix of m,n,D” would automatically inherit all the adjectives of its type’s ancestors (tabular,
Finsequence-like, and Function-like), but it would also get all adjectives added by Mizar clusters
to this initial set of adjectives. An example of such a cluster4 is:

registration
cluster FinSequence-like -> finite set;
end;

This can be understood as the Horn clause:

finite :- FinSequence-like.

4http://www.tptp.org/MizarTPTP/Articles/finseq_1.html#CC1
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Table 1: Hierarchy of type definitions for “Matrix of m,n,D”
definition
let D be non empty set;
let m, n be Nat;
mode Matrix of m,n,D -> Matrix of D means :Def3: :: MATRIX 1:def 3
len it = m & ( for p being FinSequence of D st p in rng it holds len p = n );
end;

definition
let D be set ;
mode Matrix of D is tabular FinSequence of D*;
end;

definition
let D be set;
redefine mode FinSequence of D -> FinSequence-like PartFunc of NAT,D;
end;

definition
let X, Y be set;
mode PartFunc of X,Y is Function-like Relation of X,Y;
end;

definition
let X, Y be set;
redefine mode Relation of X,Y -> Subset of [:X,Y:];
end;

definition
let X be set;
mode Subset of X is Element of bool X;
end;

definition
let X be set;
mode Element of X -> set means :Def2: :: SUBSET 1:def 2
it in X if not X is empty otherwise it is empty;
end;

which adds the adjective finite to the set of adjectives of any term which already has the adjective
Finsequence-like. In this way the Mizar terms can get relatively large numbers of adjectives auto-
matically, making significant portions of formal reasoning obvious to Mizar.

Mizar structure types are a special kind of Mizar types that are intended to encode mathematical
structures, usually consisting of a carrier set and some operations on it. Typical examples are algebraic
structures like groups, rings, and vector spaces, but there are also many other structures like topolog-
ical and metric spaces. These structures have a special implementation in Mizar (providing additional
automations) that differs from those of other Mizar types. This has both advantages and disadvantages,
see [LR07] for a discussion and an alternative implementation of structures relying on the standard type
mechanisms in Mizar.
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2.2 Mizar second-order constructs
Mizar axiomatics is Tarski-Grothendieck set theory with strong axiom of choice. This is an extension
of ZFC that adds arbitrarily large inaccessible cardinals to the universe. This extension is used to model
some parts of category theory in Mizar. However, for practically all applications it is enough to think of
Mizar’s axiomatics as ZFC with strong choice. Particularly, the standard Replacement (Fraenkel) Axiom
scheme5 (“image of any set under any definable function is again a set”) is used:

scheme :: TARSKI:sch 1
Fraenkel { A()-> set, P[set, set] }:
ex X st for x holds x in X iff ex y st y in A() & P[y,x]
provided for x,y,z st P[x,y] & P[x,z] holds y = z;

The expression P[set, set] here declares a “second-order” predicate variable. Its Mizar semantics is
that it can be instantiated with any Mizar formula with two free variables of the type set. Once Mizar
has to allow such second-order mechanisms for the axiomatics, it is advantageous for human authoring
to allow them also for regular theorems. For example, the Separation (Comprehension) scheme6 (“any
definable subclass of a set is again a set”):

scheme :: XBOOLE_0:sch 1
Separation { A()-> set, P[set] } :
ex X being set st for x being set holds

x in X iff x in A() & P[x];

can be inferred from Replacement, but is much more often used in MML (490 uses of Separation vs. 24
uses of Replacement), and probably in normal mathematics too. The Replacement scheme is commonly
used in mathematics to produce Fraenkel (Abstract) terms, i.e., terms of the form

{ N - M where M,N is Integer : N < M }

Neither the schemes nor the Fraenkel terms can be directly expressed in pure first-order logic.

3 MPTP: Translating Mizar for Automated Reasoning tools

The translation of Mizar and MML to pure first-order logic is described in detail in [Urb03, Urb04,
Urb07b, US07]. This section provides an overview of the translation using the MPTP (Mizar problems
for Theorem Proving) system. In addition to the logical extensions mentioned above in Section 2, the
translation from Mizar to pure first-order logic also has to deal with a number of practical issues related
to the Mizar implementation, implementations of first-order ATP systems, and the most frequent uses of
the translation system.

3.1 MPTP 0.1

The first version of MPTP is described in detail in [Urb03, Urb04]. This version was used for initial ex-
ploration of the usability of ATP systems on the Mizar Mathematical Library (MML). The first important
number obtained was the 41% success rate of ATP-reproving of about 30000 MML theorems from other
Mizar theorems and definitions selected from the corresponding MML proofs.

No previous evidence about the feasibility and usefulness of ATP methods on a very large library
like MML was available prior to the experiments done with MPTP 0.17, sometimes leading to overly
5http://www.tptp.org/MizarTPTP/Articles/tarski.html#S1
6http://www.tptp.org/MizarTPTP/Articles/subset_1.html#S1
7A lot of work on MPTP was inspired by the previous work done in the ILF project [DW97] on importing Mizar. However it
seemed that the project had stopped before it could finish the export of the whole MML to ATP problems, and provide some
initial overall statistics of ATP success rate on MML.
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pessimistic views on such a project. Therefore the goal of this first version was to relatively quickly
achieve a “mostly-correct” translated version of the whole MML that would allow assessment of the
potential of ATP methods for this large library. Many shortcuts and simplifications were therefore taken
in this first MPTP version, naming at least the following:

• Mizar formulas were directly exported to the DFG [HKW96] syntax used by the SPASS [WBH+02]
system. SPASS seemed to perform best on MPTP problems, probably because of its handling of
sort theories. SPASS also has a built-in efficient clausifier [NW01], which the other efficient
provers like E [Sch02] and Vampire [RV02] did not have at that time (CNF was the main category
of the CASC competition until 2006).

• One simple method of handling sorts (encoding as predicates and relativization) was chosen for the
export, yielding standard (untyped) first-order formulas, from which the original type information
could not be recovered and used for different encodings.

• Mizar proofs were not exported. Only the lists of MML references (theorems and definitions) used
for proof of each MML theorem were remembered for re-creation of ATP problems corresponding
to Mizar proofs (see Section 3.2.4 for overview of the problem creation in MPTP). The proof
structure and internal lemmas8 were forgotten.

• Such lists of MML references were theoretically sufficient9 as premises for re-proving of about
80% (27449 out of 33527) of theorem proofs - i.e., the Mizar proofs use only these MML refer-
ences and some implicit (background) facts like type hierarchy, arithmetical evaluations, etc. In
the Mizar proofs of the remaining ca 20% (6078) of theorems, Mizar schemes and top-level non-
theorem lemmas10 were used. These two kinds of propositions were completely ignored, making
these theorems not eligible for ATP reproving.

• The export of Mizar structure types was incomplete (some axioms were missing), abstract terms
were translated incorrectly, and the background theory computed for problems could sometimes
be too strong, possibly leading to MML-invalid (cyclic) proofs. All these shortcuts were justified
by the low frequency of such cases in MML.

Many of these simplifications made further experiments with MPTP difficult or impossible, and also
made the 41% success rate uncertain (some ATP proof could succeed, and some could fail because of
these simplifications). The lack of proof structure prevented measurement of ATP success rate on all
internal proof lemmas, and experiments with unfolding lemmas with their own proofs. Additionally,
even if only several abstract terms were translated incorrectly, during such proof unfoldings their effect
could spread much wider. Experiments like finding new proofs, and cross-verification of Mizar proofs
(described below) would suffer from constant doubt about the possible amount of error caused by the
incorrectly translated parts of Mizar, and debugging would be very hard.

3.2 MPTP 0.2

During the work on MPTP 0.1 and other Mizar-related systems, it became clear that the old internal
format used by Mizar (designed long ago, when memory and storage were expensive) was quite hard

8An Internal Lemma is a lemma proved inside a proof of a MML theorem. It can be proved either by Simple Justification
(Mizar keyword “by”) or it can have its own structured subproof (Mizar keywords “proof ... end”).
9This means that the proof should be found by a complete ATP system with unlimited resources. As mentioned above, the
practical ATP success was 41%.
10The vast majority of Mizar propositions proved at the top-level (i.e., not inside a proof of another proposition) are exported
from Mizar as theorems reusable in other articles. This is however not mandatory.
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to extend for new Mizar constructs and utilities. A new extensible and richer format seemed to be
needed for Mizar itself, and for systems like MPTP, MMLQuery [BR03], MoMM [Urb06b], MizarMode
[Urb06a, BU04], each of which had its own special-purpose exporter from Mizar doing very similar
things.

This resulted in quite a large reimplementation of Mizar described in [Urb05]. Mizar started to use
XML11 natively as its internal format produced during parsing. The internal format was significantly
extended, and it now contains a very complete semantically disambiguated form of a Mizar article,
together with a large amount of presentational information that allows quite faithful re-creation of Mizar
articles from this internal format. Because of the completeness of this format, and thanks to the wide-
spread availability of XML parsers, the need for special-purpose Mizar exporters for various systems
and the problem of their maintenance were largely eliminated. This allows quite simple combinations
of Mizar-based systems, for example both the HTML and the MPTP/TPTP parts of the MizarTPTP
presentation at http://www.tptp.org/MizarTPTP [UTSP07] are produced from the same XML form
of Mizar articles, with quite simple changes to the XSL stylesheets producing the HTML.

After this necessary upgrade of Mizar, MPTP 0.2 was started from scratch, using a simple XSL
stylesheet (instead of the Pascal exporter) to export the Mizar XML into an extended TPTP-like [SS98]
format, and using Prolog (instead of Perl) for generating ATP problems in TPTP. In MPTP 0.1 the
translated formulas were already in DFG format, and Perl (treating formulas mostly just as strings) was
enough to generate the ATP problems. This is no longer true in MPTP 0.2: the extended TPTP-like
format is (so far) not directly usable by ATPs, because it encodes Mizar types and abstract terms (and
some other things) in a generic way, allowing different translations. Prolog was therefore needed to
implement structural functions on the formulas, such as the type relativization. The MPTP 0.2 codebase
has grown from ca. 900 lines of XSLTXT12 (a compact human-friendly version of XSL) and 1500 lines
of Prolog in 2005 to ca. 2000 lines of XSLTXT and 5500 lines of Prolog in 2008. The basis of the
system remains the same, but the codebase has grown as a number of different functionalities (used by
the projects mentioned below) have been added.

In the following subsections we summarize the main translation methods and functionalities used
currently by MPTP 0.2.

3.2.1 Type translation in MPTP 0.2

MPTP extends the TPTP language to allow parametrized types like “Matrix of n,m,D”, and “tabular
FinSequence of D*” mentioned in Section 2. For example the following Mizar formula:

for G being infinite Graph, W1 being Walk of G
ex W2 being Subwalk of W1 st W1=W2;

is translated into this extended TPTP format:

! [G : (~ finite & graph), W1 : walk(G)]: (? [W2 : subwalk(W1)] : (W1=W2))

This differs from the (proposed) typed TPTP standard which only allows atomic sorts. MPTP currently
only implements the predicate encoding (relativization) of types. Type declarations with arity n are
transformed into predicates with arity n+1, and, e.g., the above formulas becomes:

! [G] :
( ( ~ finite(G) & graph(G) )
=> ! [W1] :

11See http://lipa.ms.mff.cuni.cz/~urban/Mizar.html for specification of the Mizar XML format.
12http://www.zanthan.com/ajm/xsltxt/
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( walk(G,W1)
=> ? [W2] :

( subwalk(W1,W2) & (W1=W2) ) ) )

The implicit type hierarchies and fixpoint automations used in Mizar for adjectives are replaced by ex-
plicit inclusion of the corresponding formulas into the ATP problems. For example, the cluster

cluster FinSequence-like -> finite set;

mentioned in Section 2 is translated as:

! [X] : ’FinSequence-like’(X) => finite(X)

and explicitly added to the ATP problem when needed (see Section 3.2.4). Because pretty Mizar symbol
names are largely overloaded (there are e.g. more than 100 different meanings of the symbol ’+’ in
MML), their unique disambiguated internal naming is used in MPTP. That means that the above formula
will actually look like this:

! [X] : v1_finseq_1(X) => v1_finset_1(X)

An attempt was started by the author to provide unique descriptive names for Mizar symbols13, and
these names have already been used for creating the MPTP Challenge problems (see below). However,
there are around 10000 Mizar symbols, so cooperation from other Mizar and MPTP users is needed to
incrementally improve this unique descriptive naming.

3.2.2 Translation of abstract terms in MPTP 0.2

The special all/3 predicate is used for encoding abstract terms in MPTP 0.2. For instance the following
abstract term mentioned in Section 2.2

{ N - M where M,N is Integer : N < M }

is encoded as:

all([M:integer,N:integer], minus(N,M), less(N,M))

Abstract terms are very similar to lambda terms, which are sometimes called anonymous functions.
Therefore the process of removing abstract terms and inventing fresh names for them was called deanony-
mization in [Urb07b]. It seems that a similar procedure is used in the export of lambda terms in Is-
abelle/HOL to first-order logic, with the name lambda-lifting. The procedure is very similar to Skolem-
ization, and that is why this syntactic extension could eventually become handled by standard ATP
clausifiers, or even dealt with in calculi which implement delayed transformation to normal forms (e.g.,
tableaux or [GS03]). It means that a new functor symbol is introduced, corresponding to the abstract
term in the following way:

![X]:(in(X,all_0_xx) <=> ?[N:integer,M:integer]:
(X = minus(N,M) & less(N,M))).

Here all 0 xx/0 is the newly introduced “Fraenkel” functor for the abstract term given above, the first
number in it (0) is its arity and the second number (xx) just a serial numbering of such symbols with the
same arity. Obviously Fraenkel functors with nonzero arity can arise if their context includes quantified
variables, this is similar to Skolemization. The predicate in/2 (set-theoretic membership) has to be
available for this encoding.

13http://wiki.mizar.org/cgi-bin/twiki/view/Mizar/NiceConstructorNames
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As with Skolemization, a lot of optimizing steps can be done during deanonymization. If one abstract
term is used twice, only one Fraenkel functor is necessary. This has the additional advantage that the
equality of such terms is obvious, while for different Fraenkel functors the Extensionality axiom (“two
sets are equal if they contain the same elements”) has to be used to find out that they encode the same
term. Abstract terms are used often inside Mizar proofs, and proof-local constants often occur in them. A
fairly efficient optimization is implemented by extracting the abstract terms from the proof context, i.e.,
by generalizing the proof-local constants appearing inside a term before the definition of the correspond-
ing Fraenkel functor is created. When this is done for a whole Mizar article, the number of Fraenkel
definitions can be reduced very significantly, sometimes by a factor of 10 or even 20. This extraction
from the proof context turns out to be necessary for reproving Mizar theorems whose proofs contain
abstract terms, because for such reproving attempts only proof-external symbols and references can be
used, and Fraenkel definitions containing proof-local constants would not be accessible, possibly making
the reproving task incomplete. Such article-global generation of Fraenkel definitions is a standard pre-
processing step done immediately after the article is loaded (for MPTP processing) into Prolog, and the
abstract terms are replaced globally in all formulas by the corresponding Fraenkel functors before any
ATP problems are generated. Some of the generated Fraenkel functors are used very frequently, which
suggests that they probably deserve their own proper definition as Mizar functors.

3.2.3 Translation of schemes in MPTP 0.2

The MPTP treatment of schemes (see Section 2.2) is similar to that of the abstract terms: the instances
that are already present in the MML are used. This is sufficient for first-order reproving, and with a suf-
ficiently large body of mathematics like MML (and thus sufficiently many first-order scheme instances),
it could also be “reasonably sufficient” for proving new things (though obviously incomplete in general
in this case).

The implementation uses Mizar (compiled with a special scheme reporting directive) to print the par-
ticular instantiations of the second-order functor and predicate variables. These second-order variables in
schemes are encoded using a fresh functor or predicate symbol, so, e.g., the Separation (Comprehension)
scheme (called s1 xboole 1 in MPTP) is encoded in the extended language in this way:

? [B1: $true]: ![B2: $true]:
(in(B2,B1) <=> ( in(B2,f1_s1_xboole_0) & p1_s1_xboole_0(B2)))

i.e., in pure TPTP as:

? [B1]: (![B2]: (in(B2,B1) <=> ( in(B2,f1_s1_xboole_0) & p1_s1_xboole_0(B2))))

Here f1 s1 xboole 0 and p1 s1 xboole 0 are the fresh symbols encoding the second-order variables.
This handling is semantically sufficient for reproving of Mizar schemes, because nothing (except their
declared type restrictions) is known about these fresh first-order symbols (and therefore the proof can be
instantiated to any particular first-order functors and predicates of the proper types). However, additional
treatment is necessary when schemes are applied inside other proofs. In these cases, these symbols
first have to be replaced with the instantiations reported by Mizar. For each scheme a number of its
instances are thus obtained, again (as in the case of abstract terms) possibly containing some proof-local
constants. Again, for reproving theorems, these instances have to be extracted from the proof context by
generalizing the proof-local constants, and again this is done globally for a whole article and before any
ATP problems are generated. Obviously, there is the objection that relying on Mizar and Prolog to carry
out the second-order instantiation is a weak point of possible ATP cross-verification of Mizar proofs.
The correctness of this procedure is, however, easy to check, by checking that the original scheme proofs
(with the fresh first-order symbols) also work for the particular scheme instances (with the first-order
symbols instantiated to the Mizar-supplied instances).
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3.2.4 Problem creation and axiom selection in MPTP

There are several ways in which MPTP can create ATP problems. While the translation of the above
mentioned Mizar constructs is usually fixed, the main degree of freedom is the selection of suitable
premises from the translated MML for a particular conjecture. The most common MPTP task (used,
e.g., for the re-proving experiments described in Section 4.1) is to generate ATP problem for a given
MML theorem in such a way that all the MML theorems and definitions explicitly used in the MML
proof are included, together with additional “background” formulas encoding the knowledge that can be
used implicitly by Mizar. These background formulas encode the type hierarchy, definitional expansions,
arithmetical evaluations, properties of Mizar functors and predicates like commutativity and antisymme-
try, etc. The addition of such formulas into the ATP problems is done in a fixpoint algorithm watching
the current set of symbols in the problem (initialized with the symbols contained in the formulas that are
used explicitly in the MML proof), and adding these implicit facts when they might be needed. Several
versions of this “enriching” algorithm exist in MPTP. The more background facts are added, the more
complete the problem is (and the harder it can be for ATPs to re-prove the problem if the added axiom
is redundant14). The default MPTP version is intended to be complete in the sense that an ATP problem
corresponding to an existing Mizar proof will contain all the background axioms needed to re-play the
Mizar proof by ATPs. This is useful for debugging, however stricter (heuristical) versions are available
too. Additionally, this is an instance of the general “axiom selection” problem, for which specialized
systems like MaLARea [Urb07a, USPV08] are being used.

4 Experiments and projects based on the MPTP

MPTP has so far been used for

• experiments with re-proving Mizar theorems and simple lemmas by ATPs from the theorems and
definitions used in the corresponding Mizar proofs

• experiments with fully automated re-proving of Mizar theorems, i.e., the necessary axioms being
selected fully automatically from the whole available MML

• finding new ATP proofs that are simpler than the original Mizar proofs

• ATP-based cross-verification of the Mizar proofs

• ATP-based explanation of Mizar atomic inferences

• inclusion of Mizar problems into the TPTP problem library, and unified web presentation of Mizar
together with the corresponding TPTP problems

• creation of the MPTP $100 Challenges for reasoning in large theories in 2007, and subsequent
creation of the MZR category of the CASC Large Theory Batch (LTB) competition in 2008

• a testbed for AI systems like MaLARea targeted at reasoning in large theories and combining
inductive techniques like machine learning with deductive reasoning

14For example, the SPASS prover has recently re-proved the Lagrange’s theorem in Mizar (http://www.tptp.org/
MizarTPTP/Articles/group_2.html#T177) from 25 premises. However the default MPTP background-adding algorithm
results in inclusion of another 135 formulas into the ATP problem, making the problem impossible to prove by existing standard
ATPs.
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4.1 Re-proving experiments

As mentioned in Section 3.1, the initial large-scale experiment done with MPTP 0.1 indicated that 41%
of the Mizar proofs could be automatically found by ATPs, if the user provides the same theorems and
definitions that are used in the Mizar proofs, plus the corresponding background formulas. As already
mentioned, this number was far from certain, e.g., out of the 27449 problems tried, 625 were shown
to be CounterSatisfiable by SPASS (pointing to various oversimplifications taken in MPTP 0.1). The
experiment was therefore repeated with MPTP 0.2, but with only 12529 problems that come from articles
that do not use internal arithmetical evaluations done by Mizar. These evaluations were not handled by
MPTP 0.2 at the time these experiments were conducted, being the last (known) part of Mizar that
could be blamed for possible ATP incompleteness. The E prover version 0.9 and SPASS version 2.1
were used for this experiment, with a 20s time limit (due to limited resources). The results (reported in
[Urb07b]) are given in Table 2. 39% of the 12529 theorems were proved by either SPASS or E, and no
countersatisfiability was found.

Table 2: Reproving of the theorems from non-numerical articles by MPTP 0.2 in 2005

description proved countersatisfiable timeout or memory out total
E 0.9 4309 0 8220 12529
SPASS 2.1 3850 0 8679 12529
together 4854 0 7675 12529

These results have thus, to a large extent, confirmed the optimistic outlook of the first measurement
in MPTP 0.1. In later (so far unreported) experiments, this ATP performance has been steadily going
up; see Table 3 for results from a 2007 run with a 60s timelimit. This is a result of better pruning
of redundant axioms in MPTP, and also of ATP development, which obviously was influenced by the
inclusion of MPTP problems into the TPTP library, forming a significant part of the FOF problems in
the CASC competition since 2006. Together, in this increased timelimit, the newer versions of E and
SPASS solved 6500 problems, i.e., 52% of them all. With the addition of Vampire and its customized
Fampire version (which alone solves 51% of the problems), the combined success rate went up to 7694
of these problems, i.e., to 61%. The caveat is that the methods for dealing with arithmetics are becoming
stronger and stronger in Mizar, and so far it is not clear how to handle them efficiently in ATPs. The
MPTP problem creation for problems containing arithmetics is thus currently quite crude, and the ATP
success rate on such problems will likely be significantly lower than on the nonarithmetical ones.

Table 3: Reproving of the theorems from non-numerical articles by MPTP 0.2 in 2007

description proved countersatisfiable timeout or memory out total
E 0.999 5661 0 6868 12529
SPASS 2.2 5775 0 6754 12529
E+SPASS together 6500 - - 12529
Vampire 8.1 5110 0 7419 12529
Vampire 9 5330 0 7119 12529
Fampire 9 6411 0 6118 12529
all together 7694 - - 12529
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4.2 Finding new proofs and the AI aspects

MPTP 0.2 was also used to try to prove Mizar theorems fully automatically, i.e., the choice of premises
for each theorem was done automatically, and all previously proved theorems were eligible. Because
giving ATPs thousands of axioms is usually hopeless15, the axiom selection was done by symbol-based
machine learning from previously available proofs. The results (reported in [Urb07b]) are given in Table
4. 2408 of the 12529 theorems were proved either by E 0.9 or SPASS 2.1 from the axioms selected by the
machine learner, and the combined success rate of this whole system was thus 19%. These experiments
have not been repeated so far, as the combination of machine learning and other axiom selection methods
have recently been under heavy development in the MaLARea system.

Table 4: Proving new theorems with machine learning support by MPTP 0.2 in 2005

description proved countersatisfiability timeout or memory out total
E 0.9 2167 0 10362 12529
SPASS 2.1 1543 0 10986 12529
together 2408 0 10121 12529

This experiment demonstrates a very real and quite unique benefit of large formal mathematical
libraries for conducting novel integration of AI methods. As the machine learner is trained on previous
proofs, it recommends relevant premises from the large library that (according to the past experience)
should be useful for proving new conjectures. A variety of machine learning methods (neural nets, Bayes
nets, decision trees, nearest neighbor, etc.) can be used for this, and their performance evaluated in the
standard machine learning way, i.e., by looking at the actual axiom selection done by the human author
in the Mizar proof, and comparing it with the selection suggested by the trained learner. However, what
if the machine learner is sometimes more clever than the human, and suggests a completely different
(and perhaps better) selection of premises, leading to a different proof? In such a case, the standard
machine learning evaluation (i.e., comparison of the two sets of premises) will say that the two sets of
premises differ too much, and thus the machine learner has failed. This is considered acceptable for
machine learning, as in general, there is no deeper concept of truth available, there are just training and
testing data. However in our domain we do have a method how to show that the trained learner was right
(and possibly smarter than the human): we can run an ATP system on its axiom selection. If a proof is
found, it provides a much stronger measure of correctness. Obviously, this is only true if we know that
the translation from Mizar to TPTP was correct, i.e., conducting such experiments really requires that
we take extra care to ensure that no oversimplifications were made in this translation.

In the above mentioned experiment, 329 of the 2408 (i.e., 14%) proofs found by ATPs used less
premises than the original MML proof, often suggesting a shorter proof. An example of such proof
shortening is discussed in [Urb07b], showing that the newly found proof is really valid. Instead of
arguing from the first principles (definitions) like in the human proof, the combined inductive-deductive
system was smart enough to find a combination of previously proved lemmas (properties) that justify the
conjecture more quickly.

15This is changing as we go: the new CASC-LTB category will hopefully spark interest in ATP systems dealing efficiently with
large numbers of unnecessary axioms.
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4.3 ATP-based explanation, presentation, and cross-verification of Mizar proofs

While proofs of whole Mizar theorems can be quite hard for ATP systems, re-proving the Mizar atomic
justification steps (called Simple Justifications in Mizar) turns out to be quite easy for ATPs. The com-
bination of E and SPASS usually solves more than 95% of such problems, and with smarter automated
methods for axiom selection a 99.8% success rate (14 unsolved problems from 6765) was achieved in
[US07]. This makes it practical to use ATPs for explanation and presentation of the (not always easily
understandable) Mizar simple justifications, and to construct larger systems for independent ATP-based
cross-verification of (possibly very long) Mizar proofs. In [US07] such a cross-verification system is
presented, using the GDV [Sut06] system (which was extended to process Jaskowski-style natural de-
duction proofs that make frequent use of assumptions (suppositions)). MPTP was used to translate Mizar
proofs to this format, and GDV together with the E, SPASS, and MaLARea systems was used to automat-
ically verify the structural correctness of proofs, and 99.8% of the proof steps needed for the 252 Mizar
problems selected for the MPTP Challenge (see below). This provides the first practical method for inde-
pendent verification of Mizar, and opens the possibility of importing Mizar proofs into other proof assis-
tants. A web presentation allowing interaction with ATP systems and GDV verification of Mizar proofs
has been set up at http://www.tptp.org/MizarTPTP (described in [UTSP07]), and a static presen-
tation using the MML Query system to translate the ATP proofs back to Mizar notation exists at http:
//lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/ (described in [UB07]). A new online ser-
vice integrating these functionalities is being built at http://octopi.mizar.org/~mptp/MizAR.html.

4.4 Use of MPTP for ATP challenges and competitions

The first MPTP problems were included into the TPTP library in 2006, and were already used for the
2006 CASC competition [Sut07]. In 2006, the MPTP $100 Challenges16 were created and announced.
This is a set of 252 related large-theory problems needed for one half (on of two implications) of the
Mizar proof of the general topological Bolzano-Weierstrass theorem. Unlike the CASC competition,
the challenge had an overall timelimit (252 * 5 minutes = 21 hours) for solving the problems, allowing
complementary techniques like machine learning from previous solutions to be experimented with trans-
parently in runtime. The challenge was won a year later by the leanCoP [OB03] system, having already
revealed several interesting approaches to ATP in large theories: goal-directed calculi like connection
tableaux (used in leanCoP), model-based axiom selection (used, e.g., in SRASS [SP07]), and machine
learning of axiom relevance (used in MaLARea). The MPTP Challenge problems were again included
into the TPTP and used for the CASC competition in 2007. In 2008, the CASC-LTB (Large Theory
Batch) division appeared for the first time, with a similar setting to the MPTP Challenges, and additional
large-theory problems from the Cyc and SUMO ontologies. A set of 245 relatively hard Mizar problems
was added to the TPTP for this purpose, coming from the most advanced parts of the Mizar library. The
problems come in four versions, containing different amounts of the previously available MML theorems
and definitions as axioms. The largest versions thus contain over 50000 axioms. This has practically led
to the inclusion of the MML into TPTP.

4.5 Development of larger AI metasystems like MaLARea on MPTP data

In Section 4.2 it is explained how the deeply defined notion of mathematical truth (implemented through
ATPs) can improve the evaluation of learning systems working on large semantic knowledge bases like
the translated MML, and how such systems can be used to find new mathematical proofs. This is,
however, only one part of the AI fun made possible by such large libraries being available to ATPs.

16http://www.tptp.org/MPTPChallenge/
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Another part is that newly found proofs can be recycled, and used again for learning in such domains.
This closed loop between using deductive methods to find proofs, and using inductive methods to learn
from existing proofs and suggest new proof directions, is the main idea behind the MaLARea [Urb07a,
USPV08] meta-system. There are many kinds of information that such an autonomous meta-system
can try to use and learn. The second version of MaLARea has just started to use structural and semantic
features of formulas for their characterization, and for improving the axiom selection. Extracting lemmas
from proofs and adding them to the set of available premises, creating new interesting conjectures and
defining new useful notions (see [Len76, Col02, Faj88] for some previous interesting work on this),
finding optimal strategies for problem classes, guiding the ATPs more closely than just by selecting
axioms, inventing policies for efficient governing of the overall inductive-deductive loop: all these are
interesting AI tasks that become relevant in this large-theory setting, and that seem to be highly relevant
for the ultimate task of doing mathematics and perhaps even generally thinking automatically.

5 Future work

There is large amount of work to be done on practically all the projects mentioned above. The MPTP
translation is by no means optimal (and especially proper encoding of arithmetics needs more experi-
ments and work). Import of ATP proofs to Mizar practically does not exist (there is a basic translator
taking Otter proof objects to Mizar, however this is very distant from the readable proofs in MML).
MPTP has mostly been used for offline problem generation so far, and its use for online ATP services
requires further work. With sufficiently strong ATP systems, the cross-verification of the whole MML
could be attempted, and work on importing detailed ATP proofs into other proof assistants could be
started. The work with second-order constructs is in some sense incomplete, and either a translation
to (finitely axiomatized) NBG set theory, or usage of higher-order ATPs would be interesting from this
point of view. More challenges and interesting presentation tools can be developed, for example an
ATP-enhanced wiki for Mizar would be quite interesting. The heuristical and machine learning meth-
ods, and combined AI metasystems, have a very long way to go, some future directions are mentioned
above. This is no longer only about mathematics: all kinds of more or less formal large knowledge bases
are becoming available in other sciences, and automated reasoning could become one of the strongest
methods for general reasoning in sciences when sufficient amount of formal knowledge exists. Strong
ATP methods for formal mathematics could also provide useful semantic filtering for larger systems for
automatic formalization of mathematical papers. This is a field that has been so far deemed to be rather
science fiction than a real possibility.
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