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Abstract. The success of the Semantic Web research is dependent upon the 
construction of complete and reliable domain ontologies. In this paper we 
describe an unsupervised framework for domain ontology enrichment based on 
mining domain text corpora. Specifically, we enrich the hierarchical backbone 
of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. 
The framework is based on an extended model of hierarchical self-organizing 
maps. As being founded on an unsupervised neural network architecture, the 
framework can be applied to different languages and domains. Terms extracted 
by mining a text corpus encode contextual content information, in a 
distributional vector space. The enrichment behaves like a classification of the 
extracted terms into the existing taxonomy by attaching them as hyponyms for 
the nodes of the taxonomy. The experiments reported are in the “Lonely Planet” 
tourism domain. The taxonomy and the corpus are the ones proposed in the 
PASCAL ontology learning and population challenge. The experimental results 
prove that the quality of the enrichment is considerably improved by using 
semantics based vector representations for the classified (newly added) terms, 
like the document category histograms (DCH) and the document frequency 
times inverse term frequency (DF-ITF) weighting scheme. 
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1   Introduction 

The most important prerequisite for the success of the Semantic Web research is the 
construction of complete and reliable domain ontologies. Building ontologies is still a 
time consuming and complex task, requiring a high degree of human supervision and 
being still a bottleneck in the development of the semantic web technology. 

The process of domain ontology enrichment has two inputs, an existing ontology – 
which plays the role of background knowledge – and a domain text corpus. The aim 
of our work is to automatically adapt the given ontology according to a domain 
specific corpus. We enrich the hierarchical backbone of the existing ontology, i.e. its 
taxonomy, with new domain-specific concepts extracted from the corpus [14]. 



Our framework for taxonomy enrichment is based on an extended model of 
hierarchical self-organizing maps, which represent an unsupervised neural network 
architecture. The candidates for labels of newly inserted concepts are terms collected 
by mining a text corpus. The term extraction process is based on recognizing 
linguistic patterns (noun phrases) in the domain corpus documents. Each term 
encodes contextual content information, in a distributional vector space. The context 
features of a term are the frequencies of its occurrence in different documents of the 
corpus. The classification of the extracted terms into the taxonomy of the given 
ontology proceeds by associating every term to one target node of the taxonomy, 
based on a similarity in the distributional vector space. That term becomes a new 
concept added to the taxonomy, and it is attached as hyponym (successor) under the 
target node. 

Unsupervised hierarchical neural models in general start the growing of a dynamic 
tree-like topology from a single initial node. Our neural network model, called 
Enrich-GHSOM, is an extension of one of these existent systems, GHSOM [8], and it 
allows the growing to start from an initial tree. The taxonomy that is subject to 
enrichment is given as the initial state of the hierarchical self-organizing map. So, an 
essentially symbolic knowledge structure – taxonomic tree – is converted into a 
neural representation as an initial state of the hierarchical self-organizing map. The 
actual taxonomy enrichment takes place via an unsupervised training of the neural 
network by exposing the initialized hierarchical self-organizing map to the vector 
representation of the terms extracted from the domain corpus. A reverse, neural-
symbolic translation is done after this enrichment process. This is actually the 
knowledge extraction step whose output is the final enriched taxonomy. Our 
taxonomy enrichment framework is a hybrid one, as it has to deal with neural-
symbolic integration. The neural-symbolic translations in both directions have been 
naturally achieved, since our framework merely operates upon the taxonomic 
structure of the ontology, which is in agreement with the hierarchical structure of the 
self-organizing neural network. 

In the rest of the paper, after a review of related work, section 3 presents the neural 
network learning solution chosen and adapted in our framework. Then section 4 
details the architecture and implementation of the taxonomy enrichment framework 
and section 5 describes the experimental results. Conclusions and future directions are 
presented in section 6. 

2   Related Work 

There are two main categories of approaches for taxonomy enrichment [3]: methods 
based on distributional similarity and classification of terms into an existing 
taxonomy on one hand, and approaches using lexico-syntactic patterns, also known as 
Hearst patterns [10], on the other hand. Our enrichment approach belongs to the 
former category. 

In the term classification approach, the terms extracted from a domain specific 
corpus of text are classified into an existent taxonomy [14, 6, 1, 16, 15]. In a top-
down variant of this classification [14, 1, 16], there is a top-down search on the 



existent taxonomy in order to find a node under which a new term is to be inserted as 
a successor (hyponym). The classification of the terms is made according to a 
similarity measure in a distributional vector space. Each term is represented as a 
vector with information about different contexts of its occurrences in the corpus. 

The top-down classification behavior in our framework is modeled by a growing 
hierarchical self-organizing map (GHSOM) architecture [8] extended with the 
possibility to set an initial state for the tree-like neural network. In our new extended 
neural model, called Enrich-GHSOM, the given taxonomy is set as the initial state of 
the neural network. The model allows to classify the extracted terms into the existing 
taxonomy by attaching them as hyponyms for the intermediate and leaf nodes of the 
taxonomy. Details of this process are given in section 4.2. 

A similar, although non top-down approach is [15]. There is a search for a node to 
attach a new concept as a hyponym of, by finding a place in the existent taxonomy 
where the corpus derived semantic neighbors of the candidate concept are most 
concentrated. He supposes that at least some of the semantic neighbors are already in 
the taxonomy, and he defines a function to compute the class label for the set of 
neighbors – a hypernym for all the neighbors. This class label becomes the concept 
under which to attach the new term as hyponym. The similarity measure to find 
neighbors is based on a latent semantic analysis vector space [13]. 

3   Neural Network Learning Method   

Our extended model of hierarchical self-organizing maps – Enrich-GHSOM – 
represents the unsupervised neural network based learning solution adopted by our 
taxonomy enrichment framework. This choice is suitable to the knowledge structure 
to be enriched – a taxonomy, i.e. an is-a hierarchy of concepts. 

3.1   Self-organizing Maps 

GHSOM is an extension of the Self-Organizing Map (SOM, also known as Kohonen 
map) learning architecture [12, 5], which is one of the most popular unsupervised 
neural network models. SOM can be seen as a projection method which maps a high 
dimensional data space into a lower dimensional one. The resulting lower 
dimensional output space is a rectangular SOM map, represented as a two-
dimensional grid of neurons. Each input data item is mapped into one of the neurons 
in the map. SOM is also a clustering method, so that similar data items – represented 
as vectors of numerical values – tend to be mapped into nearby neurons. 

The SOM map learns by a self-organization process. There is no initial knowledge 
about the membership of any input data item in a particular class or about the number 
of classes. The training proceeds with unlabeled input data like any unsupervised 
learning. Clusters (classes) are discovered and described by gradually detected 
characteristics during the training process. These gradually adjusted characteristics 
play the role of weights in the weight vector associated to each neuron. The role of a 
completely trained map is to represent all the available observations – the whole input 



data space – with optimal accuracy by using a restricted set of weight vectors 
associated to the map neurons. 

The initial values for the weight vectors of the neurons can either be chosen 
depending on the problem domain or they can be taken randomly. Every iteration of 
the learning algorithm processes one input (training) vector as follows. Like usually 
for unsupervised neural networks, some form of competitive learning takes place: the 
winner neuron index c, which best matches the current input vector, is identified as 
the neuron whose weight vector is most similar to the current input vector in some 
metric. Then all the weight vectors or a subset of them that correspond to neurons 
centered around the winner neuron c – i.e. neurons in the neighborhood area of c –, 
including the winner itself, are updated in the direction of the input vector. This 
adaptation renders a globally ordered map in the process of learning. A neuron has 
four immediate neighbors in a rectangular map topology, which is our chosen map 
topology. This is merely a rectangular lattice type of the two-dimensional grid of 
neurons, and the SOM map is kept as a planar rectangle. 

3.2   Growing Hierarchical Self-organizing Maps 

Data spaces contain some latent structuring in the form of clusters. SOM maps can 
discover and illustrate this clustering. However, some hierarchical structures are also 
latent in data sets. To give an interesting example in the present context, a thesaurus is 
a data space consisting of terms in a language, represented as a lexical database. The 
main relation between the terms in a thesaurus is the taxonomic relation. However, 
because of their essentially flat topology, SOM maps have a limited capability to 
discover and illustrate hierarchical clusters in data sets. A solution for this problem is 
represented by the hierarchical SOM maps. 

The growing hierarchical self-organizing map model consists of a set of SOM 
maps arranged as nodes in a hierarchy and it is able to discover hierarchical clusters 
[8]. The SOM’s in the nodes can grow horizontally during the training by inserting 
either one more row or one more column of neurons. This happens iteratively until the 
average data deviation (quantization error) over the neurons in the SOM map 
decreases under a specified threshold �1. For one neuron, the quantization error is the 
dissimilarity of all the vectors of the data items mapped into the neuron versus the 
weight vector of the neuron. 

The SOM’s in the nodes can also grow vertically during the training, by giving rise 
to successor nodes. Each neuron in the SOM map could be a candidate for expansion 
into a successor node SOM map (see Fig. 1). The expansion takes place whenever the 
data deviation on the current neuron is over a threshold �2. This sounds like a zoom 
into the data subspace mapped into the parent neuron, because the successor SOM 
map is trained merely with data items in that subspace. Further node expansions 
continue recursively on successor nodes, and the training of the whole GHSOM 
model finally stops (converges) when both thresholds are satisfied. The training 
begins with a single-neuron SOM map having the whole input data set mapped into 
its only neuron. This becomes the root of the final, completely trained GHSOM 
model. 



 
Fig. 1. The GHSOM neural network model. 

The thresholds �1 and �2 control the granularity of the hierarchy learned by 
GHSOM in terms of depth and branching factor. A low �1 with a much lower �2 leads 
to a deep hierarchy with an increased number of neurons into the SOM nodes, and 
consequently an increased branching factor also. A high �1 with a lower �2 leads to 
deep hierarchies with small SOM nodes (with few neurons), and consequently a 
reduced branching factor corresponding to the reduced number of neurons in SOM 
nodes. When both thresholds are low and comparable, then the hierarchy is flat with a 
high branching factor. If both thresholds are high and comparable, then the hierarchy 
is flat with a low branching factor. 

Each level in a learned GHSOM model displays a more detailed clustering of the 
data space as compared to the parent level. This corresponds to a top-down process of 
hierarchical clustering of the input data space items. 

3.3   Enrich-GHSOM 

The growth of a GHSOM is a completely unsupervised process, being only driven by 
the unlabeled input data items themselves together with the two thresholds and some 
additional learning parameters. There is no way to suggest from outside any initial 
paths for the final learnt hierarchy. We have extended the GHSOM model with the 
possibility to force the growth of the hierarchy along with some predefined paths of a 
given hierarchy. Our new extended model, Enrich-GHSOM, is doing a classification 
of the data items into an existing taxonomic structure. This initial tree plays the role 
of an initial state for the tree-like neural network model. The classical GHSOM model 
grows during the training by only starting from a single node. The top-down growth 
in our extended model starts from a given initial tree structure and inserts new nodes 
attached as successors to any of its intermediate and leaf nodes. 

In Enrich-GHSOM, the nodes of the predefined hierarchy are labeled with some 
data item labels from the input data space used for training. The training data items 
propagate top-down throughout the given tree hierarchy structure. When the 



propagation process hits a parent SOM of a tree node, then the weight vector of the 
corresponding parent neuron in that parent SOM is initialized with the data item 
vector of that successor node label. The weight vectors of the SOM neurons with no 
successor are initialized with random values. Then the training of that SOM proceeds 
by classifying the training data items against the initialized neurons. Training data 
items that are similar (distributionally similar as vectors) to the predefined initialized 
neurons are propagated downwards to the associated successor SOM nodes to 
continue the training (recursively) on that predefined successor SOM. Data items that 
are not similar to the initialized neurons are mapped to other, non-initialized, neurons 
in the same SOM, and they are not propagated downwards into the predefined 
hierarchy. They remain as mapped into that SOM, and are considered as classified 
into the parent neuron of that SOM, i.e. as successor of that parent. 

For instance, consider the parent neuron of a current SOM node is labeled 
mammal, and there are two predefined successor nodes labeled feline and bear, which 
correspond to two predefined initialized neurons in the current SOM. Then the 
training data item vector dog is not similar to any of the two neuron initializer weight 
vectors associated to feline and bear (see Fig. 2, where the neuron initializers are 
marked with bold). So dog will remain as classified into that SOM – mapped on 
another, non-initialized neuron – i.e. as successor (hyponym) of mammal and twin of 
the existent nodes feline and bear. Also, a data item labeled tiger – similar with the 
weight vector of the predefined “feline” neuron – will be propagated into the 
associated predefined successor SOM map together with other terms that correspond 
to felines, which will all become direct or indirect hyponyms of the concept feline. 
The process continues top-down for all the SOM nodes in the predefined initial tree 
hierarchy, ending at the leaves. The data item vector representations of the labels of 
the given initial tree play the role of predefined initializer weight vectors of our neural 
model. 

 

 
Fig. 2. The Enrich-GHSOM neural network model. 



4   A Neural Model for Unsupervised Taxonomy Enrichment 

The architecture of our framework is implemented as a pipeline with several linguistic 
and machine learning processing stages. The whole processing can be divided in two 
main steps: the term extraction step and the taxonomy enrichment step. 

4.1   Extraction of Terms 

The candidates for the labels of new concepts inserted during the taxonomy 
enrichment are terms representing noun phrases, identified by mining the domain text 
corpus. In order to identify the terms by a linguistic analysis of the corpus documents, 
our framework relies on several processing resources offered by the ANNIE module 
for analyzing English texts in the GATE framework [7]: morphological analyzer 
(stemmer), tokenizer, sentence splitter, the Hepple part-of-speech tagger, and a JAPE 
[7] transducer. The transducer has the role to identify noun phrase constructs, based 
on regular expressions over different parts of speech of the component words. 

4.2   Taxonomy Enrichment 

The terms extracted from the domain text corpus are mapped to classes (concepts) of 
the existing taxonomy. The taxonomy enrichment algorithm proceeds by “populating” 
the given taxonomy with the terms collected from the corpus. The Enrich-GHSOM 
neural network drives a top-down hierarchical classification of the terms along with 
the given taxonomy branches and inserts new nodes (concepts) corresponding to these 
classified terms. Every new concept is attached as successor of an intermediate or a 
leaf node of the given taxonomy and becomes a hyponym of that node. 

In order to use our Enrich-GHSOM neural network to induce such a taxonomy 
enrichment behavior, a symbolic-neural translation is first done by parsing a textual 
representation of the initial taxonomy (is_a(concept, superconcept) assertions or 
OWL format). The result of this parsing is the initial internal tree-like state of the 
neural network. In order for the initialized network to be able to classify terms into 
this initial taxonomic structure, apart from the vector representation of the classified 
terms, a representation as a numerical vector is also needed for each node in the initial 
taxonomy. This vector plays the role of initial weight vector for the neural network 
(see section 3.3). It is the vector representation for the noun phrase concept label 
associated to the node, computed as will be described in section 4.3. The acquisition 
of this vector takes place in the same way as the acquisition of the vector 
representation of the classified terms (section 4.3). 

We assume that the concept labels of the initial taxonomy are terms – noun phrases 
– extractable from the domain text corpus from which the classified terms themselves 
have also been extracted. Their vectors are then computed in the same way as the 
vectors of all the corpus extracted terms which are classified during the enrichment. 
Using the same corpus from a specialized domain to acquire the feature vectors of the 
concepts in the initial taxonomy and the terms to be classified is a reasonable choice, 



since it will reduce the problems with ambiguous (multiple) senses of one and the 
same term. 

4.3   Vector Representation for Terms 

Since Enrich-GHSOM is a connectionist system, the terms classified by Enrich-
GHSOM and the concepts of the given taxonomy have to be represented as vectors. In 
our framework, the attributes (features) of the vector representation of a term or 
concept encode contextual content information, in a distributional vector space. 
Specifically, the context features are the frequencies of the occurrence of the term – 
classified term or concept label term – in different documents of the corpus. The 
number of component attributes of such a term vector coincides with the number of 
documents of the text corpus out of which all the terms have been extracted. Every 
attribute in the vector of a term is essentially the number of occurrences of the term in 
one document. This representation is inspired from the latent semantic analysis [13]. 
A similar semantics-based dimensionality reduction effect as the one obtained in the 
latent semantic analysis by singular value decomposition is achieved in our 
framework by the document category histograms (DCH), defined in what follows. 

The vector representation in the current framework satisfies Harris’ distributional 
hypothesis [6, 3]: the meaning of each classified term (or concept label) is related to 
the meanings of the contexts in which the term (or the concept label) occurs. In such a 
setting, we use the distributional similarity which asserts that the meaning of 
semantically similar terms and concept labels is expressed by similar vectors in the 
distributional vector space. The Euclidean distance is used in the current framework 
to compute the dissimilarity among vectors. 

The framework allows multiple ways to encode the frequencies of occurrence, 
starting from simple flat counts of occurrences. Another variant is the DF-ITF 
weighting scheme, which means “document frequency times inverse term frequency”. 
We propose this weighting scheme, which is a transposed of TF-IDF [2] relative to a 
term/document occurrence matrix. TF-IDF is used in document classification (text 
categorization) and information retrieval. Now we rather classify terms, by using DF-
ITF. By using this weighting scheme, we consider that long documents, which talk 
about too many terms, should have a lower weight when classifying terms, since they 
have a reduced discrimination power among the meanings of different terms. This 
effect is achieved by our DF-ITF weighting scheme and is confirmed by the 
experimental results reported in section 5. 

A third way to encode the vector representation is one in which we propose the 
vector to be a document category histogram (DCH). Specifically, first a SOM [12] is 
trained having the corpus documents as input data space to arrive at approximately 
200 semantic document categories. Documents similar in meaning are clustered 
together by the unsupervised SOM neural network. In this SOM training, the 
documents are represented as vectors of frequencies for the terms they talk about. 
Equally like the term vectors, the document vectors are collected from the same 
term/document matrix, but after transposing this matrix. As we want a number of 
approximately 200 semantic document categories, we impose the training of a 
rectangular SOM map of dimension 16x12. Then, by summing up the frequencies of a 



term in different documents of the same category, and merely keeping the summed 
frequencies in different document categories as vector components, we arrive at a 
reduced dimensionality for the vector representation. In our experiments reported in 
section 5 with the “Lonely Planet” tourism data set, the reduction induced by such a 
vector representation as a histogram on semantic document categories is from 1801 
(which represents the number of documents in the “Lonely Planet” corpus) to 180 and 
179 (in two different experimental runs described in section 5). 

Data Sparseness. The dimensionality reduction achieved by using the document 
category histogram (DCH) representation is important since it removes the semantic 
noise caused by minor differences in semantic content for different corpus documents. 
Such documents now belong together to the same semantic category. This intuition is 
already confirmed by our experiments reported in previous work [4]. Moreover, the 
term/document occurrence matrix is sparse (with many zeros), and reducing the 
dimensionality by using histograms leads to less sparse vectors. A more natural 
behavior of the neural network model is expected by using reduced and less sparse 
vectors. 

A source of data sparseness is represented by terms with very few occurrences in 
the text corpus. Among such terms are the most generic terms that label the roots of 
the main trees in a given initial taxonomy and usually the concepts which are very 
high in a taxonomy. When in the Enrich-GHSOM neural network such an overly 
generic term with a very sparse vector labels the concept of one of the roots, and also 
when using the flat count vector representation instead of the histogram 
representation, then the main tree rooted by that concept is unable to attract and 
classify a relevant quantity of training terms. Thus the top-down search during the 
classification is misled. It is the case of the root concepts spatial_concept, intangible, 
and thing in the ontology of the “Lonely Planet” tourism dataset used in the present 
experiments. Some of the branches of these main trees are populated by no training 
term, which leads to the starvation of the neural network. Starvation means that the 
neural network enters an infinite loop when trying to tune the quantization error on a 
neuron below the thresholds (see section 3.2). Many of our experiments which used a 
flat count vector representation failed by starvation. As opposed, all the experiments 
using the reduced, histogram vector representation (DCH) converged to a result. 

A way of reducing the number of zeros in the vector representation of the generic 
terms that label the generic concepts in the initial taxonomy is the centroid vector [14, 
6]. We have used the idea of centroid in the following way: the average vector of the 
vector representations of all the concepts in the sub-tree rooted by the given concept, 
including the root itself. Using the centroid representation method has led us to a 
significant improvement of the experimental results, partially reported in [4], where 
we rather proposed a similar approach: one of the more specific concepts in a main 
tree becomes a substitute for the too generic concept in the root of the tree. So, the 
label of every main tree root was one representative and more specific concept in the 
tree, for instance course was a substitute for activity, and staff was a substitute for 
person (in the “4 universities” domain). The improvement obtained by using the 
centroid vector representation for concepts is reported in [14, 6]. 



5   Experimental Results 

The experiments carried out in what follows are in the tourism domain, consisting of a 
corpus and a given taxonomy (the “Lonely Planet dataset”) [9]. The associated corpus 
consists of 1801 text descriptions of tourist destinations from different countries 
around the world. 

5.1   Experimental Setup  

In order for the corpus extracted terms to actually become domain specific concepts, 
they have to be noun phrases with enough frequency of occurrence in the domain 
specific corpus. In the term extraction process, we have set a threshold for the 
extracted noun phrases to occur in at least 0.5% of the number of documents in the 
corpus. Having set this threshold, we have extracted and acquired the corresponding 
numerical vector representations for 1241 noun phrases. These extracted terms are 
classified against the taxonomy of a tourism ontology consisting of 73 concepts, 
which is proposed in the PASCAL ontology learning and population challenge [9]. 

The evaluation of the enrichment means evaluating the quality of the mapping 
from corpus extracted terms into target concepts of the given initial taxonomy. An 
extracted term becomes a new concept added to the taxonomy, and it is attached as 
hyponym (successor) under its associated target node. In order to evaluate the 
taxonomy enrichment, we followed a cross-validation strategy [14, 16, 15]. In every 
experimental run, exactly one node in the given initial taxonomy of 73 concepts was 
removed from the taxonomy, together with the whole subtree rooted by that node. The 
classification process was run against the result taxonomy, and the position of the 
held out concept, as classified like any corpus extracted term is assessed. The correct 
(direct hit) classification of the concept corresponds to its initial position in the 
taxonomy before its removal. In other words, the concept should be mapped to a 
target concept which was its direct hypernym (parent node) before its experimental 
removal. The process should be repeated 72 times, for every concept in the taxonomy 
except its very root, named root. Actually we repeated this experimental run 43 times, 
since we only had corpus statistical data to build the distributional vector 
representation for 43 of the taxonomy concepts. (We need a statistical distributional 
vector for every term to be classified.) 

5.2   Evaluation Measures 

The most appropriate measure for evaluating the taxonomy enrichment task is the 
learning accuracy, defined and evaluated in [9, 6, 14, 1, 16]. By choosing this 
measure, we consider correct classifications of the new concepts with different levels 
of detail. For instance, the new concept cat can be mapped to the target concept feline, 
carnivore, mammal or animal with different levels of detail, as a consequence of 
different hypernym-hyponym taxonomic distances between the target concept as 
chosen by the system and the direct hypernym of the classified concept before its 
removal. Before removal, cat was direct hyponym of the feline concept. Classifying 



cat as feline, by associating it to the feline target concept is a direct hit, since cat is 
correctly a direct hyponym of feline, i.e. 100% classification accuracy. Though, 
classifying cat as carnivore, mammal, or animal are near hits, since cat is correct only 
as an indirect hyponym of carnivore, mammal, or animal, corresponding say to 50%, 
30%, 20% classification accuracy respectively. 

For a given classified term i, if pi is the target concept assigned (predicted) by the 
system, and ci the correct target concept according to the given initial taxonomy, the 
learning accuracy is the average over all the classified terms i of the function LA(pi, 
ci), where the function LA is defined as 

 
                                                �(top, a) + 1 
 LA(p, c) =   -------------------------------------   (1) 

                   �(top, a) + �(a, c) + �(a, p) + 1 
 
top is the root of the taxonomy, and a is the least common subsumer of the concepts p 
and c (i.e. the most specific common hypernym of p and c). �(a, b) is the taxonomic 
distance between the concepts a and b, i.e. the number of taxonomy edges to be 
traversed when going from the taxonomy node labeled a towards node b. This is the 
most used formula to compute the learning accuracy. In the context of the Pascal 
ontology learning and population challenge, it is actually called symmetric learning 
accuracy, and the term learning accuracy is used for a historically initial version of 
the learning accuracy measure, as introduced by [11]: 
 

               �(top, a) + 1 
LA’(p, c) =   ---------------------       if p is ancestor of c 

 �(top, c) + 1         (then also a = p) 
(2) 

                     �(top, a) + 1 
LA’(p, c) =   -------------------------------     otherwise 
                     �(top, a) + 2 * �(a, p) + 1 
 

According to formulae (1) and (2) to compute both variants of the learning 
accuracy, the same number of edges in the taxonomic distance between the predicted 
and the correct target concept means a better accuracy when the edges are lower in the 
taxonomy. This is due to the intuition that the same number of edges between two 
concrete (lower in the taxonomy) concepts means an increased similarity (a reduced 
semantic distance), as compared to the same number of edges between two abstract 
concepts (higher in the taxonomy). 

Another quantitative evaluation measure similar in spirit to the learning accuracy is 
the edge measure. It actually counts the average deviation (in terms of taxonomic 
distance) between the system predicted target concept and the correct one according 
to the given initial taxonomy. Consequently, as opposed to the first two learning 
accuracy measures (formulae (1) and (2)), the edge measure means a better 
classification for a lower edge measure value. 

 



5.3   Evaluation Results 

A first set of experimental runs is based on a document category histogram (DCH) 
vector representation for the extracted terms and concept label terms. Also, the 
concept label terms of the given initial taxonomy are represented using the centroid 
method for the whole sub-tree of a given concept node, as described in section 4.3. 
The improvements gained by using DCH and centroid are already confirmed 
qualitatively by our experiments reported in [4]. Furthermore, not only the training of 
the Enrich-GHSOM neural network is less efficient on flat count vectors with 1801 
attributes (corresponding to the 1801 corpus documents) compared to the 180 
attributes (for the 180 semantic document categories) in DCH’s, but also using flat 
count (unreduced) vectors often leads to the starvation of the neural network. 

In a second set of experiments, we first applied the DF-ITF weighting scheme on 
the flat count term vectors of 1801 attributes. The result vectors were then converted 
into DCH histograms, thus reducing the term vector dimension to 179. 

[6] and [14] used the centroid vector to reperesent the concept nodes. [14] found 
out that their best results were achieved when taking into account only the first three 
levels of successors in the sub-tree of the concept in order to compute the centroid. 
The experiments in [6] consider only the direct successors of the concept to compute 
the centroid. Driven by these results, we ran a third set of experiments, in which we 
considered only the first level of successors to represent the centroid of any concept in 
the given taxonomy, like in [6]. We didn’t also try the three-level version of [14], 
since the results would be similar with our results for whole sub-trees. This is because 
the average depth of the taxonomy to be enriched in our experiments is 4, and the 
majority of the nodes don’t have sub-trees of depth greater than 3. In this third set of 
experiments we kept the DF-ITF and DCH settings like in the second experiment. 

We evaluated the three learning accuracy measures on placing the 43 concepts in 
their actual position in the given initial ontology from the Pascal challenge [9]. The 
results are illustrated in Table 1. 

Table 1.  Learning accuracy of the taxonomy enrichment when using DCH, DF-ITF, and 
different variants of centroid. 

Vector Representation 
Concept Label Centroid 
 

DCH 
whole subtree 
centroid 

DF-ITF + DCH 
whole subtree 
centroid 

DF-ITF + DCH 
first-level 
centroid 

Learning Accuracy 33.565% 39.654% 37.679% 
Symmetric Learning Accuracy 33.742% 40.437% 38.016% 
Edge Measure 3.023 2.651 2.907 

 
All the three learning accuracy measures are considerably improved by using the DF-
ITF weighting measure, and keeping the DCH histogram vector representation. These 
results prove that the quality of the enrichment is improved by using our contributed 
semantics based vector representations (DCH and DF-ITF) for the classified terms 
and the concept label terms in the initial taxonomy. 



Another finding is that limiting the depth of the sub-concepts for the computation 
of the centroid vector representation for taxonomy concepts leads to a slight 
degradation of the learning accuracy. The experiments in [16] also confirm that using 
whole sub-trees to represent the centroid of the concepts improve the performance of 
the taxonomy enrichment. 

Named Entity Classification. In a last set of experiments, instead of classifying 
terms represented by common noun phrases extracted from the “Lonely Planet” 
corpus, we rather classified noun phrases for proper names – i.e. named entities – 
extracted from the same corpus. The majority of the named entities occur few times in 
the corpus, and many of them only occur once, in a singe document. This is why, in 
the experiments reported in what follows, we have reduced the frequency threshold to 
zero. It was 0.5% in the preceding experiments (see section 5.1). 

Having no more frequency threshold for the corpus extracted noun phrases, we 
found and extracted a total of 43006 noun phrases, compared to 1241 in the preceding 
three taxonomy enrichment experiments. Some of them are common nouns and the 
other are named entities. We will refer in what follows to this experiment as the 
maximal experiment. To reduce the dimensionality of the data, and consequently the 
inherent noise, one of our experiments was trying to keep only what is absolutely 
necessary for the classification. We kept a minimum of common noun phrases 
corresponding to the concept labels in the taxonomy, and a minimum of proper noun 
phrases representing the set of named entities asked to be classified in the PASCAL 
ontology learning and population challenge [9]. The total number of common and 
proper noun phrases extracted is reduced to 631. We will call this experimental run 
the minimal experiment. 

We evaluated these last experiments automatically by using the PASCAL 
challenge site online evaluation system1. This evaluation system is based on a gold 
standard, i.e. an ontology populated with the set of named entities that are asked to be 
classified in the PASCAL challenge. In other words, the PASCAL competition target 
set of named entities are considered as correctly mapped to the different concepts in 
the gold standard ontology. In the maximal experiment, a number of 623 named 
entities extracted from the “Lonely Planet” corpus are classified against an ontology 
consisting of 74 concepts, which is proposed in the PASCAL challenge [9]. Actually 
there are much more named entities extracted by our framework, but only 623 of them 
are also included in the set of named entities asked to be classified in the PASCAL 
ontology learning and population challenge. In the minimal experiment, 417 named 
entities are classified into a taxonomy consisting of 96 concepts. Table 2 illustrates 
these last two experiments, as evaluated automatically with the PASCAL challenge 
online evaluation system. 

There are two explanations for the lower classification quality values in the 
maximal experiment as compared to the minimal one. First, the minimal experiment 
uses the DCH histogram vector representation as compared to the flat counts of the 
maximal experiment, and second is the noise caused by the much bigger quantity of 
noun phrases classified in the maximal experiment – 43006 versus 631. Also, an 
explanation for an overall degraded quality of the named entity classification as 

                                                           
1 http://olc.ijs.si/eval.html. 



compared to the taxonomy enrichment in the preceding experiments is that the 
classified named entities have very low frequency of occurrence as compared to the 
classified terms (common nouns) from the taxonomy enrichment, and consequently 
they have a very sparse vector representation. This misleads their classification. 

Table 2.  Learning accuracy of the named entity classification. 

Experiment maximal experiment minimal experiment 
Vector Representation flat counts DCH 
Concept Label Centroid whole subtree centroid whole subtree centroid 
Learning Accuracy 22.3% 31.2% 
Symmetric Learning Accuracy 21.2% 28.5% 
Edge Measure 3.78 4.767 

 

6   Conclusions and Further Work 

We have presented an unsupervised top-down neural network based approach and 
framework for taxonomy enrichment. The framework can be applied to different 
domains and languages. The experimental results obtained in the “Lonely Planet” 
tourism domain prove that our contributed semantics based vector representations, i.e. 
the document category histograms and the DF-ITF weighting scheme are suitable for 
the task of taxonomy enrichment. 

The comparison of taxonomy enrichment systems (and of named entity classifiers) 
is problematic. Different systems use different domains and, even for the same 
domain, they use different corpora of different sizes and different ontologies. [6] 
present such a comparison of existent systems, and the conclusion is that the 
classification quality degrades with the increase in the size of the ontology. 

Another interesting point is that sometimes given taxonomic structures are not 
reflecting correctly some fine-grained meanings. For instance, in the initial taxonomy 
used in our experiments, forest is hyponym of area. However the context in which the 
term forest occurs in the corpus are rather specific to plants (plant concept), which is 
far in the taxonomy from area. Our system “incorrectly” classified forest as plant. 

The data sparseness remains a problem for the task of taxonomy enrichment. 
Terms (or named entities) represented by sparse vectors have an increased chance to 
be wrongly classified, because of the reduced power of attraction towards the correct 
branches and nodes of the taxonomy. Thus the top-down search during the 
classification is misled, and this phenomenon is mostly encountered in the case of 
named entity classification, where named entities have very sparse vector 
representations. Consequently, as further work, we will try to change the statistical 
distributional vector representation of the terms to further reduce the dimensionality 
of the vectors. We will try using pseudo-syntactic dependencies as representation of 
the terms, in the spirit of [6]. 
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