
The 7th International Semantic Web Conference

Nature inspired Reasoning
for the Semantic Web

(NatuReS)

Christophe Guéret
Pascal Hitzler

Stefan Schlobach

October 27, 2008



The 7th International Semantic Web Conference
October 26 – 30, 2008

Congress Center, Karlsruhe, Germany

Platinum Sponsors

Ontoprise

Gold Sponsors

BBN
eyeworkers

Microsoft
NeOn

SAP Research
Vulcan

Silver Sponsors

ACTIVE
ADUNA
Saltlux
SUPER

X-Media
Yahoo



The 7th International Semantic Web Conference
October 26 – 30, 2008

Congress Center, Karlsruhe, Germany

Organizing Committee

General Chair
Tim Finin (University of Maryland, Baltimore County)

Local Chair
Rudi Studer (Universität Karlsruhe (TH), FZI Forschungszentrum Informatik)

Local Organizing Committee
Anne Eberhardt (Universität Karlsruhe)

Holger Lewen (Universität Karlsruhe)
York Sure (SAP Research Karlsruhe)

Program Chairs
Amit Sheth (Wright State University)

Steffen Staab (Universität Koblenz Landau)

Semantic Web in Use Chairs
Mike Dean (BBN)

Massimo Paolucci (DoCoMo Euro-labs)

Semantic Web Challenge Chairs
Jim Hendler (RPI, USA)
Peter Mika (Yahoo, ES)

Workshop chairs
Melliyal Annamalai (Oracle, USA)

Daniel Olmedilla (Leibniz Universität Hannover, DE)

Tutorial Chairs
Lalana Kagal (MIT)
David Martin (SRI)

Poster and Demos Chairs
Chris Bizer (Freie Universität Berlin)

Anupam Joshi (UMBC)

Doctoral Consortium Chairs
Diana Maynard (Sheffield)

Sponsor Chairs
John Domingue (The Open University)

Benjamin Grosof (Vulcan Inc.)

Metadata Chairs
Richard Cyganiak (DERI/Freie Universität Berlin)

Knud Möller (DERI)

Publicity Chair
Li Ding (RPI)

Proceedings Chair
Krishnaprasad Thirunarayan (Wright State University)

Fellowship Chair
Joel Sachs (UMBC)



Workshop Organization

Programme Chairs

Christophe Guéret
Pascal Hitzler
Stefan Schlobach

Programme Committee

Özalp Babaoglu
Bernardo Cuenca Grau
Guszti Eiben
Artur Garcez
Barbara Hammer
Andreas Harth
Kai-Üwe Kuhnberger
Alexander Löser
Peter Mika
Nicolas Monmarché
Hans-Jürgen Ohlbach
Axel Polleres
Sebastian Rudolph
Christoph Schmitz
Lael Schooler
Martijn Schut
Giorgos Stamou
Peter Tino
Frank van Harmelen



Table of Contents

Text-Based Ontology Enrichment Using Hierarchical Self-organizing Maps 1
Emil St. Chifu, Ioan Alfred Letia

Genetic Algorithms for RDF Query Path Optimization . . . . . . . . . . . . . . . . 16
Alexander Hogenboom, Viorel Milea, Flavius Frasincar, Uzay Kaymak

Optimizing Ontology Alignments by Using Genetic Algorithms . . . . . . . . . 31
Jorge Martinez-Gil, Enrique Alba, Jose F Aldana Montes

Anatomy of a Semantic Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Peyman Nasirifard

Human Similarity theories for the semantic web . . . . . . . . . . . . . . . . . . . . . . . 51
Jose Quesada



Text-Based Ontology Enrichment Using Hierarchical 
Self-organizing Maps 

Emil � t. Chifu and Ioan Alfred Le � ia 
 

Technical University of Cluj-Napoca, Department of Computer Science, Bari � iu 28, 
RO-400027 Cluj-Napoca, Romania 

{Emil.Chifu, letia}@cs.utcluj.ro 

Abstract. The success of the Semantic Web research is dependent upon the 
construction of complete and reliable domain ontologies. In this paper we 
describe an unsupervised framework for domain ontology enrichment based on 
mining domain text corpora. Specifically, we enrich the hierarchical backbone 
of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. 
The framework is based on an extended model of hierarchical self-organizing 
maps. As being founded on an unsupervised neural network architecture, the 
framework can be applied to different languages and domains. Terms extracted 
by mining a text corpus encode contextual content information, in a 
distributional vector space. The enrichment behaves like a classification of the 
extracted terms into the existing taxonomy by attaching them as hyponyms for 
the nodes of the taxonomy. The experiments reported are in the “Lonely Planet” 
tourism domain. The taxonomy and the corpus are the ones proposed in the 
PASCAL ontology learning and population challenge. The experimental results 
prove that the quality of the enrichment is considerably improved by using 
semantics based vector representations for the classified (newly added) terms, 
like the document category histograms (DCH) and the document frequency 
times inverse term frequency (DF-ITF) weighting scheme. 

Keywords: taxonomy enrichment, unsupervised neural network, extended 
growing hierarchical self-organizing maps (Enrich-GHSOM), document 
category histograms (DCH), document frequency times inverse term frequency 
(DF-ITF) weighting scheme, centroid vector. 

1   Introduction 

The most important prerequisite for the success of the Semantic Web research is the 
construction of complete and reliable domain ontologies. Building ontologies is still a 
time consuming and complex task, requiring a high degree of human supervision and 
being still a bottleneck in the development of the semantic web technology. 

The process of domain ontology enrichment has two inputs, an existing ontology – 
which plays the role of background knowledge – and a domain text corpus. The aim 
of our work is to automatically adapt the given ontology according to a domain 
specific corpus. We enrich the hierarchical backbone of the existing ontology, i.e. its 
taxonomy, with new domain-specific concepts extracted from the corpus [14]. 



Our framework for taxonomy enrichment is based on an extended model of 
hierarchical self-organizing maps, which represent an unsupervised neural network 
architecture. The candidates for labels of newly inserted concepts are terms collected 
by mining a text corpus. The term extraction process is based on recognizing 
linguistic patterns (noun phrases) in the domain corpus documents. Each term 
encodes contextual content information, in a distributional vector space. The context 
features of a term are the frequencies of its occurrence in different documents of the 
corpus. The classification of the extracted terms into the taxonomy of the given 
ontology proceeds by associating every term to one target node of the taxonomy, 
based on a similarity in the distributional vector space. That term becomes a new 
concept added to the taxonomy, and it is attached as hyponym (successor) under the 
target node. 

Unsupervised hierarchical neural models in general start the growing of a dynamic 
tree-like topology from a single initial node. Our neural network model, called 
Enrich-GHSOM, is an extension of one of these existent systems, GHSOM [8], and it 
allows the growing to start from an initial tree. The taxonomy that is subject to 
enrichment is given as the initial state of the hierarchical self-organizing map. So, an 
essentially symbolic knowledge structure – taxonomic tree – is converted into a 
neural representation as an initial state of the hierarchical self-organizing map. The 
actual taxonomy enrichment takes place via an unsupervised training of the neural 
network by exposing the initialized hierarchical self-organizing map to the vector 
representation of the terms extracted from the domain corpus. A reverse, neural-
symbolic translation is done after this enrichment process. This is actually the 
knowledge extraction step whose output is the final enriched taxonomy. Our 
taxonomy enrichment framework is a hybrid one, as it has to deal with neural-
symbolic integration. The neural-symbolic translations in both directions have been 
naturally achieved, since our framework merely operates upon the taxonomic 
structure of the ontology, which is in agreement with the hierarchical structure of the 
self-organizing neural network. 

In the rest of the paper, after a review of related work, section 3 presents the neural 
network learning solution chosen and adapted in our framework. Then section 4 
details the architecture and implementation of the taxonomy enrichment framework 
and section 5 describes the experimental results. Conclusions and future directions are 
presented in section 6. 

2   Related Work 

There are two main categories of approaches for taxonomy enrichment [3]: methods 
based on distributional similarity and classification of terms into an existing 
taxonomy on one hand, and approaches using lexico-syntactic patterns, also known as 
Hearst patterns [10], on the other hand. Our enrichment approach belongs to the 
former category. 

In the term classification approach, the terms extracted from a domain specific 
corpus of text are classified into an existent taxonomy [14, 6, 1, 16, 15]. In a top-
down variant of this classification [14, 1, 16], there is a top-down search on the 



existent taxonomy in order to find a node under which a new term is to be inserted as 
a successor (hyponym). The classification of the terms is made according to a 
similarity measure in a distributional vector space. Each term is represented as a 
vector with information about different contexts of its occurrences in the corpus. 

The top-down classification behavior in our framework is modeled by a growing 
hierarchical self-organizing map (GHSOM) architecture [8] extended with the 
possibility to set an initial state for the tree-like neural network. In our new extended 
neural model, called Enrich-GHSOM, the given taxonomy is set as the initial state of 
the neural network. The model allows to classify the extracted terms into the existing 
taxonomy by attaching them as hyponyms for the intermediate and leaf nodes of the 
taxonomy. Details of this process are given in section 4.2. 

A similar, although non top-down approach is [15]. There is a search for a node to 
attach a new concept as a hyponym of, by finding a place in the existent taxonomy 
where the corpus derived semantic neighbors of the candidate concept are most 
concentrated. He supposes that at least some of the semantic neighbors are already in 
the taxonomy, and he defines a function to compute the class label for the set of 
neighbors – a hypernym for all the neighbors. This class label becomes the concept 
under which to attach the new term as hyponym. The similarity measure to find 
neighbors is based on a latent semantic analysis vector space [13]. 

3   Neural Network Learning Method   

Our extended model of hierarchical self-organizing maps – Enrich-GHSOM – 
represents the unsupervised neural network based learning solution adopted by our 
taxonomy enrichment framework. This choice is suitable to the knowledge structure 
to be enriched – a taxonomy, i.e. an is-a hierarchy of concepts. 

3.1   Self-organizing Maps 

GHSOM is an extension of the Self-Organizing Map (SOM, also known as Kohonen 
map) learning architecture [12, 5], which is one of the most popular unsupervised 
neural network models. SOM can be seen as a projection method which maps a high 
dimensional data space into a lower dimensional one. The resulting lower 
dimensional output space is a rectangular SOM map, represented as a two-
dimensional grid of neurons. Each input data item is mapped into one of the neurons 
in the map. SOM is also a clustering method, so that similar data items – represented 
as vectors of numerical values – tend to be mapped into nearby neurons. 

The SOM map learns by a self-organization process. There is no initial knowledge 
about the membership of any input data item in a particular class or about the number 
of classes. The training proceeds with unlabeled input data like any unsupervised 
learning. Clusters (classes) are discovered and described by gradually detected 
characteristics during the training process. These gradually adjusted characteristics 
play the role of weights in the weight vector associated to each neuron. The role of a 
completely trained map is to represent all the available observations – the whole input 



data space – with optimal accuracy by using a restricted set of weight vectors 
associated to the map neurons. 

The initial values for the weight vectors of the neurons can either be chosen 
depending on the problem domain or they can be taken randomly. Every iteration of 
the learning algorithm processes one input (training) vector as follows. Like usually 
for unsupervised neural networks, some form of competitive learning takes place: the 
winner neuron index c, which best matches the current input vector, is identified as 
the neuron whose weight vector is most similar to the current input vector in some 
metric. Then all the weight vectors or a subset of them that correspond to neurons 
centered around the winner neuron c – i.e. neurons in the neighborhood area of c –, 
including the winner itself, are updated in the direction of the input vector. This 
adaptation renders a globally ordered map in the process of learning. A neuron has 
four immediate neighbors in a rectangular map topology, which is our chosen map 
topology. This is merely a rectangular lattice type of the two-dimensional grid of 
neurons, and the SOM map is kept as a planar rectangle. 

3.2   Growing Hierarchical Self-organizing Maps 

Data spaces contain some latent structuring in the form of clusters. SOM maps can 
discover and illustrate this clustering. However, some hierarchical structures are also 
latent in data sets. To give an interesting example in the present context, a thesaurus is 
a data space consisting of terms in a language, represented as a lexical database. The 
main relation between the terms in a thesaurus is the taxonomic relation. However, 
because of their essentially flat topology, SOM maps have a limited capability to 
discover and illustrate hierarchical clusters in data sets. A solution for this problem is 
represented by the hierarchical SOM maps. 

The growing hierarchical self-organizing map model consists of a set of SOM 
maps arranged as nodes in a hierarchy and it is able to discover hierarchical clusters 
[8]. The SOM’s in the nodes can grow horizontally during the training by inserting 
either one more row or one more column of neurons. This happens iteratively until the 
average data deviation (quantization error) over the neurons in the SOM map 
decreases under a specified threshold �1. For one neuron, the quantization error is the 
dissimilarity of all the vectors of the data items mapped into the neuron versus the 
weight vector of the neuron. 

The SOM’s in the nodes can also grow vertically during the training, by giving rise 
to successor nodes. Each neuron in the SOM map could be a candidate for expansion 
into a successor node SOM map (see Fig. 1). The expansion takes place whenever the 
data deviation on the current neuron is over a threshold �2. This sounds like a zoom 
into the data subspace mapped into the parent neuron, because the successor SOM 
map is trained merely with data items in that subspace. Further node expansions 
continue recursively on successor nodes, and the training of the whole GHSOM 
model finally stops (converges) when both thresholds are satisfied. The training 
begins with a single-neuron SOM map having the whole input data set mapped into 
its only neuron. This becomes the root of the final, completely trained GHSOM 
model. 



 
Fig. 1. The GHSOM neural network model. 

The thresholds �1 and �2 control the granularity of the hierarchy learned by 
GHSOM in terms of depth and branching factor. A low �1 with a much lower �2 leads 
to a deep hierarchy with an increased number of neurons into the SOM nodes, and 
consequently an increased branching factor also. A high �1 with a lower �2 leads to 
deep hierarchies with small SOM nodes (with few neurons), and consequently a 
reduced branching factor corresponding to the reduced number of neurons in SOM 
nodes. When both thresholds are low and comparable, then the hierarchy is flat with a 
high branching factor. If both thresholds are high and comparable, then the hierarchy 
is flat with a low branching factor. 

Each level in a learned GHSOM model displays a more detailed clustering of the 
data space as compared to the parent level. This corresponds to a top-down process of 
hierarchical clustering of the input data space items. 

3.3   Enrich-GHSOM 

The growth of a GHSOM is a completely unsupervised process, being only driven by 
the unlabeled input data items themselves together with the two thresholds and some 
additional learning parameters. There is no way to suggest from outside any initial 
paths for the final learnt hierarchy. We have extended the GHSOM model with the 
possibility to force the growth of the hierarchy along with some predefined paths of a 
given hierarchy. Our new extended model, Enrich-GHSOM, is doing a classification 
of the data items into an existing taxonomic structure. This initial tree plays the role 
of an initial state for the tree-like neural network model. The classical GHSOM model 
grows during the training by only starting from a single node. The top-down growth 
in our extended model starts from a given initial tree structure and inserts new nodes 
attached as successors to any of its intermediate and leaf nodes. 

In Enrich-GHSOM, the nodes of the predefined hierarchy are labeled with some 
data item labels from the input data space used for training. The training data items 
propagate top-down throughout the given tree hierarchy structure. When the 



propagation process hits a parent SOM of a tree node, then the weight vector of the 
corresponding parent neuron in that parent SOM is initialized with the data item 
vector of that successor node label. The weight vectors of the SOM neurons with no 
successor are initialized with random values. Then the training of that SOM proceeds 
by classifying the training data items against the initialized neurons. Training data 
items that are similar (distributionally similar as vectors) to the predefined initialized 
neurons are propagated downwards to the associated successor SOM nodes to 
continue the training (recursively) on that predefined successor SOM. Data items that 
are not similar to the initialized neurons are mapped to other, non-initialized, neurons 
in the same SOM, and they are not propagated downwards into the predefined 
hierarchy. They remain as mapped into that SOM, and are considered as classified 
into the parent neuron of that SOM, i.e. as successor of that parent. 

For instance, consider the parent neuron of a current SOM node is labeled 
mammal, and there are two predefined successor nodes labeled feline and bear, which 
correspond to two predefined initialized neurons in the current SOM. Then the 
training data item vector dog is not similar to any of the two neuron initializer weight 
vectors associated to feline and bear (see Fig. 2, where the neuron initializers are 
marked with bold). So dog will remain as classified into that SOM – mapped on 
another, non-initialized neuron – i.e. as successor (hyponym) of mammal and twin of 
the existent nodes feline and bear. Also, a data item labeled tiger – similar with the 
weight vector of the predefined “feline” neuron – will be propagated into the 
associated predefined successor SOM map together with other terms that correspond 
to felines, which will all become direct or indirect hyponyms of the concept feline. 
The process continues top-down for all the SOM nodes in the predefined initial tree 
hierarchy, ending at the leaves. The data item vector representations of the labels of 
the given initial tree play the role of predefined initializer weight vectors of our neural 
model. 

 

 
Fig. 2. The Enrich-GHSOM neural network model. 



4   A Neural Model for Unsupervised Taxonomy Enrichment 

The architecture of our framework is implemented as a pipeline with several linguistic 
and machine learning processing stages. The whole processing can be divided in two 
main steps: the term extraction step and the taxonomy enrichment step. 

4.1   Extraction of Terms 

The candidates for the labels of new concepts inserted during the taxonomy 
enrichment are terms representing noun phrases, identified by mining the domain text 
corpus. In order to identify the terms by a linguistic analysis of the corpus documents, 
our framework relies on several processing resources offered by the ANNIE module 
for analyzing English texts in the GATE framework [7]: morphological analyzer 
(stemmer), tokenizer, sentence splitter, the Hepple part-of-speech tagger, and a JAPE 
[7] transducer. The transducer has the role to identify noun phrase constructs, based 
on regular expressions over different parts of speech of the component words. 

4.2   Taxonomy Enrichment 

The terms extracted from the domain text corpus are mapped to classes (concepts) of 
the existing taxonomy. The taxonomy enrichment algorithm proceeds by “populating” 
the given taxonomy with the terms collected from the corpus. The Enrich-GHSOM 
neural network drives a top-down hierarchical classification of the terms along with 
the given taxonomy branches and inserts new nodes (concepts) corresponding to these 
classified terms. Every new concept is attached as successor of an intermediate or a 
leaf node of the given taxonomy and becomes a hyponym of that node. 

In order to use our Enrich-GHSOM neural network to induce such a taxonomy 
enrichment behavior, a symbolic-neural translation is first done by parsing a textual 
representation of the initial taxonomy (is_a(concept, superconcept) assertions or 
OWL format). The result of this parsing is the initial internal tree-like state of the 
neural network. In order for the initialized network to be able to classify terms into 
this initial taxonomic structure, apart from the vector representation of the classified 
terms, a representation as a numerical vector is also needed for each node in the initial 
taxonomy. This vector plays the role of initial weight vector for the neural network 
(see section 3.3). It is the vector representation for the noun phrase concept label 
associated to the node, computed as will be described in section 4.3. The acquisition 
of this vector takes place in the same way as the acquisition of the vector 
representation of the classified terms (section 4.3). 

We assume that the concept labels of the initial taxonomy are terms – noun phrases 
– extractable from the domain text corpus from which the classified terms themselves 
have also been extracted. Their vectors are then computed in the same way as the 
vectors of all the corpus extracted terms which are classified during the enrichment. 
Using the same corpus from a specialized domain to acquire the feature vectors of the 
concepts in the initial taxonomy and the terms to be classified is a reasonable choice, 



since it will reduce the problems with ambiguous (multiple) senses of one and the 
same term. 

4.3   Vector Representation for Terms 

Since Enrich-GHSOM is a connectionist system, the terms classified by Enrich-
GHSOM and the concepts of the given taxonomy have to be represented as vectors. In 
our framework, the attributes (features) of the vector representation of a term or 
concept encode contextual content information, in a distributional vector space. 
Specifically, the context features are the frequencies of the occurrence of the term – 
classified term or concept label term – in different documents of the corpus. The 
number of component attributes of such a term vector coincides with the number of 
documents of the text corpus out of which all the terms have been extracted. Every 
attribute in the vector of a term is essentially the number of occurrences of the term in 
one document. This representation is inspired from the latent semantic analysis [13]. 
A similar semantics-based dimensionality reduction effect as the one obtained in the 
latent semantic analysis by singular value decomposition is achieved in our 
framework by the document category histograms (DCH), defined in what follows. 

The vector representation in the current framework satisfies Harris’ distributional 
hypothesis [6, 3]: the meaning of each classified term (or concept label) is related to 
the meanings of the contexts in which the term (or the concept label) occurs. In such a 
setting, we use the distributional similarity which asserts that the meaning of 
semantically similar terms and concept labels is expressed by similar vectors in the 
distributional vector space. The Euclidean distance is used in the current framework 
to compute the dissimilarity among vectors. 

The framework allows multiple ways to encode the frequencies of occurrence, 
starting from simple flat counts of occurrences. Another variant is the DF-ITF 
weighting scheme, which means “document frequency times inverse term frequency”. 
We propose this weighting scheme, which is a transposed of TF-IDF [2] relative to a 
term/document occurrence matrix. TF-IDF is used in document classification (text 
categorization) and information retrieval. Now we rather classify terms, by using DF-
ITF. By using this weighting scheme, we consider that long documents, which talk 
about too many terms, should have a lower weight when classifying terms, since they 
have a reduced discrimination power among the meanings of different terms. This 
effect is achieved by our DF-ITF weighting scheme and is confirmed by the 
experimental results reported in section 5. 

A third way to encode the vector representation is one in which we propose the 
vector to be a document category histogram (DCH). Specifically, first a SOM [12] is 
trained having the corpus documents as input data space to arrive at approximately 
200 semantic document categories. Documents similar in meaning are clustered 
together by the unsupervised SOM neural network. In this SOM training, the 
documents are represented as vectors of frequencies for the terms they talk about. 
Equally like the term vectors, the document vectors are collected from the same 
term/document matrix, but after transposing this matrix. As we want a number of 
approximately 200 semantic document categories, we impose the training of a 
rectangular SOM map of dimension 16x12. Then, by summing up the frequencies of a 



term in different documents of the same category, and merely keeping the summed 
frequencies in different document categories as vector components, we arrive at a 
reduced dimensionality for the vector representation. In our experiments reported in 
section 5 with the “Lonely Planet” tourism data set, the reduction induced by such a 
vector representation as a histogram on semantic document categories is from 1801 
(which represents the number of documents in the “Lonely Planet” corpus) to 180 and 
179 (in two different experimental runs described in section 5). 

Data Sparseness. The dimensionality reduction achieved by using the document 
category histogram (DCH) representation is important since it removes the semantic 
noise caused by minor differences in semantic content for different corpus documents. 
Such documents now belong together to the same semantic category. This intuition is 
already confirmed by our experiments reported in previous work [4]. Moreover, the 
term/document occurrence matrix is sparse (with many zeros), and reducing the 
dimensionality by using histograms leads to less sparse vectors. A more natural 
behavior of the neural network model is expected by using reduced and less sparse 
vectors. 

A source of data sparseness is represented by terms with very few occurrences in 
the text corpus. Among such terms are the most generic terms that label the roots of 
the main trees in a given initial taxonomy and usually the concepts which are very 
high in a taxonomy. When in the Enrich-GHSOM neural network such an overly 
generic term with a very sparse vector labels the concept of one of the roots, and also 
when using the flat count vector representation instead of the histogram 
representation, then the main tree rooted by that concept is unable to attract and 
classify a relevant quantity of training terms. Thus the top-down search during the 
classification is misled. It is the case of the root concepts spatial_concept, intangible, 
and thing in the ontology of the “Lonely Planet” tourism dataset used in the present 
experiments. Some of the branches of these main trees are populated by no training 
term, which leads to the starvation of the neural network. Starvation means that the 
neural network enters an infinite loop when trying to tune the quantization error on a 
neuron below the thresholds (see section 3.2). Many of our experiments which used a 
flat count vector representation failed by starvation. As opposed, all the experiments 
using the reduced, histogram vector representation (DCH) converged to a result. 

A way of reducing the number of zeros in the vector representation of the generic 
terms that label the generic concepts in the initial taxonomy is the centroid vector [14, 
6]. We have used the idea of centroid in the following way: the average vector of the 
vector representations of all the concepts in the sub-tree rooted by the given concept, 
including the root itself. Using the centroid representation method has led us to a 
significant improvement of the experimental results, partially reported in [4], where 
we rather proposed a similar approach: one of the more specific concepts in a main 
tree becomes a substitute for the too generic concept in the root of the tree. So, the 
label of every main tree root was one representative and more specific concept in the 
tree, for instance course was a substitute for activity, and staff was a substitute for 
person (in the “4 universities” domain). The improvement obtained by using the 
centroid vector representation for concepts is reported in [14, 6]. 



5   Experimental Results 

The experiments carried out in what follows are in the tourism domain, consisting of a 
corpus and a given taxonomy (the “Lonely Planet dataset”) [9]. The associated corpus 
consists of 1801 text descriptions of tourist destinations from different countries 
around the world. 

5.1   Experimental Setup  

In order for the corpus extracted terms to actually become domain specific concepts, 
they have to be noun phrases with enough frequency of occurrence in the domain 
specific corpus. In the term extraction process, we have set a threshold for the 
extracted noun phrases to occur in at least 0.5% of the number of documents in the 
corpus. Having set this threshold, we have extracted and acquired the corresponding 
numerical vector representations for 1241 noun phrases. These extracted terms are 
classified against the taxonomy of a tourism ontology consisting of 73 concepts, 
which is proposed in the PASCAL ontology learning and population challenge [9]. 

The evaluation of the enrichment means evaluating the quality of the mapping 
from corpus extracted terms into target concepts of the given initial taxonomy. An 
extracted term becomes a new concept added to the taxonomy, and it is attached as 
hyponym (successor) under its associated target node. In order to evaluate the 
taxonomy enrichment, we followed a cross-validation strategy [14, 16, 15]. In every 
experimental run, exactly one node in the given initial taxonomy of 73 concepts was 
removed from the taxonomy, together with the whole subtree rooted by that node. The 
classification process was run against the result taxonomy, and the position of the 
held out concept, as classified like any corpus extracted term is assessed. The correct 
(direct hit) classification of the concept corresponds to its initial position in the 
taxonomy before its removal. In other words, the concept should be mapped to a 
target concept which was its direct hypernym (parent node) before its experimental 
removal. The process should be repeated 72 times, for every concept in the taxonomy 
except its very root, named root. Actually we repeated this experimental run 43 times, 
since we only had corpus statistical data to build the distributional vector 
representation for 43 of the taxonomy concepts. (We need a statistical distributional 
vector for every term to be classified.) 

5.2   Evaluation Measures 

The most appropriate measure for evaluating the taxonomy enrichment task is the 
learning accuracy, defined and evaluated in [9, 6, 14, 1, 16]. By choosing this 
measure, we consider correct classifications of the new concepts with different levels 
of detail. For instance, the new concept cat can be mapped to the target concept feline, 
carnivore, mammal or animal with different levels of detail, as a consequence of 
different hypernym-hyponym taxonomic distances between the target concept as 
chosen by the system and the direct hypernym of the classified concept before its 
removal. Before removal, cat was direct hyponym of the feline concept. Classifying 



cat as feline, by associating it to the feline target concept is a direct hit, since cat is 
correctly a direct hyponym of feline, i.e. 100% classification accuracy. Though, 
classifying cat as carnivore, mammal, or animal are near hits, since cat is correct only 
as an indirect hyponym of carnivore, mammal, or animal, corresponding say to 50%, 
30%, 20% classification accuracy respectively. 

For a given classified term i, if pi is the target concept assigned (predicted) by the 
system, and ci the correct target concept according to the given initial taxonomy, the 
learning accuracy is the average over all the classified terms i of the function LA(pi, 
ci), where the function LA is defined as 

 
                                                �(top, a) + 1 
 LA(p, c) =   -------------------------------------   (1) 

                   �(top, a) + �(a, c) + �(a, p) + 1 
 
top is the root of the taxonomy, and a is the least common subsumer of the concepts p 
and c (i.e. the most specific common hypernym of p and c). �(a, b) is the taxonomic 
distance between the concepts a and b, i.e. the number of taxonomy edges to be 
traversed when going from the taxonomy node labeled a towards node b. This is the 
most used formula to compute the learning accuracy. In the context of the Pascal 
ontology learning and population challenge, it is actually called symmetric learning 
accuracy, and the term learning accuracy is used for a historically initial version of 
the learning accuracy measure, as introduced by [11]: 
 

               �(top, a) + 1 
LA’(p, c) =   ---------------------       if p is ancestor of c 

 �(top, c) + 1         (then also a = p) 
(2) 

                     �(top, a) + 1 
LA’(p, c) =   -------------------------------     otherwise 
                     �(top, a) + 2 * �(a, p) + 1 
 

According to formulae (1) and (2) to compute both variants of the learning 
accuracy, the same number of edges in the taxonomic distance between the predicted 
and the correct target concept means a better accuracy when the edges are lower in the 
taxonomy. This is due to the intuition that the same number of edges between two 
concrete (lower in the taxonomy) concepts means an increased similarity (a reduced 
semantic distance), as compared to the same number of edges between two abstract 
concepts (higher in the taxonomy). 

Another quantitative evaluation measure similar in spirit to the learning accuracy is 
the edge measure. It actually counts the average deviation (in terms of taxonomic 
distance) between the system predicted target concept and the correct one according 
to the given initial taxonomy. Consequently, as opposed to the first two learning 
accuracy measures (formulae (1) and (2)), the edge measure means a better 
classification for a lower edge measure value. 

 



5.3   Evaluation Results 

A first set of experimental runs is based on a document category histogram (DCH) 
vector representation for the extracted terms and concept label terms. Also, the 
concept label terms of the given initial taxonomy are represented using the centroid 
method for the whole sub-tree of a given concept node, as described in section 4.3. 
The improvements gained by using DCH and centroid are already confirmed 
qualitatively by our experiments reported in [4]. Furthermore, not only the training of 
the Enrich-GHSOM neural network is less efficient on flat count vectors with 1801 
attributes (corresponding to the 1801 corpus documents) compared to the 180 
attributes (for the 180 semantic document categories) in DCH’s, but also using flat 
count (unreduced) vectors often leads to the starvation of the neural network. 

In a second set of experiments, we first applied the DF-ITF weighting scheme on 
the flat count term vectors of 1801 attributes. The result vectors were then converted 
into DCH histograms, thus reducing the term vector dimension to 179. 

[6] and [14] used the centroid vector to reperesent the concept nodes. [14] found 
out that their best results were achieved when taking into account only the first three 
levels of successors in the sub-tree of the concept in order to compute the centroid. 
The experiments in [6] consider only the direct successors of the concept to compute 
the centroid. Driven by these results, we ran a third set of experiments, in which we 
considered only the first level of successors to represent the centroid of any concept in 
the given taxonomy, like in [6]. We didn’t also try the three-level version of [14], 
since the results would be similar with our results for whole sub-trees. This is because 
the average depth of the taxonomy to be enriched in our experiments is 4, and the 
majority of the nodes don’t have sub-trees of depth greater than 3. In this third set of 
experiments we kept the DF-ITF and DCH settings like in the second experiment. 

We evaluated the three learning accuracy measures on placing the 43 concepts in 
their actual position in the given initial ontology from the Pascal challenge [9]. The 
results are illustrated in Table 1. 

Table 1.  Learning accuracy of the taxonomy enrichment when using DCH, DF-ITF, and 
different variants of centroid. 

Vector Representation 
Concept Label Centroid 
 

DCH 
whole subtree 
centroid 

DF-ITF + DCH 
whole subtree 
centroid 

DF-ITF + DCH 
first-level 
centroid 

Learning Accuracy 33.565% 39.654% 37.679% 
Symmetric Learning Accuracy 33.742% 40.437% 38.016% 
Edge Measure 3.023 2.651 2.907 

 
All the three learning accuracy measures are considerably improved by using the DF-
ITF weighting measure, and keeping the DCH histogram vector representation. These 
results prove that the quality of the enrichment is improved by using our contributed 
semantics based vector representations (DCH and DF-ITF) for the classified terms 
and the concept label terms in the initial taxonomy. 



Another finding is that limiting the depth of the sub-concepts for the computation 
of the centroid vector representation for taxonomy concepts leads to a slight 
degradation of the learning accuracy. The experiments in [16] also confirm that using 
whole sub-trees to represent the centroid of the concepts improve the performance of 
the taxonomy enrichment. 

Named Entity Classification. In a last set of experiments, instead of classifying 
terms represented by common noun phrases extracted from the “Lonely Planet” 
corpus, we rather classified noun phrases for proper names – i.e. named entities – 
extracted from the same corpus. The majority of the named entities occur few times in 
the corpus, and many of them only occur once, in a singe document. This is why, in 
the experiments reported in what follows, we have reduced the frequency threshold to 
zero. It was 0.5% in the preceding experiments (see section 5.1). 

Having no more frequency threshold for the corpus extracted noun phrases, we 
found and extracted a total of 43006 noun phrases, compared to 1241 in the preceding 
three taxonomy enrichment experiments. Some of them are common nouns and the 
other are named entities. We will refer in what follows to this experiment as the 
maximal experiment. To reduce the dimensionality of the data, and consequently the 
inherent noise, one of our experiments was trying to keep only what is absolutely 
necessary for the classification. We kept a minimum of common noun phrases 
corresponding to the concept labels in the taxonomy, and a minimum of proper noun 
phrases representing the set of named entities asked to be classified in the PASCAL 
ontology learning and population challenge [9]. The total number of common and 
proper noun phrases extracted is reduced to 631. We will call this experimental run 
the minimal experiment. 

We evaluated these last experiments automatically by using the PASCAL 
challenge site online evaluation system1. This evaluation system is based on a gold 
standard, i.e. an ontology populated with the set of named entities that are asked to be 
classified in the PASCAL challenge. In other words, the PASCAL competition target 
set of named entities are considered as correctly mapped to the different concepts in 
the gold standard ontology. In the maximal experiment, a number of 623 named 
entities extracted from the “Lonely Planet” corpus are classified against an ontology 
consisting of 74 concepts, which is proposed in the PASCAL challenge [9]. Actually 
there are much more named entities extracted by our framework, but only 623 of them 
are also included in the set of named entities asked to be classified in the PASCAL 
ontology learning and population challenge. In the minimal experiment, 417 named 
entities are classified into a taxonomy consisting of 96 concepts. Table 2 illustrates 
these last two experiments, as evaluated automatically with the PASCAL challenge 
online evaluation system. 

There are two explanations for the lower classification quality values in the 
maximal experiment as compared to the minimal one. First, the minimal experiment 
uses the DCH histogram vector representation as compared to the flat counts of the 
maximal experiment, and second is the noise caused by the much bigger quantity of 
noun phrases classified in the maximal experiment – 43006 versus 631. Also, an 
explanation for an overall degraded quality of the named entity classification as 

                                                           
1 http://olc.ijs.si/eval.html. 



compared to the taxonomy enrichment in the preceding experiments is that the 
classified named entities have very low frequency of occurrence as compared to the 
classified terms (common nouns) from the taxonomy enrichment, and consequently 
they have a very sparse vector representation. This misleads their classification. 

Table 2.  Learning accuracy of the named entity classification. 

Experiment maximal experiment minimal experiment 
Vector Representation flat counts DCH 
Concept Label Centroid whole subtree centroid whole subtree centroid 
Learning Accuracy 22.3% 31.2% 
Symmetric Learning Accuracy 21.2% 28.5% 
Edge Measure 3.78 4.767 

 

6   Conclusions and Further Work 

We have presented an unsupervised top-down neural network based approach and 
framework for taxonomy enrichment. The framework can be applied to different 
domains and languages. The experimental results obtained in the “Lonely Planet” 
tourism domain prove that our contributed semantics based vector representations, i.e. 
the document category histograms and the DF-ITF weighting scheme are suitable for 
the task of taxonomy enrichment. 

The comparison of taxonomy enrichment systems (and of named entity classifiers) 
is problematic. Different systems use different domains and, even for the same 
domain, they use different corpora of different sizes and different ontologies. [6] 
present such a comparison of existent systems, and the conclusion is that the 
classification quality degrades with the increase in the size of the ontology. 

Another interesting point is that sometimes given taxonomic structures are not 
reflecting correctly some fine-grained meanings. For instance, in the initial taxonomy 
used in our experiments, forest is hyponym of area. However the context in which the 
term forest occurs in the corpus are rather specific to plants (plant concept), which is 
far in the taxonomy from area. Our system “incorrectly” classified forest as plant. 

The data sparseness remains a problem for the task of taxonomy enrichment. 
Terms (or named entities) represented by sparse vectors have an increased chance to 
be wrongly classified, because of the reduced power of attraction towards the correct 
branches and nodes of the taxonomy. Thus the top-down search during the 
classification is misled, and this phenomenon is mostly encountered in the case of 
named entity classification, where named entities have very sparse vector 
representations. Consequently, as further work, we will try to change the statistical 
distributional vector representation of the terms to further reduce the dimensionality 
of the vectors. We will try using pseudo-syntactic dependencies as representation of 
the terms, in the spirit of [6]. 



References 

1. Alfonseca, E., Manandhar, S.: Extending a lexical ontology by a combination of 
distributional semantics signatures. In A. Gómez-Pérez, V.R. Benjamins (Eds.), 13th 
International Conference on Knowledge Engineering and Knowledge Management, LNAI. 
Springer, pp. 1-7 (2002) 

2. Buitelaar, P., Cimiano, P., Grobelnik, M., Sintek, M.: Ontology learning from text. Tutorial 
at  ECML/PKDD workshop on Knowledge Discovery and Ontologies (2005) 

3. Buitelaar, P., Cimiano, P., Magnini B.: Ontology learning from text: an overview. In P. 
Buitelaar, P. Cimiano, B. Magnini (Eds.), Ontology Learning from Text: Methods, 
Evaluation and Applications, Frontiers in Artificial Intelligence and Applications Series. 
IOS Press, pp. 1-10 (2005) 

4. Chifu, E. � t., Le � ia, I.A.: Unsupervised ontology enrichment with hierarchical self-organizing 
maps, In: IEEE 2nd International Conference on Intelligent Computer Communication and 
Processing, pp. 3-9, IEEE Press, Cluj-Napoca (2006) 

5. Chifu, E. � t., Le � ia, I.A.: Web mining with self-organizing maps, 8th IEEE International 
Conference on Intelligent Engineering Systems, pp. 93-98 (2004) 

6. Cimiano, P., Völker, J.: Towards large-scale, open-domain and ontology-based named entity 
classification. In RANLP’ 05, International Conference on Recent Advances in Natural 
Language Processing, pp. 166-172 (2005) 

7. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: a framework and 
graphical development environment for robust NLP tools and applications. In 40th 
Anniversary Meeting of the ACL (2002) 

8. Dittenbach, M., Merkl, D., Rauber, A.: Organizing and exploring high-dimensional data with 
the Growing Hierarchical Self-Organizing Map. In L. Wang, et al. (Eds.), 1st International 
Conference on Fuzzy Systems and Knowledge Discovery, vol. 2, pp. 626-630 (2002) 

9. Grobelnik, M., Cimiano, P., Gaussier, E., Buitelaar, P., Novak, B., Brank, J., Sintek, M.: 
Task description for PASCAL challenge. Evaluating ontology learning and population from 
text (2006) 

10. Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In: 14th 
International Conference on Computational Linguistics, pp. 539-545 (1992) 

11. Hahn, U., Schnattinger, K.: Towards text knowledge engineering. In: 15th National 
Conference on Artificial Intelligence and the 10th Conference on Innovative Applications of 
Artificial Intelligence (AAAI/IAAI), pp. 524-531 (1998) 

12. Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., Saarela, A.: Self-
organization of a massive document collection. IEEE Transactions on Neural Networks 11, 
pp. 574-585 (2000) 

13. Landauer, T., Dumais, S.: A solution to Plato’ s problem: the latent semantic analysis theory 
of acquisition, induction and representation of knowledge. Psychological Review 104, 211–
240 (1997) 

14. Pekar, V., Staab, S.: Taxonomy learning – factoring the structure of a taxonomy into a 
semantic classification decision. In COLING’ 02, 19th International Conference on 
Computational Linguistics, pp.786-792 (2002) 

15. Widdows, D.: Unsupervised methods for developing taxonomies by combining syntactic 
and statistical information. In HLT-NAACL Conference, pp. 197-204 (2003) 

16. Witschel, H.F.: Using decision trees and text mining techniques for extending taxonomies. 
In Learning and Extending Lexical Ontologies by using Machine Learning Methods, 
Workshop at ICML-05, pp. 61-68 (2005) 



Genetic Algorithms for RDF Query Path
Optimization

Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

Erasmus School of Economics, Erasmus University Rotterdam
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

alexander.hogenboom@gmail.com

{milea, frasincar, kaymak}@few.eur.nl

Abstract. In this paper we present an approach based on genetic al-
gorithms for determining optimal RDF query paths. The performance
of this approach is benchmarked against the performance of a two-phase
optimization algorithm. For more complex queries, the genetic algorithm
RDFGA generally outperforms two-phase optimization in solution qual-
ity, execution time needed, and consistency in performance. Setting a
time limit improves the overall performance of RDFGA compared to
two-phase optimization even more.

1 Introduction

The potential of the Semantic Web has been demonstrated by different proof-of-
concept applications, generally focussing on small domains. This limited focus,
however, results in a Semantic Web that seems to be scattered into small pieces.
Being available only on a small scale and for very specific domains, the access
to the Semantic Web seems rather limited from the perspective of the average
user.

Addressing the average user could be achieved by offering something that
the current Web cannot offer: the possibility to query significant heaps of data
from multiple heterogeneous sources more efficiently, returning more relevant
results. In the context of the Semantic Web, the keyword is meta-data: describ-
ing the context of data and enabling a machine to interpret it. Semantic data
is commonly represented using the Resource Description Framework (RDF), a
World Wide Web Consortium (W3C) framework for describing and interchang-
ing meta-data [1].

Despite current efforts, a successful implementation of an application that is
able to query multiple heterogenous sources still seems far away. An interesting
research field in this context is the determination of query paths: the order in
which the different parts of a specified query are evaluated. The execution time
of a query depends on this order. A good algorithm for determining the query
path can thus contribute to quick and efficient querying.

In the context of the Semantic Web, some research in this field has already
been done: the iterative improvement (II) algorithm followed by simulated an-
nealing (SA), also referred to as the two-phase optimization (2PO) algorithm,



2 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

addresses the optimal determination of query paths [2]. This implementation
aims at optimizing the query path in an RDF query engine. However, other
algorithms have not yet been used for RDF query path determination, while
genetic algorithms (GA) have proven to be more effective than SA in cases with
some similar characteristics. For example, a GA performed better than SA in
solving the circuit partitioning problem, where components have to be placed on
a chip in such a way, that the number of interconnections is optimized [3]. The
query path determination problem is somewhat similar to this problem, since the
distinctive parts of the query have to be ordered in such a way, that the execu-
tion time is optimized. Furthermore, genetic algorithms have proven to generate
good results in traditional query execution environments [4]. Therefore, we seek
to apply this knowledge from traditional fields to an RDF query execution en-
vironment, which differs from traditional ones in that the RDF environment is
generally more demanding when it comes to response time; entirely new queries
should be optimized and resolved real-time. In the traditional field of query op-
timization for relational databases, queries considered for optimization tend to
be queries which are used more frequently and/or queries for which the duration
of the optimization process is not that big of an issue.

The main goal we pursue consists of investigating whether an approach based
on genetic algorithms performs better than a two-phase optimization algorithm
in determining RDF query paths. The current focus is on the performance of
such algorithms on a single source, and not in a distributed setting.

The outline of this paper is as follows. In Section 2 we provide a discussion
on RDF and query paths, the optimization of which is discussed in Section 3.
Section 4 introduces the genetic algorithm employed for the current purpose.
The experimental setup and obtained results are detailed in Section 5. Finally,
we conclude in Section 6.

2 RDF and Query Paths

Essentially, an RDF model is a collection of facts declared using RDF. The
underlying structure of these facts is a collection of triples, each of which consists
of a subject, a predicate and an object. These triples can be visualized using an
RDF graph: “a node and directed-arc diagram, in which each triple is represented
as a node-arc-node link” [1]. The relationship between a subject node and an
object node in an RDF graph is defined using an arc which denotes a predicate.
This predicate indicates that the subject has got a certain property, which refers
to the object.

An RDF query can be visualized using a tree. The leaf nodes of such a query
tree represent inputs (sources), whereas the internal nodes represent relational
algebra operations, which enable a user to specify basic retrieval requests on
these sources [5]. The nodes in a query tree can be ordered in many different
ways, which all produce the same result. These solutions all depict an order in
which operations are executed in order to retrieve the requested data and are
referred to as query plans or query paths.



Genetic Algorithms for RDF Query Path Optimization 3

When querying RDF sources is regarded as querying relational databases,
computing results for paths from partial results resembles computing the results
of a chain query. In a chain query, a path is followed by performing joins between
its sub paths of length 1 [2]. In the context of the Semantic Web, such queries can
be expressed as a set of node-arc-node patterns which can be chained (joined).
Each arc is to be interpreted as a predicate. Each node represents a concept
and is to be interpreted as a subject associated with the predicate following this
node and as an object associated with the predicate preceding this node. The
join condition used in joining the node-arc-node patterns is that the object of
the former pattern equals the subject of the latter pattern.

In an RDF context, bushy and right-deep query trees can be considered [2].
In bushy trees, base relations (containing information from one source) as well
as results of earlier joins can be joined. Right-deep trees, which are a subset
of bushy trees, require the left-hand join operands to be base relations. See
Figure 1 for an example of a bushy tree and a right-deep tree, where concepts
(c1, c2, c3, c4, c5, c6, c7) are joined and a ./ represents a join.

(a) Bushy tree (b) Right-deep tree

Fig. 1. Examples of possible trees

3 RDF Query Path Optimization

The order of joins of sub paths in a query path is variable and affects the time
needed for executing the query. In this context, the join-order problem arises.
The challenge is to determine the right order in which the joins should be com-
puted, hereby optimizing the overall response time. In this process, each join is
associated with costs, which are influenced by the number of elements in each
operand (their cardinalities) and the method used in the join operation. Several
methods can be used for implementing (two-way) joins, as discussed in [5].

The relevance of query path optimization can be demonstrated using a sim-
plified example, in which only the number of results a join yields is considered



4 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

in determining costs associated with that join. Let us consider an RDF model
of the CIA World Factbook [6] containing various data about 250 countries, de-
fined in over 100, 000 statements, generated using QMap [7]. Suppose a company,
currently located in South Africa, wants to expand its activities to a country al-
ready in a trading relationship (in this example an import partnership) with
South Africa. In order to assess the risks involved, the board wants to identify
the candidates that have one or more neighbours involved in an international
dispute. This query can be expressed in SPARQL, an RDF query language, in
the following way:

PREFIX ont: <http://www.daml.org/2003/09/factbook/factbook-ont#>
SELECT ?partner
WHERE { ?country ont:conventionalShortCountryName ?countryName .

FILTER regex(?countryName, "^south africa$", "i") .
?country ont:importPartner ?impPartner .
?impPartner ont:country ?partner .
?partner ont:border ?border .
?border ont:country ?neighbour .
?neighbour ont:internationalDispute ?dispute .

}

This query is a simple example of a chain query and can be subdivided into
five parts: the query for information on the import partners of the specified
country, the query for countries actually associated with other countries as im-
port partners, the query for the borders of the latter countries, the query for
countries associated with a country border as neighbours, and finally the query
for the international disputes the neighbouring countries are involved in. The
results of these sub queries can be joined in order to resolve the complete query.
Here, the number of statements resulting from a join is equal to the number of
statements compliant with both operands’ constraints.

In this case, the collection of considered concepts is (?country, ?impPartner,
?partner, ?border, ?neighbour, ?dispute). The model contains 226, 1177, 186,
616, 186, and 548 elements respectively associated with these concepts. How-
ever, since the ?country concept is constrained to South Africa, the model only
contains 1 compliant element.

An example of a query path consisting of joining the concepts in a particular
order for this case is shown in Figure 2a. This query path starts with joining
the last two concepts, yielding 181 compliant statements. These results are then
joined with the ?border concept, which yields 2412 compliant statements. Joining
these results with the ?partner concept yields 156 results. After a consecutive
join of these results with the ?impPartner concept, 2434 statements are still
compliant. A final join with the ?country concept yields 7 results. The sum of
elements considered in every sub path thus equals 5190.

However, another order of joins is much more efficient. This order is depicted
in Figure 2b. A first join of the first two concepts yields 8 results. Joining these
results with the ?partner concept again yields 8 compliant statements. Joining



Genetic Algorithms for RDF Query Path Optimization 5

(a) Inefficient join-order (b) Efficient join-order

Fig. 2. Possible query paths for the international disputes case

these results with the ?border concept results in 38 triples satisfying all condi-
tions. The model contains 33 triples compliant with a join between all previously
joined concepts and the ?neighbour concept. Finally, a join between these re-
sulting triples and the ?dispute concept yields 7 triples. The sum of elements
considered in every sub path of this query path equals a mere 94. The order of
joins of sub queries can thus make a big difference.

Two solution spaces can be distinguished for the join-order problem in an
RDF context: a solution space consisting of bushy trees and a subset of that
solution space, containing right-deep trees. The solution space of bushy trees
contains

(
2n
n

)
n!
2n points representing possible permutations of join-orders, for a

path length of n. There are 2n−1 possible query paths in the subset of right-
deep trees [2]. Algorithms for identifying neighbouring solutions in the solution
space differ per solution space [4]. If only right-deep query trees are considered,
identifying neighbours can be done using the Swap algorithm or the 3Cycle algo-
rithm [8]. However, if the complete solution space (containing bushy query trees)
is considered, neighbouring solutions can be found by transforming a solution
using transformation rules [9].

Since not every query path is as efficient as others, the challenge in de-
termining which query path should be selected is to optimize query response
time and/or execution costs. When utilizing a relational view on RDF sources,
queries on these sources could be translated into algebraic expressions. Using
some transformation rules for relational algebraic expressions, several heuristics
for algebraic query optimization have been developed [5, 10].

However, in complex solution spaces, these simple heuristics are not suffi-
cient; randomized algorithms (e.g. the iterative improvement algorithm and the
simulated annealing algorithm) and genetic algorithms have proven to generate
better results in traditional query execution environments [4]. Applying these
algorithms in determining the order of select and project operations would not
be very interesting due to the lack of complexity in the associated solution spaces
and due to the sufficiency of the heuristics mentioned above. The real challenge



6 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

lies in optimizing the order and nature of the joins, indicating randomized or
genetic algorithms as promising approaches in this area.

In the context of the Semantic Web, the query path determination problem
has already been addressed using an II algorithm followed by SA, also referred to
as the two-phase optimization (2PO) algorithm [2]. The II algorithm randomly
generates a set of initial solutions, which are used as starting points for a walk
in the solution space. These walks only consist of steps to neighbouring points
in the solution space that yield improvement. If no better neighbour can be
found in a specified number of tries, the current point is assumed to be a local
optimum. The number of times the algorithm tries to find a better neighbour
(i.e. randomly selects a neighbour) is limited to the number of neighbours of
that solution. The described process is repeated for all starting points.

The best local optimum thus found is subsequently used as a starting point
for the SA algorithm, which tends to accept (with a declining probability) moves
not yielding improvement. The latter algorithm thus searches the proximity of
possibly sub-optimal solutions, hereby reducing the risk for a local optimum.
Inspired by the natural process of annealing of crystals from liquid solutions,
SA simulates a continuous temperature reduction, enabling the system to cool
down completely from a specified starting temperature to a state in which the
system is considered to be frozen. Just like II, the algorithm always accepts
moves in the solution space yielding lower costs. However, SA can also accept
moves leading to higher costs, hereby reducing the chances for the algorithm to
get stuck in a local optimum. The probability for accepting such moves depends
on the system’s temperature: the higher the temperature, the more likely the
system is to accept moves leading to higher costs. However, for every state of
the algorithm applies that the more the costs associated with a solution exceed
the current costs, the less likely the system is to accept such a move [8].

4 A Genetic Algorithm for Determining RDF Query
Paths

As discussed in Section 1, GAs tend to perform better in query optimization.
Based on these results, we propose a GA for determining RDF query paths:
RDFGA. A GA is an optimization algorithm which simulates biological evolu-
tion according to the principle of survival of the fittest. A population (a set of
chromosomes, representing solutions from the solution space) is exposed to evo-
lution, consisting of selection (where individual chromosomes are chosen to be
part of the next generation), crossovers (creating offspring by combining some
chromosomes) and mutations (randomly altering some chromosomes). In this
process, the fitness of a chromosome (expressing the quality of the solution) de-
termines the chances of survival. Equation 1 depicts that higher the fitness Fs

of a chromosome s in relation to the total fitness of n chromosomes, the bigger
the probability that this chromosome and/or its offspring will make it to the
next generation. Evolution is simulated until either the maximum number of
iterations is reached or several generations have not yielded any improvement.



Genetic Algorithms for RDF Query Path Optimization 7

Pr (s selected) =
Fs∑n

c=1 Fc
(1)

Since a GA utilizes a randomized search method rather than moving smoothly
from one solution to another, a GA can move through the solution space more
abruptly than for example II or SA, by replacing parent solutions by offsprings
that may be radically different from their parents. Therefore, a GA is less likely
to get stuck in local optima than for example II or SA. However, a GA can
experience another problem: crowding [11]. An individual with a relatively high
fitness compared to others could reproduce quickly due to its relatively high
selection probability, hereby taking over a large part of the population. This
reduces the population’s diversity, which slows further progress of the GA.

Crowding can be reduced by using different selection criteria, sharing a solu-
tion’s fitness amongst similar solutions or controlling the generation of offspring.
Another option is using a hybrid GA (HGA), which essentially is a GA with
some additional, embedded heuristics. For instance, the initial population could
be generated using heuristics for finding (sub-optimal) solutions, heuristics could
be embedded in the crossover process or heuristics could (locally) optimize re-
sults generated by the crossover process. In these processes, local optimization
techniques such as II could be used. However, high quality solutions are not
guaranteed to be found within a reasonable running time, since the heuristics
implemented in an HGA often are time-consuming [12]. A final strategy to reduce
crowding is always selecting the fittest solution at least once (elitist selection) or
by applying ranking-based selection [4], in which the probability of a solution s
to be selected or used in a cross-over is determined by its rank Rs in relation to
the sum of all n ranks (see equation 2). Here, the fittest solution is ranked best,
whereas the least fit solution is associated with the worst rank.

Pr (s selected) =
Rs∑n

c=1 Rc
(2)

In order for a GA to be applicable in RDF query path determination, several
parameters must be set. General settings, derived from literature, are discussed
briefly in Section 4.1 before presenting suggestions for improving the performance
of a GA in an RDF query execution environment. Since a GA is based on the
principle of survival of the fittest, determining a solution’s fitness is a crucial step
in a GA. Section 4.2 discusses fitness determination and related issues. Finally,
Section 4.3 provides a quick overview of the encoding scheme used for the current
purpose to efficiently encode query paths.

4.1 Settings

Due to the time constraint associated with executing queries in an RDF envi-
ronment, using an HGA is not an option, regardless of its potential of returning
even better results than the algorithm used in [4]. This is because solutions of
good quality are not guaranteed to be found within a reasonable amount of time,



8 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

as discussed above. Therefore, it would be best to opt for a basic GA, adopting
the settings best performing in [4].

The algorithm, BushyGenetic (BG), considers a solution space containing
bushy query processing trees. A crowding prevention attempt is made by im-
plementing ranking-based selection. Furthermore, the population consists of 128
chromosomes. The crossover rate is 65%, while the mutation rate equals 5%. The
stopping condition is 50 generations without improvement. However, long exe-
cuting times are not desirable for a GA in an RDF query execution environment.
Therefore, the stopping condition is complemented with a time limit.

In literature, a GA has been proven to generate better results than a 2PO
algorithm in many cases. However, in order to accomplish these results, a GA has
turned out to be needing more execution time than 2PO. On the other hand,
research did show that a GA is aware of good solutions faster than 2PO [4].
Hence, the algorithm spends a lot of time optimizing good results before it
terminates. The latter property is an interesting property of GAs to exploit
in RDFGA for the current purpose. Since in a real-time environment like the
Semantic Web queries need to be resolved as quickly as possible, preliminary
and/or quicker convergence of the model might not be such a bad idea after all,
even though this increases the probability of outputting a sub-optimal result.
If the model could somehow quickly converge in the final stage of optimization
of good results, the execution time could be reduced remarkably and the sub-
optimal result would not be too far from the global optimum. The challenge is
to find a balance between execution time and solution quality.

The BG algorithm could be adapted in order to improve its performance
in an RDF query execution environment. For instance, the algorithm could be
forced to select the best solution for proliferation in the next generation at least
once (elitist selection), hereby avoiding the loss of a good solution. Replacing
ranking-based selection with fitness-based selection could be a subject of tests
too in this case, since this increases the probability of relatively fit solutions
to be selected, which could result in quicker convergence of the model due to
increased crowding. Furthermore, evolution could be considered to have stopped
after, e.g., 30 generations without improvement instead of 50; long enough in
order for the algorithm to be able to state with sufficient certainty that the
best known solution is either a very good local optimum or a global optimum,
especially in solution spaces with a relatively small number of solutions (which
is the case with smaller queries). Finally, the population size could be reduced
to for example 64 solutions, which would noticeably reduce the time needed
for computing the costs of all solutions in the population and would provide
just enough room for diversity in the population (especially for smaller queries),
hereby also enforcing quicker model convergence.

4.2 Determining a solution’s fitness

In the context of RDF query path determination, let the fitness Fs of a solution
s depend on its associated costs gs. When ranking the solutions, the solution
associated with the lowest costs should be associated with the highest rank and



Genetic Algorithms for RDF Query Path Optimization 9

the solution associated with the highest costs should be associated with the
lowest rank. In case of fitness-based selection, the probability of a solution to be
selected (as defined in equation 1) must be inverse proportional to its associated
costs [4]. This can be accomplished by defining the fitness Fs of solution s as
shown in equation 3, hereby assuming that the population contains n solutions.

Fs =
1− gs∑n

c=1 gc

n− 1
(3)

For the current goal, only nested-loop joins and hash joins are considered in
the calculation of solution costs. No index or hash key exists for the source used
here (making single-loop joins impossible) and the source data are unsorted (re-
quiring the sort-merge join algorithm to sort the data first, hereby unnecessarily
taking up precious running time).

When joining two operands, say c1 and c2, using a nested-loop join, the pro-
cessing costs are |c1|× |c2|×compC, where |c1| and |c2| represent the cardinality
of respectively operand c1 and c2 and compC denotes the cost of comparing two
elements. In case a hash join is used, the processing costs are (insC × |c1|) +
(retC × |c2| × avgB), where |c1| and |c2| again represent the cardinality of re-
spectively operand c1 and c2, insC denotes the costs of inserting an element into
the hash table, retC represents the cost of retrieving a bucket (which contains
elements) from the hash table and avgB stands for the average bucket size [2]. In
an RDF environment, cardinalities could be estimated, as actually performing
the joins in order to retrieve the number of elements resulting from each join of
sub paths would imply the execution time of the optimization process to be very
likely to exceed the execution time of a random query path. Hence, we work with
estimated cardinalities. These estimations could be updated after a query has
been evaluated; computed join costs can be saved for possible re-use in order to
reduce the time needed for evaluating joins.

4.3 Query path encoding

Encoding of query processing trees is done using an ordinal number encoding
scheme for bushy trees, proposed in [4], which not only efficiently represents
bushy trees (including the subset of right-deep trees), but enables relatively easy
and efficient crossover operations as well. This encoding algorithm iteratively
joins two concepts in an ordered list of concepts, the result of which is saved in
the position of the first appearing concept. In each iteration, the positions of the
selected concepts are saved into the encoded solution.

For example, consider the following ordered list of concepts: (c1, c2, c3, c4). An
initial join between the third and fourth concept yields the list (c1, c2, c3c4). An-
other join between the first and second concept in this new list yields (c1c2, c3c4).
A final join between the first and second concept in this list results in (c1c2c3c4).
A possible encoded notation of these joins is ((3, 4), (1, 2), (1, 2)). Additional
information, such as the applied join method, can also be stored in this encoded
notation. For details on the crossover and mutation methodology applied for the
current goal, we refer to [4].



10 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

5 Experimental Setup & Results

5.1 Experimental Setup

All experiments performed for the current purpose are run in a Microsoft Win-
dows XP environment, on a 2, 400 MHz Intel Pentium 4 system with 1, 534 MB
physical memory (DDR SDRAM). Tests are conducted on a single source: an
RDF version of the CIA World Factbook [6], generated using QMap [7]. The first
algorithm to be tested is the 2PO algorithm as proposed in [2]. The performance
of the BG algorithm [4] and its improved version (RDFGA) as proposed in Sec-
tion 4.1 are benchmarked as well. Finally, the performance of time-constrained
2PO and RDFGA (respectively 2POT and RDFGAT, in which the T denotes
the time-constrained nature of these algorithms) is evaluated.

Several experiments are conducted in order to determine the performance of
the considered algorithms; each algorithm is tested on chain queries varying in
length from 2 to 20 predicates (see Section 3 for a 6-predicate example). Each
experiment is iterated 100 times, in order to increase the accuracy of the re-
sults. The parameters in cost determination, compC, insC, retC and avgB, are
assigned random values of 0.02, 0.05, 0.05 and 5.0 respectively, since these ex-
ogenous variables are computer, programming language, and/or implementation
dependent and hence would be hard to determine. Since these variables are ex-
ogenous, their values will not affect the way the algorithm works, so their exact
values are not relevant for the goal pursued here.

The algorithms are configured according to the settings proposed in their
sources and thus all consider the entire solution space containing bushy query
trees. However, preliminary experimental results on the data set used in this
research show that, ranking-based selection perform quicker and yield better
results than fitness-based selection. Hence, we have decided to use the ranking
based-selection method in this research for RDFGA. Furthermore, the time limit
for 2POT and RDFGAT is set to 1000 milliseconds, since this allows the algo-
rithms to perform at least a couple of iterations and since in practice, waiting
1 second in order to have your complex query executed quickly, would probably
not be too long.

2PO 2POT

maxSol 10 10
startTempFactor 0.1 0.1
tempRed 0.05 0.05
frozenTemp 1 1
maxConsRedNoImpr 4 4
neighbourExpFactor 16 16
timeLimit - 1000

Table 1. Parameters of considered two-phase optimization algorithms



Genetic Algorithms for RDF Query Path Optimization 11

Table 1 presents an overview of the parameters of the 2PO algorithms con-
sidered. The maxSol parameter sets the maximum number of starting solutions
analyzed in the II part of 2PO. The fraction of the optimal cost resulting from
II to be used as starting temperature in SA is specified in startTempFactor,
whereas tempRed is the factor with which the temperature of the system is to
be reduced every iteration of SA. The frozenTemp parameter defines the temper-
ature below which the system is considered to be frozen. The maximum number
of consecutive temperature reductions not yielding improvement is defined in
maxConsRedNoImpr. For each visited solution, SA tries to move to neighbour-
ing solutions for a limited number of times, which equals the number of joins
in the query, multiplied by neighbourExpFactor. Finally, the maximum running
time in milliseconds is configured using the timeLimit parameter.

BG RDFGA RDFGAT

popSize 128 64 64
crossoverRate 0.65 0.65 0.65
mutationRate 0.05 0.05 0.05
stableFitnessGens 50 30 30
rankingBased true true true
elitist false true true
timeLimit - - 1000

Table 2. Parameters of considered genetic algorithms

An overview of the parameters of the GAs is presented in Table 2. The
number of chromosomes (solutions) to be subjected to a simulated biological
evolution process is defined using the popSize parameter. The crossoverRate pa-
rameter represents which fraction of each new generation is to be filled with
offspring resulting from crossover operations between pairs of randomly selected
chromosomes. The rest of the new generation is filled with direct selections from
the current generation. The fraction of the new population to be mutated is de-
fined using the mutationRate parameter. Furthermore, stableFitnessGens is the
number of consecutive generations not showing improvement in optimal fitness
needed for the fitness of the population to be considered stable. The ranking-
Based parameter is used to define whether ranking-based selection should be
applied rather than fitness-based selection, whereas the elitist parameter states
whether the best solution should always be selected for the next generation. The
maximum running time in milliseconds is defined in timeLimit.

5.2 Results

For each algorithm tested, Figure 3 visualizes the average time needed for op-
timizing chain queries. The chain queries considered in the experiments vary in



12 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

length from 2 to 20 predicates. The average execution times depicted in Figure 3
are based on 100 iterations of the query optimization process per experiment.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Number of predicates

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

 

 
2PO
BG
RDFGA
2POT
RDFGAT

Fig. 3. Average execution times

For all considered query lengths, on average, BG needs the most execution
time of all considered algorithms. Furthermore, 2PO turns out to be the fastest
performing optimization algorithm for relatively small chain queries containing
up to about 10 predicates. For the latter chain queries, on average, RDFGA
performs slower than 2PO, but still needs less execution time than BG. For
bigger chain queries, RDFGA is the fastest performing algorithm. However, the
time-constrained variants of 2PO and RDFGA obviously take the lead for even
bigger queries, where RDFGA’s execution time exceeds the time limit.

For each algorithm that we consider, the average costs associated with the
optimal solutions of chain queries varying in length from 2 to 20 predicates, based
on 100 iterations of the query optimization process per experiment, do not appear
to differ very much. However, a closer look to the relative deviations from the
optimal solutions found by 2PO can reveal more clear indications of differences
in performance. Without a time limit, both genetic BG and RDFGA tend to find
lower cost solutions, especially for larger queries. When a time limit for query
optimization is set, a GA tends to generate even better results compared to 2PO,
as shown in Figure 4. The known behaviour of both algorithms supports this
observation, since a GA tends to generate better results in less time, although it
needs more time to converge than a 2PO algorithm (as discussed in Section 4.1).
Therefore, the earlier in the optimization process both algorithms are forced to
stop, the better the result of a GA will be compared to the solution generated
by 2PO.

The consistency in performance is shown in Figures 5 and 6, using coefficients
of variation (standard deviation, expressed in relation to the mean) of the exe-
cution times and optimal solution costs, respectively, of chain queries of varying



Genetic Algorithms for RDF Query Path Optimization 13

2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Number of predicates

R
el

at
iv

e 
de

vi
at

io
n

 

 
2POT
RDFGAT

Fig. 4. Relative deviation of average optimal costs from 2PO average

lengths. These statistics are based on 100 iterations of the query optimization
process per experiment. A coefficient of variation close to 0 indicates all observed
values are closely clustered around the average. Hence, the higher the coefficient
of variation, the less consistent the performance of the algorithm.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of predicates

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

 

 
2PO
BG
RDFGA
2POT
RDFGAT

Fig. 5. Coefficients of variation of execution times

The coefficients of variation of the execution times for chain queries of differ-
ent lengths indicate that time-constrained algorithms tend to perform more and
more consistently for bigger chain queries. This observation can be explained
by realizing bigger chain queries require longer execution times, which are in-
creasingly likely to exceed the time limit. Hence, increasing parts of iterations of



14 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of predicates

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

 

 
2PO
BG
RDFGA
2POT
RDFGAT

Fig. 6. Coefficients of variation of optimal costs

bigger queries execute exactly as long as allowed, hereby reducing the variance
in execution times. As for the algorithms not constrained by a time limit, the
GAs appear to be less consistent in execution time needed than 2PO, especially
for more complex queries.

The 2PO algorithm shows a higher coefficient of variation of optimal costs
than BG and RDFGA. Also, the more predicates a chain query consists of, the
higher the coefficient of variation of optimal costs. When a time limit is set, the
coefficient of the 2PO algorithm increases rapidly with the number of predicates
chain queries consist of. GAs on the other hand show a constantly low coefficient
of variation of optimal costs. The results of RDFGA are not clearly affected by
a time limit.

6 Conclusions

The results detailed in this paper lead to the conclusion that in determining the
(optimal) query path in a single-source RDF query execution environment, a cor-
rectly configured genetic algorithm can outperform the two-phase optimization
algorithm in i) solution quality, ii) execution time needed, and iii) consistency
in performance, especially for more complex solution spaces. The superiority
of genetic algorithms relative to the two-phase optimization algorithm becomes
more clear in positive correlation with the restrictiveness of the environment (e.g.
a time limit) and the complexity of the solution space. However, it should be
noted that in less complex solution spaces, a genetic algorithm performs worse
compared to the two-phase optimization algorithm when it comes to execution
time. Furthermore, in some cases, the optimization process could take longer
than the actual execution of a query. This falls outside the scope of this paper,
but the total query execution process deserves more detailed study and should
be considered for further research.



Genetic Algorithms for RDF Query Path Optimization 15

Acknowledgement

The authors are partially supported by the EU funded IST STREP Project FP6
- 26896: Time-determined ontology-based information system for realtime stock
market analysis. More information is available on http://www.towl.org.

References

1. Klyne, G., Carroll, J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation (2004)

2. Stuckenschmidt, H., Vdovják, R., Broekstra, J., Houben, G.J.: Towards Dis-
tributed Processing of RDF Path Queries. International Journal of Web Engi-
neering and Technology 2(2-3), 207–230 (2005)

3. Manikas, T.W., Cain, J.T.: Genetic Algorithms vs. Simulated Annealing: A Com-
parison of Approaches for Solving the Circuit Partitioning Problem. Technical
report, Univerisy of Pittsburgh (1996)

4. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and Randomized Optimiza-
tion for the Join Ordering Problem. The VLDB Journal 6(3), 191–208 (1997)

5. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. 4th edn. Addison-
Wesley (2004)

6. Central Intelligence Agency: The CIA World Factbook (2007) See
https://www.cia.gov/cia/publications/factbook/, last visited April 2007.

7. Hogenboom, F., Hogenboom, A., van Gelder, R., Milea, V., Frăsincar, F., Kay-
mak, U.: QMap: An RDF-Based Queryable World Map. In: Third International
Conference on Knowledge Management in Organizations (KMO 2008), pp. 99–110
(2008)

8. Swami, A., Gupta, A.: Optimization of Large Join Queries. In: The 1988 ACM
SIGMOD International Conference on Management of Data (SIGMOD 1988), pp.
8–17 ACM Press, New York, NY, USA (1988)

9. Ioannidis, Y.E., Kang, Y.C.: Randomized Algorithms for Optimizing Large Join
Queries. In: The 1990 ACM SIGMOD International Conference on Management
of Data (SIGMOD 1990), pp. 312–321 ACM Press, New York, NY, USA (1990)

10. Frăsincar, F., Houben, G.J., Vdovjak, R., Barna, P.: RAL: An Algebra for Querying
RDF. World Wide Web Journal 7(1), 83–109 (2004)

11. Mitchell, T.M.: Machine Learning. McGraw-Hill Series in Computer Science.
McGraw-Hill (1997)

12. Misevicius, A.: A Fast Hybrid Genetic Algorithm for the Quadratic Assignment
Problem. In: The 8th Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO 2006), pp. 1257–1264 ACM Press, New York, NY, USA (2006)



Optimizing Ontology Alignments by Using
Genetic Algorithms

Jorge Martinez-Gil, Enrique Alba, and José F. Aldana-Montes

Universidad de Málaga, Departmento de Lenguajes y Ciencias de la Computación
Boulevard Louis Pasteur s/n 29071 Málaga (Spain)

{jorgemar,eat,jfam}@lcc.uma.es

http://www.lcc.uma.es

Abstract. In this work we present GOAL (Genetics for Ontology Align-
ments) a new approach to compute the optimal ontology alignment func-
tion for a given ontology input set. Although this problem could be solved
by an exhaustive search when the number of similarity measures is low,
our method is expected to scale better for a high number of measures.
Our approach is a genetic algorithm which is able to work with several
goals: maximizing the alignment precision, maximizing the alignment re-
call, maximizing the f-measure or reducing the number of false positives.
Moreover, we test it here by combining some cutting-edge similarity mea-
sures over a standard benchmark, and the results obtained show several
advantages in relation to other techniques.

Key words: ontology alignment; genetic algorithms; semantic integra-
tion

1 Introduction

The Semantic Web is a new paradigm for the Web in which the semantics of
information is defined, making it possible for the web to understand and satisfy
the requests of people and machines to use the web resources. Therefore, most
authors consider it as a vision of the Web from the point of view of an universal
medium for data, information, and knowledge exchange [1].

In relation to knowledge, it is very important the notion of ontology as a
form of representation about a particular universe of discourse or some part of
it. Ontology alignment is a key aspect in order to the knowledge exchange in
this extension of the Web may be real; it allows organizations to model their
own knowledge without having to stick to a specific standard. In fact, there are
two good reasons why most organizations are not interested in working with a
standard for modelling their own knowledge: (a) it is very difficult or expensive
for many organizations to reach a agreement about a common standard, and (b)
these standards do not often fit to the specific needs of the all participants in
the standarization process.

Altought ontology alignment is perhaps the most valuable way to solve the
problems of heterogeneity and, even there are a lot of techniques for aligning



2 Martinez-Gil et al.

ontologies in a very accurate manner, experiences tells us that the complex
nature of the problem to be solved makes difficult that these techniques operate
in a satisfactory way for all kinds of data, in all domains, and as all users expect.
This problem has been studied in [2].

As a result, techniques that combine existing methods have appeared. The
goal of these techniques is to obtain more complex and accurate matching algo-
rithms. The way to combine these matching algorithms is under an exhaustive
research now. The most promising mechanisms are reviewed in the Section 6,
but we can advance that the use of Genetic Algorithms (GAs) has been studied
in little depth by researchers. Therefore, the main contributions of this work are:

– The proposal of an efficient mechanism, other than those that already exist,
to compute the optimal function for aligning arbitrary sets of ontologies.

– The additional possibility to obtain goal-driven results, thus optimize some
of the characteristics of an output alignment.

– We provide results following a standard benchmark to enable the comparison
with other approaches.

The rest of this work is structured in the following way: Section 2 describes
the problem statement. Section 3 presents the technical preliminaries which are
neccesary to our approach. Section 4 discusses our aproach. Section 5 findings
extracted from several experiments, including the use of a benchmark provided
by the Ontology Alignment Evaluation Initiative [3]. Section 6 compares our
results with other proposals. Finally, we remark the strengths and flaws of our
proposal and discuss the future work in Section 7.

2 Problem Statement

The process of aligning ontologies can be expressed as a function f where given
a pair of ontologies o and o′, an partial (and optional) input alignment A, a set
of parameters p and a set of resources r, returns a new alignment A′:

A′ = f(o, o′, A, p, r)

A′ is a set of mappings. A mapping is an expression that represents a semantic
correspondence between two entities. A mapping is the atomic component of an
alignment and is a formalism that allows to share knowledge models created
separately.

However, experience tells us that getting f is far from trivial. As we com-
mented earlier, the heterogeneity and ambiguity of data descriptions makes unre-
alistic the scenario in which that optimal mappings for many pairs of entities will
be considered as ”best mappings” by any of the existing matching algorithms.
For instance, the Fig. 1 shows an alignment that is valid for users from some
countries, but not for some others. The current trend is to diversify (and possi-
bly weight) the matching algorithms. To do it, it is neccesary to use composite
ontology matchers.



Optimizing Ontology Alignments by Using Genetic Algorithms 3

Fig. 1. Example of alignment between two ontologies. Most probably none of the two
ontology owners will consider it optimal for them

Composite matchers are aggregation of simple matchers which exploit a wide
range of information, in fact, we can classify the matching algorithms in the
following types:

1. String normalization. This consists of methods such as removing unnec-
essary words or symbols from the entity names. Moreover, they can be used
for detecting plural nouns or to take into account common prefixes or suffixes
as well as other natural language features.

2. String similarity. Text similarity is a string based method for identifying
similar entity names. For example, it may be used to identify identical con-
cepts of two ontologies if they have a similar name. The reader can see [4]
for more details about this algorithms.

3. Data Type Comparison. These methods compare the data type of the
ontology elements. Similar concept attributes are logically expected to have
the same data type.

4. Linguistic methods. This consists in the inclusion of linguistic resources
such as lexicons and thesauri to identify possible similarities. The most pop-
ular linguistic method is to use WordNet [5] to identify some kinds of rela-
tionships between entities.

5. Inheritance analysis. Theses kinds of methods take into account the inher-
itance between concepts to identify relationships. The most popular method
is the is-a analysis that tries to identify subsumptions between concepts.

6. Data analysis. These kinds of methods are based on the rule: If two con-
cepts have the same instances, they will probably be similar. Sometimes, it



4 Martinez-Gil et al.

is possible to identify the meaning of an upper level entity by looking at a
lower level entity. For example, if instances contain a string such as years
old, it probably belongs to an attribute called age.

7. Graph-Mapping. This consists in identifying similar graph structures in
two ontologies. These methods use known graph algorithms to do so. Most
of times this involves computing and comparing paths, adjacent nodes and
taxonomy leaves.

8. Statistical analysis. It consists of the extraction of keywords and textual
descriptions for detecting the meaning of the entities in relation to other
entities.

9. Taxonomy analysis. It tries to identify similar concepts by looking at their
related concepts. The main idea is that two concepts belonging to different
ontologies have a certain degree of probability of being similar if they have
the same neighbours.

The main idea of composite matchers is to combine similarity values predicted
by multiple simple algorithms to determine correspondences between entities
belonging to different ontologies. The most popular proposals in this field are
COMA [6], COMA++ [7], QuickMig [8], FOAM [9], iMAP [10] and OntoBuilder
[11]. But these proposals use, in the best of the cases, weigths determined by an
expert. Our work does not use weights from an expert, but compute those for
obtaining the optimum alignment function so that the problem can be solved
accuarately and without requiring human intervention.

3 Technical Preeliminaries

Definition 1 (Similarity measure). A similarity measure sm is a function
sm : µ1 × µ2 7→ < that associates the similarity of two input ontology entities
µ1 and µ2 to a similarity score sc ∈ < in the range [0, 1], where a similarity
score of 0 stands for complete inequality and 1 for complete equality of the input
ontology entities µ1 and µ2.

Definition 2 (Weighted similarity measure). Let A be a set of well-known
similarity measures and w a numeric weight vector, and let O1, O2 be two input
ontologies, then we can define wsm as a weighted similarity measure in the
following form:

wsm(O1, O2) = x ∈ [0, 1] ∈ < → ∃ 〈A,w〉 , x = max(
∑i=n

i=1 Ai · wi)
subject to

∑i=n
i=1 wi ≤ 1

From an engineering point of view, this function leads to an optimization
problem for calculating the numeric weight vector, because the number of can-
didates from the solution space (in this case an arbitrary continous interval) is
infinite. Hence, exact techniques are of low help here, and we are interested in
methods such metaheuristics (e.g.g genetic algorithms) that find quasi optimum



Optimizing Ontology Alignments by Using Genetic Algorithms 5

results in such solution spaces.

Definition 3 (Ontology alignment). An ontology alignment oa is a set of
tuples {(id, e, e′, n,R)}. Where id is an unique identifier of the mapping, e and
e′ are entities belonging to two different ontologies, R is the relation of corre-
spondence between these entities and n is a real number between 0 and 1 that
represents the mathematical probability that R is true. The entities that are re-
lated are the concepts, roles, rules, and even axioms of the two ontologies.

Definition 4 (Ontology matching function). An ontology matching om is
a function om : O1 × O2

sm→ A that associates two input ontologies O1 and O2

to an alignment A using a similarity measure (or a weighted similarity measure).

Definition 5 (Alignment evaluation). An alignment evaluation ae is a func-
tion ae : A × AR 7→ precision × recall that associates an alignment A and an
reference alignment AR to two real numbers in the interval [0, 1] stating the pre-
cision and recall of A in relation to AR.

Code 1 shows an example of an output from an alignment evaluation process
where two ontologies from a standard benchmark provided by the OAEI [3] have
been aligned. Parameters will be discussed in more detail in Section 5.

Code 1 Example of Alignment Evaluation

<?xml version=’1.0’ encoding=’utf-8’ standalone=’yes’?>

<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:map=’http://.../projects/ontology/ResultsOntology.n3#’>

<map:output rdf:about=’’>

<map:input1 rdf:resource="http://.../benchmarks/101/onto.rdf"/>

<map:input2 rdf:resource="http://.../benchmarks/204/onto.rdf"/>

<map:precision>1.0</map:precision>

<map:recall>0.6288</map:recall>

<fallout>0.0</fallout>

<map:fMeasure>0.7721</map:fMeasure>

<map:oMeasure>0.6288</map:oMeasure>

<result>0.6288</result>

</map:output>

</rdf:RDF>



6 Martinez-Gil et al.

4 Genetics for Ontology ALignments (GOAL)

We are beginning our research. First, we are going to consider GAs. Later, we
may consider other approaches. GAs are often used to search along very high
dimensional problems spaces. For example, if we want to find the maximum
value of the function wsf with three independent variables w0, w1 and w2:

wsf(O1, O2) =
w0 · datatype(O1, O2) + w1 · normalization(O1, O2) + w2 · synonyms(O1, O2)

where w0, w1 and w2 are weights to determine the importance of the three
respective similarity measures, which belong, for instance, to the continuous
interval [0, 1]. The problem that we want to solve consists of finding a good
value of w0, w1 and w2 to find the largest possible value of wsf .

While this problem can be solved trivially by a brute force search over the
range of the independent variables w0, w1 and w2, the GA method scales very
well to similar problems of a higher dimensionality; for example, we might have
functions using a large number of independent variables w0, w1, w2,..., wn. In
this case, an exhaustive search would be prohibitively expensive.

Fig. 2. General schema for our proposal

The methodology of the application of a GA requires defining the following
strategies:

– Characterize the problem by encoding in a string of values the contents of a
tentative solution.



Optimizing Ontology Alignments by Using Genetic Algorithms 7

– Provide a numeric fitness function that will allow to rate the relative quailty
of each individual tentative solution in a population.

That is what we are going to do with GOAL. Our first task is to characterize
the search space as some parameters. We need to encode several parameters
in a single chromosome, so we have designed a method for converting a bit
representation to a set of floating-point numbers in the real range [0, 1].

Later, we haved designed a fitness function to determine which chromosomes
in the population are most likely to survive and reproduce using genetic crossover
and mutation operations.

Related to the fitness function, we can choose any parameter provided for
the alignment evalution process. In this way, we are providing the possibility to
select one of these goals.

– Optimizing the precision (fitness := precision)
– Optimizing the recall (fitness := recall)
– Optimizing the f-measure (fitness := f −measure)
– Reducing the number of false positives (fitness := fall − out)

The fitness function consist of selecting one of the parameters retrieved by
an Alignment Evaluation (see Definition 5). All of these parameters are concepts
used in Information Retrieval [12] for measuring the quality of a retrieval task.
Precision is the percentage of items returned that are relevant. Recall is the
fraction of the items that are relevant to a query (in this case, to a matching task).
F-measure is a harmonic mean from precision and recall. Finally, false positives
are relationships which have been provided to the user although they are false. In
some domains, (for instance in Medicine) false positives are absolutely unwanted.

Our algorithm works under the paradigm of a single goal programming strat-
egy, but optimizing the F-Measure (a weighted sum of precision and recall) has
an effect similar to a multi-objetive strategy. However, a brief discussion about
using a multi-objetive algorithm will be presented as future work.

5 Empirical Evaluation

In this section, we provide an empirical evaluation of our approach. To do that,
we have worked with the well-known benchmark provided by the OAEI [3].
Firstly, we have performed a preeliminary study to choose the parameters and
then we have performed the main experiment.

5.1 Preeliminary Study

We are going to do a preeliminary study of the parameters for the algorithm.

– For the number of genes per chromosome we have selected such values as 5,
10 and 20. A study using a t-Test distribution has shown us that that the
differences between samples are not statistically significant. Therefore, we
have selected 20 genes per chromosome.



8 Martinez-Gil et al.

– For the number of individuals in the population, we have selected such values
as 20, 50 and 100. Again, a t-Test statistical distribution has shown that the
differences between these samples are not statistically significant. So we have
selected a population of 100 individuals.

– Related to crossover and mutation fraction, we have choosen a high value for
the crossover between genes and, a little percentage for mutations, because
we wish a classical configuration for the algorithm.

– After ten independent executions, we noticed that the genetic algorithm does
not improve the results beyond the fifth generation, so we have set a limit
of five generations.

5.2 Main Experiment

Related to the conditions of the experiment, we have used:

– As similarity measure vector:
{Levhenstein[13], SIFO [14], Stolios[15], QGrams[16]}

– The GA has been configured having into account the following parameters1:
• 20 genes per chromosome
• Each gene is encoded in a 10-bit representation
• A population of 100 individuals
• 0.98 for crossover probability
• 0.05 for mutation probability
• We allow 5 generations

– The platform characteristics: Intel Core 2 Duo, 2.33GHz and 4GB RAM.

The way that we have choosen for providing the dynamic evaluation of the
alignment uses the following formulas:

Precision =
{relevant mappings} ∩ {retrieved mappings}

{relevant mappings}

Recall =
{relevant mappings} ∩ {retrieved mappings}

{retrieved mappings}

FMeasure =
2 · precision · recall
precision+ recall

Fallout =
{non relevant mappings} ∩ {retrieved mappings}

{non relevant mappings}
Now, let us discuss the results we have obtained. Table 1 shows a brief de-

scription about the purpose of each test of the benchmark.
Table 2 shows the results from a Precision-Driven test, the Table 3 shows the

results from a Recall-Driven test, the Table 4 shows results from a F-Measure-
Driven test and, finally Table 5 shows the empirical data from a Fall-out-driven
test.
1 Fitness and search space have been explained in the previous section



Optimizing Ontology Alignments by Using Genetic Algorithms 9

Ontology Brief explanation

101 Strictly identical ontologies
102 A regular ontology and a null ontology
103 A regular ontology and other with a language generalization
104 A regular ontology and other with a language restriction
201 Ontologies without entity names
202 Ontologies without entity comments
203 Ontologies without entity names and comments
204 Ontologies with different naming conventions
205 Ontologies whose labels are synonymous
206 Ontologies whose labels are in different languages
221 A regular ontology and other with no specialisation
222 A regular ontology and other with a flatenned hierarchy
223 A regular ontology and other with a expanded hierarchy
224 Identical ontologies without instances
225 Identical ontologies without restrictions
301 A real ontology about bibliography made by MIT

Table 1. Explanation of the performed tests

Ontology Comment Best Precision Generations

101 Reference alignment 1.00 1
102 Irrelevant ontology N/A 1
103 Language generalization 1.00 1
104 Language restriction 1.00 1
201 No names 1.00 1
202 No names, no comments 1.00 1
203 No comments (was missspelling) 1.00 1
204 Naming conventions 1.00 1
205 Synonyms 1.00 2
206 Translation 1.00 2
221 No specialisation 1.00 2
222 Flatenned hierarchy 1.00 3
223 Expanded hierarchy 1.00 2
224 No instance 1.00 1
225 No restrictions 1.00 2
301 Real: BibTeX/MIT 0.90 5

Table 2. Precision-Driven test



10 Martinez-Gil et al.

Ontology Comment Best Recall Generations

101 Reference alignment 1.00 1
102 Irrelevant ontology N/A 1
103 Language generalization 1.00 1
104 Language restriction 1.00 1
201 No names 1.00 1
202 No names, no comments 1.00 1
203 No comments (was missspelling) 1.00 1
204 Naming conventions 1.00 1
205 Synonyms 0.71 5
206 Translation 1.00 2
221 No specialisation 1.00 1
222 Flatenned hierarchy 1.00 1
223 Expanded hierarchy 1.00 1
224 No instance 1.00 1
225 No restrictions 1.00 1
301 Real: BibTeX/MIT 0.69 5

Table 3. Recall-Driven test

Ontology Comment Best F-Measure (Pr, Rec) Generat.

101 Reference alignment 1.00 (1.00, 1.00) 1
102 Irrelevant ontology N/A 1
103 Language generalization 1.00 (1.00, 1.00) 1
104 Language restriction 1.00 (1.00, 1.00) 1
201 No names 1.00 (1.00, 1.00) 1
202 No names, no comments 1.00 (1.00, 1.00) 1
203 Comments was missspelling 1.00 (1.00, 1.00) 1
204 Naming conventions 1.00 (1.00, 1.00) 1
205 Synonyms 0.44 (0.38, 0.53) 5
206 Translation 0.43 (0.38, 0.51) 5
221 No specialisation 1.00 (1.00, 1.00) 1
222 Flatenned hierarchy 1.00 (1.00, 1.00) 2
223 Expanded hierarchy 1.00 (1.00, 1.00) 2
224 No instance 1.00 (1.00, 1.00) 3
225 No restrictions 1.00 (1.00, 1.00) 3
301 Real: BibTeX/MIT 0.57 (0.54, 0.62) 5

Table 4. F-Measure-Driven test



Optimizing Ontology Alignments by Using Genetic Algorithms 11

Ontology Comment Best Fallout Generations

101 Reference alignment 0.00 1
102 Irrelevant ontology N/A 1
103 Language generalization 0.00 1
104 Language restriction 0.00 1
201 No names 0.00 1
202 No names, no comments 0.00 1
203 No comments (was missspelling) 0.00 1
204 Naming conventions 0.00 1
205 Synonyms 0.06 5
206 Translation 0.06 5
221 No specialisation 0.00 1
222 Flatenned hierarchy 0.00 2
223 Expanded hierarchy 0.00 2
224 No instance 0.00 2
225 No restrictions 0.00 3
301 Real: BibTeX/MIT 0.07 5

Table 5. Fallout-Driven test

As it can be seen, we have found the optimal alignment function for the ma-
jority of tests. In this way, we could cover matching cases, and therefore increase
the chances of success. Some of test cases are solved in the first generation, this
is because our application is not very difficult, maybe the problem is, but these
specific instances are not.

6 Related Work

If we look at literature, we can distinguish between individual algorithms (i.e.
FCA-MERGE [17] or S-Match [18]) applying only a single method of matching
items i.e. linguistic or taxonomical matchers and combinations of the former
ones, which intend to overcome their limitations by proposing hybrid and com-
posite solutions. A hybrid approach (i.e.Cupid [19]) follows a black box paradigm,
in which various individual matchers are melt together in a new algorithm [20],
while the so-called composite matchers allow an increased user interaction (i.e.
COMA++ [7], Falcon [21], CtxMatch [22], RiMOM [23]). In Fig. 3, we can see a
comparison between some of the most popular tools for matching ontologies. The
figure represents the arithmetic means of the values obtained for the standard
benchmark for the precision and recall, obtaining the F-Measure and Fall-Out
is trivial.

The problem is that those kinds of proposals use weights defined by an expert
for configuring the composite matchers, while using our approach involves to
compute the weigths in an automatic way, so the process can be more flexible,
at least, in real scenarios.

To avoid the expert intervention, there are two research lines; one line for
evaluating the results of an alignment tool and maybe feedback the process



12 Martinez-Gil et al.

Fig. 3. Comparison between most outstanding tools

[24] [25] and another called ontology meta-matching [26] that tries to optimize
automatically the parameters related to matching task. So, our approach could
be considered a mechanism for meta-matching. Most outstanding examples for
this paradigm are evaluated in the next sections: (i) Exhaustive Search solutions,
(ii) Machine Learning solutions, and (iii) Genetic Algorithms solutions.

6.1 Exhaustive Search

Ontology meta-matching can be solved trivially by an exhaustive search when
the number of similarity measures is low. The most popular approach in this
sense is eTuner [27] that it is a system which, given a particular matching task,
automatically tunes an ontology matching system (computing one-to-one align-
ments). For that purpose, it chooses the most effective basic matchers, and the
best parameters to be used.

However, exhaustive searches are very expensive, and unworkable when com-
bining a great number of measures, from a computational point of view. Unfor-
tunately, the paper from eTuner [27] has not used an standard benchmark to
offer the results, so we cannot show a comparison.

6.2 Machine Learning

Based on Machine Learning meta-matching techniques can be divided into two
subtypes: Relevance feedback [28] and Neural Networks [29]:

– The idea behind relevance feedback [28] is to take the results that are initially
returned from a given query and to use information about whether or not
those results are relevant to perform a new query: APFEL (Alignment Pro-
cess Feature Estimation and Learning) [29] is a machine learning approach
that explores user validation of initial alignments for optimising automati-
cally the configuration parameters of some of the matching strategies of the
system, e.g., weights, and thresholds, for the given matching task.



Optimizing Ontology Alignments by Using Genetic Algorithms 13

– Neural Networks [30] are non-linear statistical data modeling or decision
making tools. They can be used to model complex relationships between
inputs and outputs or to find patterns in data. SFS [31] It is a tool for on-
tology meta-matching that tries to obtain automatically a vector of weights
for different semantic aspects of a matching task, such as comparison of con-
cept names, comparison of concept properties, and comparison of concept
relationships. To do that, it uses neural networks.

However, these kind of solutions implies spending much time on training the
systems in relation to our proposal.

6.3 Genetic Algorithms

In relation to other based-on-Genetic-Algorithm solutions, the most oustandig
tool is GAOM [32] which is a genetic algorithm based approach for solving the
ontology matching problem. For the purpose of a more precise representation
of ontology features, it defines two aspects: intensional and extensional. On the
other hand, ontology matching problem is modeled as a global optimization of
a mapping between two ontologies. Then, a genetic algorithm is used to achieve
a quasi optimal solution.

Table 7 shows a comparison of the results we have obtained for both GAOM
and GOAL.

Precision Recall

GAOM 0.94 0.87
GOAL 0.99 0.96

Table 6. Comparison between GAOM and our proposal

Although we also follow a GA based paradigm, our GOAL is slightly better
in terms of numbers to GAOM as our results shows. We think that the main
diference in relation to the other tool is the fitness function. Therefore, as far
as we know, our results constitute the new state of the art (S.O.T.A.) in this
domain.

7 Conclusions and Future Work

We have here presented a mechanism for obtaining optimum ontology align-
ment functions using genetic algorithms which is part of a novel computational
discipline, called meta-matching, which allows flexible and accurate automatic
ontology matching and generalizes and extends previous proposals for exploiting
an ensemble of ontology matchers.

We have shown that our proposal is able to find the optimal solutions for
ontology alignment in most cases. According to the results, our approach seems



14 Martinez-Gil et al.

to be an accurate and efficient tool for this task. And most importantly, it can
be used in a single goal-driven way versus others using composite matching
algorithms.

However, this mechanism is heavily dependent of the similarity measures to
be weighted. By this reason, we highly recommend to use not only cutting-edge
measures, but a big enough and representative set of them. We recommend to
use, at least, one similarity measure for each kind of the matchers discussed in
Section 2.

As future work, we want to study a multiobjetive strategy, thus, we plan to
avoid unwanted deviations from precision and recall values. Moreover, we want
to learn more about [33] for automatically selecting matching algorithms on
the basis of their metadata. Our goal is, given the specifications of an ontology
matching problem, to compute the optimum alignment function so that the
problem can be solved accuarately and without requiring human intervention.
In this way, the real interoperability in the Sematic Web might become true.

Acknowledgements

This work has been funded by Spanish Ministry of Education & Science through
the research projects: A basic infrastructure for development in the Semantic
Web and its application to conceptual mediation in Bioinformatics. (TIN2005-
09098-C05-01) and Net Centric Optimization. (TIN2005-08818-C04-01).

References

1. Tim Berners-Lee, James Hendler and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

2. Christoph Kiefer, Abraham Bernstein, Markus Stocker: The Fundamentals of iS-
PARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks.
ISWC/ASWC 2007: 295-309.

3. Ontology Alignment Evaluation Initiative (OAEI). http://oaei.

ontologymatching.org/2007. Last visit: 29-jan-2008.
4. Gonzalo Navarro: A guided tour to approximate string matching. ACM Comput.

Surv. 33(1): 31-88 (2001).
5. WordNet. http://wordnet.princeton.edu. Visit date: 11-march-2008.
6. Hong Hai Do, Erhard Rahm: COMA - A System for Flexible Combination of

Schema Matching Approaches. VLDB 2002: 610-621.
7. David Aumueller, Hong Hai Do, Sabine Massmann, Erhard Rahm: Schema and

ontology matching with COMA++. SIGMOD Conference 2005: 906-908.
8. Christian Drumm, Matthias Schmitt, Hong Hai Do, Erhard Rahm: Quickmig: au-

tomatic schema matching for data migration projects. CIKM 2007: 107-116.
9. Marc Ehrig, York Sure: FOAM - Framework for Ontology Alignment and Mapping

- Results of the Ontology Alignment Evaluation Initiative. Integrating Ontologies
2005.

10. Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy, Pedro Domin-
gos: iMAP: Discovering Complex Mappings between Database Schemas. SIGMOD
Conference 2004: 383-394.



Optimizing Ontology Alignments by Using Genetic Algorithms 15

11. Haggai Roitman, Avigdor Gal: OntoBuilder: Fully Automatic Extraction and Con-
solidation of Ontologies from Web Sources Using Sequence Semantics. EDBT
Workshops 2006: 573-576.

12. Ricardo A. Baeza-Yates, Berthier A. Ribeiro-Neto: Modern Information Retrieval
ACM Press / Addison-Wesley 1999.

13. Vladimir Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics-Doklady, Vol. 10, pages 707-710, August 1966.

14. Jorge Martinez-Gil, Ismael Navas-Delgado, Jose F. Aldana Montes. SIFO. An ef-
ficient taxonomical matcher for ontology alignment. Technical Report ITI-08-3.
Department of Languages and Computing Sciences, University of Malaga. Febru-
ary 2008.

15. Giorgos Stoilos, Giorgos B. Stamou, Stefanos D. Kollias: A String Metric for On-
tology Alignment. International Semantic Web Conference 2005: 624-637

16. Esko Ukkonen: Approximate String Matching with q-grams and Maximal Matches.
Theor. Comput. Sci. 92(1): 191-211 (1992).

17. Gerd Stumme, Alexander Maedche: FCA-MERGE: Bottom-Up Merging of On-
tologies. IJCAI 2001: 225-234.

18. Fausto Giunchiglia, Pavel Shvaiko, Mikalai Yatskevich: S-Match: an Algorithm and
an Implementation of Semantic Matching. ESWS 2004: 61-75.

19. Jayant Madhavan, Philip A. Bernstein, Erhard Rahm: Generic Schema Matching
with Cupid. VLDB 2001: 49-58.

20. Carmel Domshlak, Avigdor Gal, Haggai Roitman: Rank Aggregation for Automatic
Schema Matching. IEEE Trans. Knowl. Data Eng. 19(4): 538-553 (2007).

21. Wei Hu, Gong Cheng, Dongdong Zheng, Xinyu Zhong, Yuzhong Qu: The Results
of Falcon-AO in the OAEI 2006 Campaign. Ontology Matching 2006.

22. Slawomir Niedbala: OWL-CtxMatch in the OAEI 2006 Alignment Contest. Ontol-
ogy Matching 2006.

23. Yi Li, Juan-Zi Li, Duo Zhang, Jie Tang: Result of Ontology Alignment with Ri-
MOM at OAEI’06. Ontology Matching 2006.

24. Avigdor Gal, Ateret Anaby-Tavor, Alberto Trombetta, Danilo Montesi: A frame-
work for modeling and evaluating automatic semantic reconciliation. VLDB J.
14(1): 50-67 (2005).

25. Patrick Lambrix, He Tan: A Tool for Evaluating Ontology Alignment Strategies.
J. Data Semantics 8: 182-202 (2007)

26. Jerome Euzenat, Pavel Shvaiko. Ontology Matching. Springer-Verlag, 2007.
27. Yoonkyong Lee, Mayssam Sayyadian, AnHai Doan, Arnon Rosenthal: eTuner: tun-

ing schema matching software using synthetic scenarios. VLDB J. 16(1): 97-122
(2007).

28. Gerard Salton, Chris Buckley: Improving retrieval performance by relevance feed-
back. JASIS 41(4):288-297 (1990).

29. Marc Ehrig, Steffen Staab, York Sure: Bootstrapping Ontology Alignment Methods
with APFEL. International Semantic Web Conference 2005: 186-200.

30. Michael I. Jordan, Christopher M. Bishop: Neural Networks. The Computer Sci-
ence and Engineering Handbook 1997: 536-556.

31. Jingshan Huang, Jiangbo Dang, Jos M. Vidal, and Michael N. Huhns. Ontology
Matching Using an Artificial Neural Network to Learn Weights. IJCAI Workshop
on Semantic Web for Collaborative Knowledge Acquisition 2007.

32. J. Wang, Z. Ding, C. Jiang: GAOM: Genetic Algorithm based Ontology Matching.
In Proceedings of IEEE Asia-Pacific Conference on Services Computing, 2006.

33. Malgorzata Mochol, Elena Paslaru Bontas Simperl: A High-Level Architecture of a
Metadata-based Ontology Matching Framework. DEXA Workshops 2006: 354-358



Anatomy of a Semantic Virus

Peyman Nasirifard

Digital Enterprise Research Institute
National University of Ireland, Galway

IDA Business Park, Lower Dangan, Galway, Ireland
peyman.nasirifard@deri.org

Abstract. In this position paper, I discuss a piece of malicious auto-
mated software that can be used by an individual or a group of users
for submitting valid random noisy RDF-based data based on predefined
schemas/ontologies to Semantic search engines. The result will under-
mine the utility of semantic searches. I did not implement the whole
virus, but checked its feasibility. The open question is whether nature
inspired reasoning can address such problems which are more related to
information quality aspects.

1 Introduction and Overview

Semantic-Web-Oriented fellows encourage other communities to generate/use/share
RDF statements based on predefined schemas/ontologies etc. to ease the inter-
operability among applications by making the knowledge machine-processable.
The emergence of semantic-based applications (e.g. Semantic digital libraries1,
SIOC-enabled shared workspaces2, Semantic URL shorten tools 3) and also APIs
(e.g. Open Calais4) etc. are good evidences to prove the cooperation among ap-
plication developers to talk using the famous subject-predicate-object notion.
However talking with the same alphabets but various dialects brings ambiguity-
related problems which have been addressed by some researchers and are out of
scope of this paper.

Searching, indexing, querying and reasoning over (publicly) available RDF
data bring motivating use cases for Semantic search engine fellows. The crawlers
of Semantic search engines crawl the Web and index RDF statements (triples)
they discover on the net for further reasoning and querying. Some of them are
also open to crawl the deep Web by enabling users to submit the links to their
RDF data.

Since the birth of computer software, especially operating systems, clever
developers and engineers benefited from software security leaks and developed

1 http://www.jeromedl.org/
2 http://www.bscw.de/
3 http://bit.ly/
4 http://www.opencalais.com/



software viruses which in some cases brought lots of disasters to governments,
businesses and individuals5.

In this paper, I describe a potential piece of software which can be used by a
malicious user or a group of synergic malicious users in order to undermine the
utility the Semantic search engines. In brief, what the virus does, is generating
automatically random noisy knowledge which will be indexed by Semantic search
engines. My main motivation of presenting this idea here is identifying some
research challenges in trust layer of the well-known Semantic Web tower.

It is worthwhile mentioning that the title of this paper Anatomy of a Se-
mantic Virus is perhaps misleading. Actually, I am not going to describe the
anatomy of a virus that is based on the Semantic Web6, but rather I focus on a
distributed virus that targets Semantic Web data.

The structure of this position paper proceeds like the following: In the next
part, I describe the problem and a scenario that demonstrates the method that
the potential virus may operate upon. In section 3, I have a discussion on poten-
tial directions of finding solutions. Finally, I conclude this short position paper.

2 Problem

Semantic Web search engines (e.g. SWSE7, Swoogle8) crawl and index new Se-
mantic Web documents containing RDF statements. There are some services
available on the net (e.g. Ping The Semantic Web9 (PTSW)) that enable end
users to publicly submit and announce the availability of their Semantic Web
data. These submissions can be later fetched by Semantic search engines for
indexing and further reasoning.

The main module of the potential virus is a piece of code that receives as input
several triples and generates as output several triples based on the inputs and also
predefined schemas, so that the generated RDF triples are syntactically correct,
but semantically wrong (fake). Figure 1 shows a simple example. As illustrated
in the figure, the input is two RDF triples: ”Galway is part of Ireland” and
”London is part of England”. The RDF schema has already defined that Galway
and London are instances of the concept City, whereas Ireland and England are
Countries. In this example, the virus exchanges the object (or subject) parts of
triples, taking to account the fact that both objects (or subjects) are instances
of the same class (Country or City). The generated result will be ”Galway is
part of England” and ”London is part of Ireland”; which both are correct RDF
statements, but wrong (fake) knowledge. Note that the whole process is done
by a malicious software and it is not kind of supervised editing and/or does not
have human in the loop.
5 http://www.landfield.com/isn/mail-archive/2000/May/0067.html
6 I see this a bit strange, as common computer viruses do not communicate to each

other and interoperability among viruses is not well-defined.
7 http://swse.org/
8 http://swoogle.umbc.edu/
9 http://pingthesemanticweb.com/



Fig. 1. Main module of the virus

The number of fake clones that can be generated is all possible instances of
various concepts within RDF document.

Note that the same problem may exist on the Web and somebody may put
fake knowledge on common Web pages. Moreover there exist lots of tricks to
get high ranking in search engines, but as we know, the growth of the Semantic
Web is not as fast as the Web10 [1] and such malicious activities are feasible
and can be performed using available RDF documents. Meanwhile, Semantic
Web’s main promise is to make the knowledge machine-processable, whereas the
unstructured data on the Web is more suited for humans and obviously current
machines do not have the wisdom and sense of humans.

On the other hand, someone may claim that due to the success of collab-
orative information gathering platforms like Wikipedia 11, the motivation for
producing wrong knowledge in RDF is weak. However, we all benefit from plat-
forms like Wikipedia, but we rarely use its articles to cite in scientific papers.
The reason is perhaps the fact that the authors of such articles are unknown
and we can not really trust on the content. The same applies to the RDF data.
If we gather a large amount of Semantic Web data in RDF, can we really trust
them? How to exclude potential fake triples from the knowledge base?

2.1 Scenario

Here I present a simple scenario to describe the possible attack that a virus can
affect RDF data. As we know, publicly available services like PTSW, provide pro-
cessable feeds that include the recently-added/updated RDF documents. These
feeds are used by malicious software. However, the virus may even use Semantic
search engines to find RDF data from the net.

10 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html and
http://sw.deri.org/2007/06/ontologymap/

11 http://www.wikipedia.org/



Fig. 2. Possible attack

In our scenario, the malicious software will parse the output feed of the PTSW
and get an index of the published RDF files. Then it fetches the RDF statements
from the net and changes them so that the generated RDF will be still valid. The
result will be then submitted as an updated (or new) RDF after a random time
interval with a random IP address (TCP/IP level) using a random hosting to
PTSW which will be indexed by Semantic search engines. The malicious software
may even submit the content directly to semantic search engines, if they provide
such functionality. Figure 2 demonstrates the overall view of the possible attack
which can be performed using PTSW service.

The main problem arises, when a group of people or even an individual in
large scale employs several instances of the malicious software and generates
fake RDF triples which will be submitted/indexed to/by the Semantic search
crawlers. If search engines are not capable to cope with this situation, the result
will undermine the utility of semantic searches.

3 Discussion

Digital signature is a vertical layer in the Semantic Web tower. There exist some
third-parties that issue certificates for authorized users. However we may use
digital signatures, certificates or any other means to cope with authentication
and authorization aspects of RDF data, but we can not cope with the Quality
aspects of the information (accuracy, validity, etc.). Moreover, we can not really
bound the usage of Semantic Web to only authenticated, authorized and/or
certified parties. Otherwise, we are highly eliminating its usage.

It is important to consider that the source of a piece of data is an important
factor in validity and accuracy which are two important concepts of information
quality. However, the virus is not able to change the origin of RDF document,
but it is able to edit the RDF with fake statements. As virused RDF is still



valid based on a schema, it can not be simply tracked for possible manipulation.
One research problem that arises with this issue is investigation on the cloned
graphs to find out the original one and perhaps log the cloned versions as illegal
graphs. Probably one naive approach is using a trusted knowledge body (univer-
sal common sense facts) that verify the material generated by others. But maybe
this also brings some limitations and we do not have a really comprehensive
knowledge base for the whole universe facts. On the other hand, nature inspired
reasoning tries to benefit from other domains to address mainly the complex
reasoning challenges within Semantic Web. The open question is whether nature
inspired reasoning can be useful in this area to validate the quality aspects of
data.

To my view, this problem and its potential solutions can bring also some
commercial interests. As an example, building a trusted knowledge party that
can validate RDF-based knowledge generated by people or giving authorities to
people to evaluate (semi-automatically) the generated RDF-based knowledge by
others.

4 Conclusion

In this position paper, I presented briefly a method that can be used by a piece of
automated software to maliciously target Semantic Web data, in order to put lots
of noisy elements into the knowledge base. I mentioned that the search results of
Semantic search engines may not be really trustable, as they may contain fake
noisy knowledge and machines can not really benefit from them, unless we are
certain that the existing knowledge in their repositories is true reliable one.

The fact that I presented this idea here is exploring some research problems
that I am not aware of their solutions, after reviewing literature and having some
discussions with senior Semantic Web researchers. Generating meaningful clones
of a given graph based on a schema (virus) and identifying the original one from
a bunch of cloned graphs (anti-virus) are possible research directions that can be
further explored. I personally did not implement the whole virus, but I checked
its feasibility using PTSW and a set of fake triples.

Acknowledgments. I thank Vassilios Peristeras and Stefan Decker for their
supports. This work is supported by Ecospace (Integrated Project on eProfes-
sional Collaboration Space) project: FP6-IST-5-35208

References

1. Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. Proceedings of
the 5th International Semantic Web Conference, 2006.



Similarity theories

Human Similarity theories for the semantic web

Jose Quesada

Max Planck Institute, Human development
quesada@gmail.com

Abstract. The human mind has been designed to evaluate similarity fast and 
efficiently. When building/using a data format to make the web content more 
machine-friendly, can we learn something useful from how the mind represents 
data? We present four theories psychological theories that tried to solve the 
problem and how they relate to semantic web practices. Metric models (such as 
the vector space model and LSA) were the first-comers and still have important 
advantages. Advances in Bayesian methods pushed Feature models( e.g., Topic
model). Structural mapping models propose that for similarity, shared structure 
matters more, although the formalisms that express these ideas are still 
developing. Transformational distance models (e.g., syntagmatic-paradigmatic   
-SP- model) reduce similarity to information transmission. Topic and SP
models do not require preexisting classes but still have a long way to go; the 
need of automatically generating structure is less pressing when one of the 
driving forces of the semantic web is the creation of ontologies.

Keywords: similarity, cognition, semantics, information extraction, 
representation, psychology, cognitive science.

1. Introduction

The human mind has been “designed” to evaluate similarity fast and efficiently. When 
building/using a data format to make web content more machine-friendly, can we 
learn something useful from how the mind represents data? Are there any domain-
independent findings on human representation that can inform ontology building and 
other semantic web activities? Can knowing humans be useful to design better for 
machines? I would say it might, considering that the end user of what machines using 
the semantic web produce is human, after all. Nature may have produced algorithms 
and representations that are reusable. And humans and machines dealing with lots of 
information may face similar problems. 

There are different areas in which psychology may inform semantic web 
practitioners; For example, agents in the semantic web will do both inductive and 
deductive reasoning [1], follow causal chains [2], solve problems and make decisions
[3]. All these activities depend crucially on how we represent information, and this is 
what similarity theories aim to explain. So in this paper we will review the major 
approaches to similarity in psychology and how they relate to the semantic web.



2      Jose Quesada

In the last 50 years, psychology has made good progress on the topic of similarity; 
the basic conclusion is that similarity is a hard topic, but approachable. But why is it 
so difficult? For a start, it is a very labile phenomenon. Murphy and Medin [4] noted 
that "the relative weighting of a feature (as well as the relative importance of common 
and distinctive features) varies with the stimulus context and task, so that there is no 
unique answer to the question of how similar is one object to another" (p. 296). 
Goodman [5] also criticized the central role of similarity as an explanatory concept. 
What does it mean to say that two objects a and b are similar? One intuitive answer is 
to say that they have many properties in common. But this intuition does not take us 
very far, because all objects have infinite sets of properties in common. For example, 
a plum and a lawnmower both share the properties of weighing less than 100 pounds 
(and less than 101 pounds, etc). That would imply that all objects are similar to all 
others (and vice versa, if we consider that they are different in an infinite set of 
features too). Goodman proposed that similarity is thus a meaningful concept when 
defined with a certain “respect”. Instead of considering similarity as a binary relation 
s(a, b), we should think of it as a ternary relation s(a, b, r). But once we introduce 
“respects”, then similarity itself has no explanatory value: the respects have. Thus, if 
similarity is useless when not defined "with respect to", then it is not an explanatory 
concept on which theories can be built: theories should be about "the respects" and 
similarity can leave the scenario without being missed. 

Although this criticism could have been lethal for any psychological theories of 
similarity, it has not been. The abstract concept of similarity used by philosophers like 
Goodman and the psychological concept of similarity are different, the latter being 
more constrained: (1) There are psychological restrictions on what a respect can be. 
Although they can be very flexible and changeable with goals, purpose, and context, 
there are constraints in what form they take: they do not change arbitrarily, but 
systematically. These systematic variations prevent the set of common respects from 
being infinite, and enable their scientific study [6]. (2) Since people do not normally 
compare objects one "respect" at a time, but along multiple dimensions (e.g., size, 
color, function, etc.), the psychologically central issue is to explain the mechanism by 
which all these factors are combined into a single judgment of similarity. Then, 
respects do some, but not all of the work in explaining similarity judgments [7] (3) 
Goodman assumes that the set of features in which two objects can be compared is 
infinite (then, they have an infinite number of properties in which they are similar and
dissimilar). However, in psychology we are interested in the similarity between two 
mental representations of the objects in the mind. Mental representations must be 
finite. Then computation of similarity can be thought to take place without the need of 
constraining respects. Theories of mental representation based on similarity should 
explain what is represented and how this is selected. The features represented cannot 
be arbitrary, otherwise they cannot be studied scientifically [8].

As a conclusion, what most similarity and categorization psychological theories 
have in common is the problem of choosing respects [8]: The feature selection and 
weighting process is outside of the scope of the models, that is, is set up a-priori by 
the researcher, not dictated by the theory. This is a very important flaw in a model of 
similarity, as Goodman pointed out. Semantic web practitioners face this problem too. 



Human Similarity theories for the semantic web      3

The semantic web ‘standard’ data structure language is RDF. In RDF, the 
fundamental concepts are resources, properties and statements. Resources are objects, 
like books, people or events. Resources have properties like chapters, proper names, 
or physical locations. Properties are a special type or resources that describe the 
relation between two resources. And a statement just asserts the properties of 
resources. In a sense, psychologists and semantic web practitioners are playing the 
same game: trying to model the world with a formalism. Psychologists want this 
formalism to be as close as possible to humans; Semantic web practitioners want it to 
‘just work’. For psychologists, a better formalism is one that models even human 
flaws and inconsistencies. For Semantic web practitioners, a better formalism is more 
expressive, while being as simple as possible; if a machine using it reaches 
conclusions that a human won’t, so much more impressive.

The concept of similarity is very different in psychology and in machine learning
too. Machine learning (and in particular, computational linguistics) use structured 
representations, while most of the psychologists use mainly ‘flat’ representations. But 
the main difference is that the machine leaning group often uses representations that
are not psychologically plausible. For example, some parsers use human-coded
representations of syntactic dependencies from corpora like TREEBANK [9],
WordNet [10] or even Google queries. Semantic similarity according to Resnik [11]
refers to similarity between two concepts in a taxonomy such as WordNet [10] or 
CYC upper ontology . These are of course not available to the mind; even though 
models may perform very well on interesting tasks, they have no psychological 
plausibility. Still, there seems to be some level of convergence between machine-
learning and psychological approaches. This paper will try to make connections 
particularly where they are relevant for the semantic web paradigm.

2. What is Similarity, anyway?

The question “What is similarity” has inspired considerable research in the past, 
because it affects several cognitive processes like memory retrieval, categorization, 
inference, analogy, and generalization, to mention a few. We have divided current 
efforts to answer this question into four main branches: continuous features (spatial) 
models, set theoretic models, hierarchical models, and transformational distance. 
Similar classification can be found in Goldstone [12] and in Markman [13].

3. Continuous features (spatial) models

Shepard can be considered the father of metric models (models that use a 
multidimensional metric space to represent knowledge) in psychology. Shepard’s [14]
Science paper, ‘Toward a universal law of generalization for psychological science‘ 
is his most ambitious and definitive attempt to propose multidimensional spaces as an 
universal law in psychology. Shepard’s [14] main proposal is that psychologists can 



4      Jose Quesada

utilize metric spaces to model internal representations for almost any stimulus (i.e.,
shapes, hues, vowel phonemes, Morse-code signals, musical intervals, concepts, etc.). 

We rarely encounter the exact same situation twice. There is always some change 
in the environment. Usually, this new environment has some physical resemblance to 
an environment with which we have some history. This incremental change is the 
crucial element--the more similar the new environment is to something we already 
know, the more we will respond in a similar way.

A metric space is defined by a metric distance function D, that assigns to every pair 
of points a nonnegative number, called their distance, following three axioms: 
minimality [D(A,B) ≥  (A,A) = 0], symmetry [D(A,B) = D(B,A)], and the triangle 
inequality [D(A,B) + D(B,C) ≥ D(A,C)].  The methodological tool Shepard proposed 
is multidimensional Scaling [MDS, 15], a now-classic approach to representing 
proximity data. In MDS, objects are represented as points in a multidimensional 
space, and proximity is assumed to be a function of the distance in the space, p(i,j) = g 
[D(i,j)], where g is a decreasing function (a negative exponential).  The distance in the 
n-dimensional metric space that the MDS generates represents similarity, and is 
calculated using the Minkowski power metric formula:

)/1(

1

||j)D(i,
rn

k

r
jkik XX 








 



(1)

Where n is the number of dimensions, Xik is the value of the dimension k for entity 
i, and r is a parameter that defines the spatial metric to be used. 

The vector space model from classical information retrieval capitalizes on this 
finding. It maps words to a space with as many dimensions as contexts exist in a 
corpus. However, the basic vector space model fails when the texts to be compared 
share few words, for instance, when the texts use synonyms to convey similar 
messages. Latent Semantic Analysis (LSA) [16, 17] solves this problem by running a
singular value decomposition (SVD) and then dimension reduction on the term by 
document matrix. LSA can model human similarity judgments for words and text, but 
it faces problems. Some of these problems are conceptual: negation just doesn’t work 
on any spatial models (NOT is a ubiquitous word and it forms a vector that adds 
nothing to the overall meaning). LSA uses a bag of words approach where word order 
does not matter; the semantic web approach requires machine learning algorithms that 
can produce structured representations from plain text. There are also problems with 
the implementation (scalability): the SVD is a one-off operation that assumes a static 
corpus. Updating the space with new additions to the corpus is possible, but not 
trivial. 

LSA spawned a plethora of models for extracting semantics from text corpora. 
Some of them partially address structured representations. For example the Topic
model [18] could potentially use a generative model with several layers of topics 
(hierarchical models). Beagle [19] proposes methods to capture both syntax and 



Human Similarity theories for the semantic web      5

semantics simultaneously in a single representation using convolution. Beagle uses a 
moving window, so only close sequential dependencies make an impact in its 
understanding of syntax; it is still far from delivering a fully automatic propositional 
analysis of text.

Another approach is to use a large corpus of labeled articles as dimensions. For 
example, any text can be a weighted vector of similarities to Wikipedia articles [20]. 
This currently produces the highest correlation to human judgments of similarity (.72 
vs .60 for LSA).

Although recent developments have addressed some implementation issues (e.g., 
the SVD can now be run in parallel) the direct application of LSA or any other 
statistical methods to semantic web problems is still not obvious. RDF operations are 
logical; in LSA vectors are obtained using statistical inference. Combining the logic 
and statistical approaches seems to be a worthwhile goal and some groups are 
pursuing it [21, 22].

4. Discrete set theoretic models

Tversky’s set-theoretic approach and Shepard’s metric space approach are often 
considered the two classic – and classically opposed – theories of similarity and 
generalization (although Shepard has some research on the set-theoretic approach`, 
e.g., [15, 23]).

Metric spaces have problems as a model for how humans represent similarities. 
Amos Tversky [24] pointed out that violations of the three assumptions of metric 
models (minimality, symmetry, and the triangle inequality) are empirically observed.

Minimality is violated because not all identical objects seem equally similar; 
complex objects that are identical (e.g., twins) can be more similar to each other than 
simpler identical objects (e.g., two squares).

Tversky [24] argued that similarity is an asymmetric relation. This is an important 
criticism for models that assume that similarity can be represented in a metric space, 
since metric distance in an Euclidean space is, of course, symmetric. He provided 
empirical evidence, for example, when participants were asked a direct rating, the 
judged similarity of North Korea to China exceeded the judged similarity China to 
North Korea1. A second criticism relates to the fact that similarity judgments are 
subjected to task and context-dependent influences, and this is not reflected in pure 
metric models. 

                                                          
1 However, results from Aguilar and Medin 25. Aguilar, C.M., Medin, D.L.: Asymmetries of 

comparison. Psychon. Bull. Rev. 6 (1999) 328-337 suggest that similarity rating asymmetries 
are only observed under quite circumscribed conditions.



6      Jose Quesada

Another important criticism focuses on the triangle inequality axiom, which says 
that distances in a metric space between any two points must be smaller than the 
distances between each of the two points and any third point. In terms of similarities, 
this means that if an object is similar to each of the two other objects, the two objects 
must be at least fairly similar to each other [26]. However, James [27] gives an 
example in which this does not hold true: the moon is similar to a gas jet (with respect 
to luminosity) and also similar to a football (with respect to roundness) , but a gas jet 
and a football are not at all similar.

Tversky proposed that similarity is a function of both common and distinctive 
features, as described in the formula: 

))()()((),( ABBABAfBAS   (2)

Where A and B are feature sets. The similarity of A to B is expressed as a linear 
combination of the measure of the common )( BA and distinctive 

),( ABBA  features. The parameters , , and  are weighing parameters given 

to the common and distinctive components, and the function f is often simply 
assumed to be additive (i.e., all features are independent and their effects combine 
linearly).

To respond to these criticisms, some researchers have proposed different solutions 
that basically extend the assumptions of metric models and enable them to explain the 
violation in the three assumptions. Nosofsky [28] defended the metric space approach 
arguing that asymmetries in judgments are not necessarily due to asymmetries in the 
underlying similarity relationships. For example, in word similarity judgments, if the 
relationship A  B is stronger than B  A, a simple explanation could be that word 
B has higher word frequency, is more salient, or its representation is more available 
than word A.  

Krumhansl [26] has proposed that some objections to geometric models may be 
overcome by supplementing the metric distance with a measure of the density of the 
area where the objects that figure in the comparison are placed. Krumhansl argued 
that if A B is stronger than B  A, an explanation is that A is placed in a sparser 
region of the space. For example, in LSA the nearest 20 neighbors of "China" range 
between .98 and .80. However, the 20 nearest neighbors of "Korea" range between .98 
and .66, which means "China" is in a denser part of the space than "Korea". One 
could argue that although Krumhansl’s explanation does propose a solution for the 
problem, the resulting modified distance function need not satisfy the metric axioms 
anymore.

Kintsch [29] offered yet another way of modeling asymmetric judgments using a 
metric model. In his predication model, Kintsch substitutes the productivity rule in 
LSA (addition) with more sophisticated mechanisms that related the neighborhood of 
the predicate and argument to create a composed vector. His model is another source 
of evidence of theories that, using metric underlying models, can explain phenomena 



Human Similarity theories for the semantic web      7

that conflict with the metric assumptions. As well, there seems to be controversy 
about how much the stimulus density can affect psychological similarity [30-32].

In summary, it seems that supplemented metric models can explain most of the 
criticisms attributed to them, and that some of the traditional effects such as context 
effects and asymmetry of similarities can be due to additional factors not considered 
in the classical explanations.

There used to be no feature models able to work with plain text corpora and 
generate, but recently the Bayesian camp has proposed a few. The most successful of 
these is the Topic model. Griffiths, Steyvers, and Tenenbaum [18] propose that 
representation might be a language of discrete features and generative Bayesian 
models instead of continuous spaces. This bottom-up approach has the advantage of 
generating ‘topics’ instead of unlabelled dimensions, so the resulting representations 
are ‘explainable’. The Topic model can also explain asymmetries in similarities, 
because conditional probabilities are indeed asymmetrical (P(A|B) != P(B|A) 
necessarily). 

   The Topic model is indeed a feature model because ‘the association between two 
words is increased by each topic that assigns high probability to both and is decreased 
by topics that assign high probability to one but not the other, in the same way that 
Tverksy claimed common and distinctive features should affect similarity’ [18 p. 
223]. 

At the implementation level, the Topic model is not memory-intensive; since it is a 
Markov chain Montecarlo model, it simply allocates words to topics in an iterative 
way.

The combination of explainable dimensions and possibility to handle structured 
representations makes the Topic model an interesting choice for the representation 
problems the semantic web encounters. Still, the level of structural complexity that 
current topic models can derive from text is very basic. Future implementations may 
be able to accommodate more realistic structures because the overall probabilistic 
framework is more flexible than previous vector space models. For promising new 
ways of combining ontologies with bottom-up topics, see [33, 34].

5. Hierarchical models and alignment-based models

Some researchers [e.g., 7, 12, 35] argued that neither spatial models nor discrete set 
theoretic models are well suited to model human representation. In several 
experiments humans show evidence of using structured representations rather than a 
collection of coordinates or features.

The structural matching theory assumes that mental representations consist of 
hierarchical systems that encode objects, attributes of objects, relations between 



8      Jose Quesada

objects, and relations between relations [13]. Structure mapping models are then the 
closest to the data structures that the semantic web uses (RDF).

The two sets of objects (A) and (B) in Figure 1 would be represented by the 
hierarchical structures (a) and (b). What are represented as a hierarchical system are 
the features of one objects, and the comparison between two mental representations 
consists on aligning the two structures so the matching is maximal. The best structural 
matching possible determines the similarity between the two objects. In Figure 1, 
page 8, the best interpretation involves matching the "above" relations, since they are 
a higher-level connected relational structure than, e.g., "circle".

Fig. 1: Example of structured representations, and structural alignment [adapted from 13, p. 
122]. The trees represent the features, keeping the structure. Rounded boxes are relationships, 

ABOVE

CIRCLE SQUARE

Round Striped Angled Check

Medium 
sized

Medium 
sized

ABOVE

SQUARE CIRCLE

Angled Striped Round Check

Medium 
sized

Medium 
sized

(A)

(A

(B)

TRIANGLE

Angled Shaded

Medium 
sized

BESIDE



Human Similarity theories for the semantic web      9

uppercase square boxes are objects, and lowercase boxes are features. The “above” relation is 
directional; “Above” (square, circle) is different than “above” (circle, square). 

The details on how the matching is done vary with the different models; The 
structure mapping engine SME [36] was the original; it works by forcing one-to-one 
mappings. That is, it limits any element in one representation to corresponding to at 
most one element in the other representation. SIAM [37] is an spreading activation 
model; it consists of a network of nodes that represent all possible feature-to-feature, 
object-to-object, and role-to-role correspondences between compared stimuli. The 
activation of a particular node indicates the strength of the correspondence it 
represents. SIAM treats one-to-one mapping as a soft constraint.

Structured representations gain some of their power form the ability to create 
increasingly complex representations of a situation by embedding relations in other 
relations and creating higher-order relational structures. These higher-order structures 
can encode important psychological elements like causal relations and implications 
[13]. In fact, RDF as a data structure has this property (reification, also called 
compositionality [38]). Currently compositionality is hard to implement for metric 
models and feature models. 

So how are current structure-matching models in psychology different from the 
similarity models used in semantic web applications? The psychological models use 
very simple and artificial materials, like those in Figure 1. Most published papers 
contain a few examples where the model works (i.e., the solar system mapped to 
Rutherford’s model of the atom) but not about where it fails. There is no published 
study on how general a model is (i.e., using a large selection of objects) nor what the 
boundary conditions are. More thorough testing and model comparison is needed. The 
overall impression is that fine-tuning the model to the examples in the paper took a 
good amount of time for the experimenter, so doing this for a large representative 
sample of structures may be time consuming. Second, psychological similarity 
models stress the importance of working memory capacity limitations, which have no 
relevance for machine learning and general usage in applications. Working memory 
limitations may help the model explain human patterns such as common errors, but do 
not contribute to better applications. Third, scaling may be an issue. The Rutherford 
example requires 42 and 33 nodes to represent the solar system and atom, 
respectively, and it is one of the largest mappings published. Semantic web 
applications can easily deal with knowledge bases several orders of magnitude larger
(Although see [39, 40] for some examples of SME applications with larger knowledge 
bases). Last, all these theories use hand-built representations. Information extraction  
is a type of information retrieval whose goal is to automatically extract structured 
information, i.e. categorized and contextually and semantically well-defined data 
from a certain domain, from unstructured machine-readable documents. To date, no 
psychological theories of the structured kind do information extraction or propose an 
alternative solution to avoid hand-built representations.

So, is there no way to derive structured representation automatically from text to 
avoid all the above problems? The next section includes the latest, and most 
promising line of work: transformational distance.



10      Jose Quesada

6. Models based on Transformational distance

For transformational distance theories similarity of two entities is inversely 
proportional to the number of operations required to transform an entity so as to be 
identical to another [e.g., 41, 42-45]. The idea of similarity as transformation is 
promising in that it is very general and seems able to solve some of the previous 
theories problems.

We will review the representational distortion theory [8, 46], and the SP model [45, 
47]. The representational distortion theory of Hahn and Chater [8, 46] uses a measure 
of transformation called Kolmogorov complexity, K(x|y) of one object, x, given 
another object, y. This is the length of the shortest program which produces x as 
output using y as input. The main assertion of the theory is that representations that 
can be generated by a short program are simple, and the ones that require longer 
programs are more complex. For example, a representation consisting in a million 
zeroes, although long, is very simple, whereas the sentence “Mary loves roses” is 
shorter but more complex. With this Kolmogorov measure of complexity, a similarity 
measure can be defined as the length of the shortest program that takes representation 
x and produces y. That is, the degree to which two representations are similar is 
determined by how many instructions must be followed to transform one into another. 
This approach to similarity implements the minimality and triangle assumptions (like 
metric theories), but enables the relationships between items to be asymmetrical, 
escaping one of the most pervasive criticisms of metric theories, namely the 
asymmetry in human similarity judgments. Note that the representational distortion 
theory needs to propose a vocabulary of basic representational units and basic 
possible transformations; but this vocabulary is currently not specified. However
feature theories do not explain where features come from, so the transformational 
view is not at a disadvantage.

Another approach to measure transformational distance is string edit theory. The 
string edit theory centers on the idea that a string (composed by words, actions, states, 
amino acids, or any other element) can be transformed into a second string using a 
series of "edit" operations. String edit theory uses basic transformations like (insert, 
delete, match, and substitute), although this basic set varies in different 
implementations. Each "edit" operation for each particular item has a probability of 
occurrence associated. For example, in a perceptual word recognition task, the 
probability of substituting M for N could be higher than the probability of substituting 
M for B. These probabilities are defined a-priori and reflect the “cost” of the 
operation, but can also be learned for each problem. There is always more than one 
sequence of operations that can transform a string into a second string. Each sequence 
of operations has a probability too, which is the average of the probabilities of the 
transformations that form part of it. 

The most well-developed model of cognition based on string edit is the 
syntagmatic paradigmatic (SP) model [45]. SP proposes that people use large amounts 
of verbal knowledge in the form of constraints derived from the occurrences of words 
in different slots. The constraints are categorized in two types: (1) syntagmatic 



Human Similarity theories for the semantic web      11

associations that are thought to exist between words that often occur together, as in 
"run" and "fast" and (2) paradigmatic associations that exist between words that may 
not appear together but can appear in the same sentence context, such as "run" and 
"walk". The SP model proposed that verbal cognition is the retrieval of sets of 
syntagmatic and paradigmatic constraints from sequential and relational long-term 
memory and the resolution of these constraints in working memory. When trying to 
interpret a new sentence, people retrieve similar sentences from memory and align 
these with the new sentence. The set of alignments is an interpretation of the sentence. 
For instance, to build an interpretation of the sentence “Mary is loved by John” they 
might retrieve from memory “Ellen is adored by George”, “Sue who wears army 
fatigues is loved by Michael”, and  “Pat was cherished by Big Joe”, leading to the 
following interpretation:

Mary is loved by John
Ellen is adored by George
Sue who wears army fatigues is loved by Michael
Pat was cherished by Big Joe

The set of words that aligns with each word from the target sentence represents the 
role that the word plays in the sentence.  So, in the example [Ellen, Sue, Pat] 
represents the lovee role and [George, Michael, Joe] the lover role. The model 
assumes that any two sentences convey similar factual content to the extent that they 
contain similar words aligned with similar sets of words. Note that SP does not 
assume any previous knowledge (i.e., syntax). The model can solve basic question-
answering tasks such as which tennis player won a match when trained on a specific 
plain text corpus of such news [47].

Both XML and RDF are data languages of labeled trees, and of course tree edit 
distance is a subclass of string edit theory [48]. There are several algorithms 
proposed to match such structures efficiently. For example Bertino et al [49] propose 
a way to match an XML tree to a set of trees (DTDs) in polynomial time. Thus, once 
the starting knowledge base is in a structured form, there are algorithms to do 
similarity operations either efficiently or in a cognitively plausible way, but not both. 
The remaining step is to get from a flat form to a structure that satisfies the 
requirements of the algorithms, which has proven not to be easy. This step is not 
necessary for models such as SP, since they work from plain text. In this sense this is 
a promising venue. Contrary to the semantic web idea to create domain-specific data 
languages by agreement and force that structure onto existing text in the wild, SP 
proposes no structure a priori. In fact, SP captures meaning as sentence exemplars. 
The difficult task of either defining or inducing semantic categories is avoided.

Both theories (string edit theory and on Kolmogorov complexity) deal with 
structured representations, feature representations and continuous representations if 
needed. Of course, feature theories can argue that each of the transformations 
proposed can be added as a feature without leaving the feature approach. However, 
adding higher order relationships as features makes evident one of the weak points of 
feature theories: anything can be a feature. Which transformations are allowed? What 
do people actually use? Is there a general transformation vocabulary that works for 



12      Jose Quesada

any domain? Such vocabulary, if it exists, should be independent of the 
transformations’ characteristics (for example, their salience); otherwise, the 
description in feature terms becomes redundant, and could be eliminated without 
losing explanatory power. Because of this, the representational distortion theory 
proposes transformations as explanatorily prior. Feature models constitute a subset of 
the family of representational distortion theories, where similarity between objects is 
defined using a very limited set of transformations: feature insertion, feature deletion, 
or feature substitution. These are exactly the same transformation sets that the SP 
model proposes for sentence processing. However, the SP model escapes the former 
criticism because the “features” (in this case, words) are not generated ad-hoc, but 
learned empirically by experience with real-world text corpora. But the question of 
whether there is a viable universal transformation language still stands.

Transformational distance models could be more general than Tversky’s contrast 
model. This view is shared by Hahn and Chater [8, pp. 71-72]: “indeed, the 
[Kolmogorov complexity] model can be viewed as a generalization of the feature and 
spatial models of similarity, to the extent that similar sets of features (nearby points in 
space) correspond to short programs”. Chater and Vitanyi [50, 51] have mathematical 
proof that any similarity measure reduces to information distance. 

7. Summary and Conclusion

We have presented why similarity is a hard problem and four major psychological 
theories that tried to solve it. We started the discussion presenting metric models and 
their flaws; which were partially addressed by feature theories. Then we presented 
structural alignment models, explaining how they relate to current work on structured 
data such as RDF. We concluded with transformational distance models as the closest 
to an ideal solution.

One recurring theme is that once the starting knowledge base is in a structured 
form, there are algorithms to do similarity operations either efficiently [49] or in a 
cognitively plausible way [52] (but not both). The remaining step is to get from a flat 
form to a structure that satisfies the requirements of the algorithms, which has proven 
not to be easy. Currently the SP model and the Topic model show promise as bottom-
up models that start with plain text and generate structured representations. The 
immediate advantage when compared with traditional machine learning information 
extraction tools is that they do not require preexisting classes (as they are inferred). 
Admittedly, both SP and Topic models still have a long way to go, and up to now they 
have focused in extraction of syntactic categories (and in an imperfect way). The 
semantic web of course needs an entire universe of different categories (not only 
syntactic).

The semantic web practitioners however are perfectly happy manually creating 
domain-specific languages to describe their domains (i.e., RDF-schema). This is good 
news because it increases the number of similarity models one can choose from. SP 



Human Similarity theories for the semantic web      13

and the Topic model have the head start of making no a priori commitment to 
particular grammars, heuristics, or ontologies. But this may not be a tremendous 
advantage in a world that seems to be eager to produce ontologies and fit all existing 
knowledge into those structures. Time will tell if bottom-up approaches will 
proliferate or fade away.

References

1. Heit, E., Rotello, C.: Are There Two Kinds of Reasoning? Proceedings of the 
Twenty-Seventh Annual Conference of the Cognitive Science Society (2005) 
2. Glymour, C.: The Mind's Arrows: Bayes Nets and Graphical Causal Models 
in Psychology. MIT Press, Boston (2001)
3. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey (1972)
4. Murphy, G.L., Medin, D.L.: The Role of Theories in Conceptual Coherence. 
Psychol Rev 92 (1985) 289-316
5. Goodman, N.: Seven strictures on similarity. In: Goodman, N. (ed.): 
problems and projects:. Bobbs Merrill, Indianapolis (1972) 437-450
6. Medin, D.L., Goldstone, R.L., Gentner, D.: Respects for Similarity. Psychol 
Rev 100 (1993) 254-278
7. Goldstone, R.L.: The Role of Similarity in Categorization - Providing a 
Groundwork. Cognition 52 (1994) 125-157
8. Hahn, U., Chater, N.: Concepts and similarity. In: Lamberts, K., Shanks, D. 
(eds.): Knowledge, concepts, and categories. MIT Press, Cambridge, MA (1997)
9. Marcus, M., Marcinkiewicz, M., Santorini, B.: Building a large annotated 
corpus of English: the penn treebank. Computational Linguistics 19 (1993) 313-330
10. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to 
WordNet: An On-line Lexical Database*. International Journal of Lexicography 3 
(1990) 235-244
11. Resnik, P.: Using information content to evaluate semantic similarity in a 
taxonomy. Proceedings of the 14th International Joint Conference on Artificial 
Intelligence 1 (1995) 448-453
12. Goldstone, R.L.: Similarity. In: Wilson, R.A., Keil, F.C. (eds.): MIT 
encyclopedia of the cognitive sciences. MIT Press, Cambridge, MA (1999) 763-765
13. Markman, A.B.: Knowledge representation. Lawrence Erlbaum Associtates, 
Mahwah, NJ (1999)
14. Shepard, R.N.: Toward a universal law of generalization for psychological 
science. Science 237 (1987) 1317-1323
15. Shepard, R.N.: Multidimensional scaling, three-fitting, and clustering. 
Science 214 (1980) 390-398
16. Landauer, T., McNamara, D., Dennis, S., Kintsch, W.: LSA: A road to 
meaning. Mahwah, NJ: Lawrence Erlbaum Associates, Inc (2007)



14      Jose Quesada

17. Landauer, T.K., Dumais, S.T.: A solution to Plato's   problem: The Latent 
Semantic Analysis theory of the  acquisition, induction, and representation of 
knowledge. Psychol Rev 104 (1997) 211-240
18. Griffiths, T.L., Steyvers, M., Tenenbaum, J.: Topics in semantic 
representation. Psychol Rev in press (2007) 
19. Jones, M.N., Mewhort, D.J.K.: Representing Word Meaning and Order 
Information in a Composite Holographic Lexicon. Psychol Rev 114 (2007) 1-37
20. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using 
Wikipedia-based Explicit Semantic Analysis. Proceedings of the 20th International 
Joint Conference on Artificial Intelligence (2007) 1606–1611
21. Bernstein, A., Kiefer, C.: Imprecise RDQL: towards generic retrieval in 
ontologies using similarity joins. Proceedings of the 2006 ACM symposium on 
Applied computing (2006) 1684-1689
22. Kiefer, C., Bernstein, A., Stocker, M.: The Fundamentals of iSPARQL: A 
Virtual Triple Approach for Similarity-Based Semantic Web Tasks. LECTURE 
NOTES IN COMPUTER SCIENCE 4825 (2007) 295
23. Shepard, R.N., Arabie, P.: Additive Clustering - Representation of 
Similarities as Combinations of Discrete Overlapping Properties. Psychol Rev 86 
(1979) 87-123
24. Tversky, A.: Features of similarity. Psychol Rev 84 (1977) 327-352
25. Aguilar, C.M., Medin, D.L.: Asymmetries of comparison. Psychon. Bull. 
Rev. 6 (1999) 328-337
26. Krumhansl, C.: Concerning the applicability of geometric models to 
similarity data: The interrelationship between similarity and spatial density. Psychol 
Rev 85 (1978) 445-463
27. James, W.: principles of psychology. Holt, New York (1890)
28. Nosofsky, R.: Stimulus Bias, Asymmetric similarity, and classification. 
Cognitive Psychol 23 (1991) 94-140
29. Kintsch, W.: Predication. Cognitive Science 25 (2001) 173-202
30. Krumhansl, C.L.: Testing the Density Hypothesis - Comment. J Exp Psychol 
Gen 117 (1988) 101-104
31. Corter, J.E.: Testing the Density Hypothesis - Reply. J Exp Psychol Gen 117 
(1988) 105-106
32. Corter, J.E.: Similarity, Confusability, and the Density Hypothesis. J Exp 
Psychol Gen 116 (1987) 238-249
33. Chemudugunta, C., Holloway, A., Smyth, P., Steyvers, M.: Modeling 
Documents by Combining Semantic Concepts with Unsupervised Statistical Learning. 
7th International Semantic Web Conference, Karlsruhe (2008)
34. Chemudugunta, C., Smyth, P., Steyvers, M.: Combining Concept Hierarchies 
and Statistical Topic Models. ACM 17th conference on Information and Knowledge 
Management (2008)
35. Markman, A.B., Gentner, D.: Structural Alignment During Similarity 
Comparisons. Cognitive Psychol 25 (1993) 431-467
36. Falkenhainer, B., Forbus, K., Gentner, D.: The Structure-Mapping Engine: 
Algorithm and Examples. Artif. Intell. 41 (1989) 1-63
37. Goldstone, R.L.: Similarity, Interactive Activation, and Mapping. J. Exp. 
Psychol.-Learn. Mem. Cogn. 20 (1994) 3-27



Human Similarity theories for the semantic web      15

38. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and Cognitive Architecture - a 
Critical Analysis. Cognition 28 (1988) 3-71
39. Klenk, M., Forbus, K., IL, N.U.E.: Cognitive Modeling of Analogy Events in 
Physics Problem Solving From Examples. Proceedings of the29th Annual Meeting of 
the Cognitive Science Society meeting. NORTHWESTERN UNIV EVANSTON IL 
(2007)
40. Hinrichs, T., Forbus, K.: Analogical Learning in a Turn-Based Strategy 
Game. IJCAI - International Joint Conference on Artificial Intelligence, Hyderabad 
(2007)
41. Chater, N.: Cognitive science - The logic of human learning. Nature 407 
(2000) 572-573
42. Chater, N.: The search for simplicity: A fundamental cognitive principle? Q. 
J. Exp. Psychol. Sect A-Hum. Exp. Psychol. 52 (1999) 273-302
43. Pothos, E.M., Chater, N.: A simplicity principle in unsupervised human 
categorization. Cognitive Science 26 (2002) 303-343
44. Pothos, E., Chater, N.: Categorization by simplicity:a minimum description 
length approach to unsupervised clustering. In: Hahn, U., Ramscar, M. (eds.): 
Similarity and categorization. Oxford University Press, Oxford (2001)
45. Dennis, S.: A memory-based theory of verbal cognition. Cognitive Science 
29 (2005) 145-193
46. Hahn, U., Chater, N., Richardson, L.B.: Similarity as transformation. 
Cognition 87 (2003) 1-32
47. Dennis, S.: An unsupervised method for the extraction of propositional 
information from text. Proceedings of the National Academy of Sciences 101 (2004) 
5206-5213
48. Rice, S., Bunke, H., Nartker, T.: Classes of Cost Functions for String Edit 
Distance. Algorithmica 18 (1997) 271-280
49. Bertino, E., Guerrini, G., Mesiti, M.: Measuring the structural similarity 
among XML documents and DTDs. Journal of Intelligent Information Systems (2008) 
1-38
50. Chater, N., Vitanyi, P.: Simplicity: a unifying principle in cognitive science? 
Trends Cogn Sci 7 (2003) 19-22
51. Chater, N., Vitanyi, P.: The generalized universal law of generalization. J 
Math Psychol 47 (2003) 346-369
52. Larkey, L.B., Love, B.C.: CAB: Connectionist analogy builder. cognitive 
Science 27 (2003) 781-794



The 7th International Semantic Web Conference
October 26 – 30, 2008

Congress Center, Karlsruhe, Germany


