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Abstract. This paper presents the proper implications: all implications
holding on a set with a minimal left-hand side and a one-item right-hand
side. Although not the smallest representation, they are easily readable
and allow for some efficient selection and projection (embedding) opera-
tions.

The proposed algorithm, Impec, is designed to efficiently find proper
implications given a set and a closure operator on this set. Additionally,
it can be easily extended with a weight function or to compute embedded

implications.

1 Introduction

Given a set and some closure operator on it, finding valid and—more to the
point—interesting implications constitute long-standing research subjects, with
immediate applications in such domains as database design and formal concept
analysis.

Generating implications is not a problem; the problems come when one wants
to use them. It is a well-known fact that except for toy examples, the set of
implications is far too big to be easily manageable, both technically and from
the point of view of an analyst. Researchers have devised lots of ways to overcome
this difficulty: from ignoring provably redundant ones [18,11], to assigning some

measure of “usefulness” to each and pruning uninteresting ones—the data mining
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approach [1, 3]—, to using rough sets techniques [15, 17], and so on. Most of these

techniques are usually combined [16].

One lossless reduction strategy is the use of covers, that is, smaller sets of

implications that still embody the whole information.

In this paper, we will present a particular cover for implications: the proper
implications. They have a minimal left-hand side and a one-item right-hand
side. As said above, a cover represents all the implications that hold, discarding
no information. Although this particulary one is neither new nor the smallest
possible one, we think that it offers a number of advantages that cannot be
overlooked. Some of these are that the proper implications are informative, that
they can quickly be put in a form used in database design [19], and that they are
easy to project onto a subset of the attributes (this is commonly called embedding
implications). We propose the Impec algorithm, which computes efficiently the

proper implications.

1.1 Related Works

The most popular covers for implications are non-redundant ones. Among them,
one well studied is the Duquenne-Guigues basis [11], as computed by Ganter’s
Next-Closure algorithm [8]. This algorithm is also independent of the closure
operator. Another non-redundant cover corresponds in fact to the proper im-
plications after removing the redundancy, and was proposed in the context of
functional dependencies [18,20]. Carpineto and Romano also proposed an al-
gorithm to compute it [5]. These algorithms implicitely depend on a closure

associated with their particular input.

Proper implications are discussed by e. g. Ganter and Wille [9] and Carpineto

et al. [5,6].
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1.2 Contribution

The aim of this paper is twofold. First, we wish to emphasize the usefulness
of proper implications. Secondly, we propose the Impec algorithm to compute
them. This algorithm works for any closure operator; it can trivially be extended
to use weight functions; and it can compute either all the proper implications or

only those embedded in a subset.

The rest of the paper is organized as follows. The next section presents the
motivations which lead to using the proper implications. Section 3 recalls some
definitions on implications in terms of closure operators; Section 4 then formally
describes the proper implications. Section 5 shows how they fit the goals given
previously. Section 6 describes the Impec algorithm. Finally, Section 7 concludes

and discusses some further developments in this area.

2 Motivations

Some motivations in the choice of a particular subset of the implications are
presented heres. Firstly, this subset should be small, as compared to the whole
set of implications.

Secondly, the chosen implications must be useful. This term has several mean-
ings; here, we want all non-trivial implications in an easily readable form (an
end-user should not need to apply Armstrong’s axioms [2]).!

A third factor of choice would be the applicability of a measure of inter-
estingness (and its use in the algorithm). In the context of data mining, such a
measure could be the support [1]. More generally, we can use any weight function

compatible with the closure operator [21].2

! An alternative is to read the implications on the Hasse representation of the concept
lattice [22]. However, this requires the user to get accustomed, and is hard to scale.

2 A weight function w compatible with a closure operator ¢ is a mapping from the
power-set of X into IN, anti-monotonous w. r. t. ¢.
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Finally, here are two important use cases. Assuming the implications are
stored in a database, and that they are expressed as A — ¢ where ¢ is a single
attribute, one of them is “Given the conclusion ¢, which are the rules A — ¢?”
(This is only the simplest form of query on the implications; an example of
selection language is the KESO system, by Klemettinen et al. [13].) Another
useful case is projecting the implications on a subset of the initial set on which
they hold. The embedded implications found should keep their other properties.

Well, not surprisingly, proper implications are interesting with respect to the

factors above; their only drawback is their number.

3 Concepts and Notations

This section briefly restates some definitions for closure operators and implica-
tions. A thorough treatment can be found in Ganter and Wille’s book [9]. The
notation 9B(X) means the power-set of X.

A closure operator ¢ on a set X is a map from P(X) into P(X) that is
monotonous, extensive and idempotent. The set of closed subsets of X forms a
lattice.

Let X be a finite set. An implication in X is a pair of subsets (4,B) C X
noted A — B. Given a closure operator ¢ on X, an implication A — B holds in
X according to ¢ if and only if B C ¢(A). The set L, of all implications holding
in X according to ¢ is closed, and follows Armstrong’s axioms [2]: reflexivity,
augmentation, and pseudo-transitivity. Conversely, given a set of implications
L in X, there exists a unique minimal complete system LT of L that verifies
Armstrong’s axioms, and thus holds in X according to some closure operator.

A set of implications G is called a cover of L if G = L7T. Finally, L is

redundant if it contains r such that (L \ {r})* = L.
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4 Proper Implications

In the framework given previously, our goal is of course to find a small cover for
the implications. The smallest possible covers, or bases, are non-redundant; they
are also non-unique. As a matter of fact, the classical algorithm for computing
a basis from a set of implications [4] is order-dependent. In contrast, proper

implications are wel behaved but redundant.

Definition 1. Given a finite set X and a closure operator ¢ on PB(X), the set

of implications:

Lp(p) ={A—-b|ACX andbe X\ A
andVZ C A, Z—b¢g L, }

is called the set of proper implications associated with .

5 Appropriateness of the Proper Implications

We will use an example in the sequel. Table 1 represents an objects x attributes

relation; and we will apply the Galois closure [9] on it.

Table 1. Example of relation

lac
2ab
3bcd
4de

As stated previously, and as noted by other authors, proper implications can
be far more numerous than a basis’ implications (see e. g. [5] for hard numbers).

In fact, the ratio between these sizes can be exponential [7]. In our example,
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proper implications are given in Table 2; Table 3 is their reduction to non-
redundant implications; and Table 4 represents the Duquenne-Guigues basis.

(In Table 4, implications with a common left-hand side are grouped together.)

Table 2. Proper implication holding on the example

be—d abc— e ad—b ad—c ad—e
bd—c cd—b e—d ae—b ae—c¢
be —a be—c ce—a ce—b

Table 3. Derived basis for the example

be—d abc— e ad—b bd—c
cd—b e—d be—a

Table 4. Duquenne-Guigues basis for the example

be—d bd—c cd—b
ad — bece e—d bede = a

In spite of their number, proper implications have a number of advantages.

— They are very readable. For a given right-hand side item, the corresponding
left-hand sides are all present in a minimal form. In contrast, the use of a
basis will mean applying at least pseudo-transitivity. (It can be argued that
the rules with a minimal left-hand side are not necessarily the most infor-
mative ones, particularly in the presence of measures of interestingness like

the confidence; see, for example, the “A-Maximal” implications by Bayardo
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and Agrawal [3], which have a maximal left-hand side with respect to their
confidence.)

On the example, the answer to the query “What imply a?” is the set {be, ce}.
Using the derived basis, only be is directly available; ce would be obtained
by using pseudo-transitivity. With the Duquenne-Guigues basis the answer
given is bede: this set is non-minimal.

— Proper implications allow for polynomial retrieval of embedded implications.
Given Y, a subset of the set X on which the proper implications were com-
puted, the proper implications embedded in Y are simply those which con-
tain only items from Y. By contrast, the general case is exponential [10].
Besides their immediate usefulness in an exploration framework, embedded
implications are used for instance in data-warehousing [23, 14]. (The authors
are aware of two algorithms for computing embedded implications: RBR by
Gottlob [10], and Impec.)

Here, the set of proper implications embedded in {a,d,e} is ad —>e,e —d,
not directly visible on either bases.

— In the context of functional dependencies, a canonical basis is a cover which
is non-redundant and whose left-hand sides are minimal and right-hand sides
contain one attribute [18].> One of their uses is in designing third normal
form database relations [4,19]. Getting a canonical basis from the proper

implications is polynomial [4,5]. This is the basis presented in Table 3.

6 The Impec Algorithm

We will now present the Impec algorithm: Given a set X and a closure operator
¢ on X, it computes Ly (p), the set of proper implications corresponding to ¢.

3 This is different from the Duquenne-Guigues basis, which is also sometimes called
by the same name.
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For A C X, let rhs(A) be the set of all its right-hand sides in L (¢p):
ths(A)={ze X |A—ozely(p)} . (2)
The Impec algorithm computes the family of implications:
L={A—rhs(A) |rhs(A) #0} . (3)

It is not difficult to see that any set A such as rhs(A) # @) is minimal among
the sets having the same closure.
The following proposition is used by the algorithm to ensure that it only uses

such minimal sets:

Proposition 1. Let A, B C X such that A C B. Then we have:
©(B) = ¢(A) if and only if B\ A C p(A)\ A . 4)

Proof. We have: p(B) = p(AU(B\A)) = o(p(A)U(B\ A)). Thus, B\ A C ¢(A)

is equivalent to ¢(B) = p(A). O
To compute rhs(A), we will use this proposition:

Proposition 2. Let A C X. Then we have:
rhs(A) = (A) \ (AU| J{rhs(B) | BC A}) . (5)

Proof. This proposal is presented, with a proof, in a slightly different form in

Ganter and Wille’s book [9, Proposition 22]. m|

The Algorithm The pseudo-code of Impec is given in Algorithm 1. Line 1 initial-

izes the set of pairs (A,rhs(A)) with the empty set. The following loop looks at
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each attribute in the set X. We initially suppose that all pairs (A4, rhs(4)) com-
puted so far will be used (line 3). For each of them, we compute a putative right-
hand side Z. Assuming Z is not empty, the two loops in lines 7-11 and 12-14 ap-
ply Propositions 1 and 2, respectively. The resulting pair (AU {z},rhs(AU{z}))
is eventually added to the set L (line 16). (Note that this is needed even if
rhs(A U {z}) is empty, as we will see in the example.) In the end, all pairs with

a non-empty right-hand side are returned.

Algorithm 1 Impec
Input: X: Set.
: Closure operator on X.
Output: L: (Combined) proper implications corresponding to (.

1 L= {(0,¢(0)}
2: for all x € X do

3: J=L
4:  for all (A,rhs(A)) € J do
5 Z=p(AU{z})\ (AU {z})
6: if Z # () then
7 for all (B,rhs(B)) € J with B D A do
8: if B\ AC Z then
9: d:=3\{(B,rhs(B))}
10: end if
11: end for
12: for all (B,rhs(B)) € J with B C AU {z} do
13: 7 := Z \ rhs(B)
14: end for
15: end if
16: L:=LU{(AU{z},2)}
17:  end for
18: end for

19: return [J{ (A4,rhs(4)) € L |rhs(4A) ZONA#0D}

Example 1. Table 5 shows the different steps of the algorithm on the example
from Table 1, using the Galois closure. L contains initially (@,0) as (@) = 0.
QU {a} is {a} and p({a} \ {a} is empty, so the pair ({a}, ) is added to L (we

see here why (0,0) was put in £; otherwise, the loop would yield nothing). The
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same holds for b, ab ¢ and ac. The first nonempty right-hand side occurs with bc:
there, o({b,c}) = {b,¢,d}, and ({b,c},{d}) is added to L. We can see pruning
in action with z = d and A = {a} (¢({a,d}) = {a,b,c,d,e}): For B = {a,b},
{b} is a subset of {b, ¢, e}; thus {a,b,d} will not be considered. The same thing

happens for B = {a,c} and B = {a,b, c}.

Table 5. Impec steps on the example

z (A,rhs(4)) Z (Au{z},2)

a (0,0) 0 ({a},0)

b (0,0) 0 ({6},9)
({a},0) 0 ({a,0},0)

c (0,0) 0 ({c},0)
({a},0) 0 ({a,c},0)
({6},0)  {d}  ({b,c},{d})
({a,0},0) {d.,e} ({a,b,c},{e})

d (0,9) 0 ({d}, 9)
({a},0)  {b,c,e} ({a,d},{b,c,e})
({6}1,0)  {c}  ({b,d},{c})
({c},0)  {b}  ({c,d},{b})

e (0,0) {d}  ({e},{d})
({a},0)  {b,c.d} ({a,e},{b,c})
{b},0)  {a,c,d} ({b,e},{a,c})
({c},0)  {a,b,d} ({¢,e},{a,b})

Complezity Let 7, be the maximal cost of calling the closure operator, this cost
being assumed greater than the cost of operations in line 5. Let us assume that
the loops lines 7 and 12 both cost at most |J| x |X| basic operations.* Lines
3, 9 and 16 are either done in constant time or negligible compared with their
neighborhood. Then, the time complexity of each iteration over one attribute x

from X is in O(|L| x (1, +|L| x | X|)). We know that |£| is bounded by 2/ X! (and

4 Their actual cost is of course far lower when using e. g. a trie with transversal links
[12].
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hopefully much lower). The whole algorithm has thus a complexity bounded by
O(|1X| x 2XI(r, + 21X x | X)) . (6)

Extensions We will consider here two small extensions to the Impec algorithm:
restricting the generated implications to those where the left-hand side satisfies

some condition, and generating embedded implications.

— A predicate can be applied to AU {z} at each pass, such as a minimum
support value in a data mining context. It must be compatible with the
closure operator (that is, if the predicate is false for a given left-hand side,
it is also false for its supersets). This how to use a weight function. See also
Luxenburger [16].

— We saw above (in Section 5) how to select embedded implications from the
set of all proper implications. An alternative would be to use the Impec
algorithm to compute them: for this, the only modifications are to replace
X by the subset Y in line 2 and the assignment to Z by Z := (AU {z}) \
(AU{z})NY in line 5.

7 Conclusion

In this paper, we presented the proper implications: they are implications with a
minimal left-hand side and a 1-item right-hand side. They are a redundant cover
of the whole set of rules, sometime much bigger than a non-redundant one; they
have also some significant advantages over them, in terms of readability and
of efficiency of applying transformations on them (such as finding a basis or
embedding them).

The Impec algorithm proposed here is designed to compute the proper impli-

cations given a set and a closure operator on this set. It can be easily extended
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with a weight function, or (among its uses) applied to find embedded proper
implications.
Future work includes developing a framework in which an end-user can use

the proper implications for knowledge exploration.
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