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Abstract. This paper introduces Temporal Concept Analysis (TCA) as the the-
ory of temporal phenomena described with tools of Formal Concept Analysis 
(FCA). The basic notion in TCA is that of a Conceptual Time System intro-
duced by the author [42,45] such that state spaces and phase spaces can be de-
fined as concept lattices which clearly represent the meaning of states with re-
spect to the chosen time description. In this paper two closely related types of 
conceptual time systems are introduced, namely 'conceptual time systems with 
parts' and 'conceptual time systems with actual objects'. The latter yields a gen-
eralization of classical systems with many similar subsystems or particles. 
Some industrial and scientific applications of conceptual movies of subsystems 
(particles) are presented.   

1 Introduction 

For the investigation of temporal phenomena many theories have been developed. A 
nice overview over the history of the development of formal representations of 'time' 
can be found in [3] – ranging from debates about 'time' in ancient Greece over New-
ton's 'absolute time' that 'flows uniformly without relation to anything external' to 
Einstein's [12] four-dimensional curved space-time-continuum. Quantum theoretical 
considerations [19] led to the idea of smallest units in space and time and pragmati-
cally we describe temporal phenomena using discrete time in suitable granularities 
from years to nano-seconds. The investigation of biological and sociological systems 
led to general system theory [8], the development of computers initiated automata 
theory [1,11], Petri nets [29,30], and mathematical system theory [20,22,26,47]. More 
recently processes [32,33] were investigated using situation calculus [24], event cal-
culus [21], temporal logics [14,15,36], data base theory including Knowledge Dis-
covery in Databases [23], and description logics [2,25,31].  

1.1 What is a system, what is a state? 

For any two of these theories the system descriptions are different, and Lin [22] states 
in his book 'General Systems Theory: A Mathematical Approach', p. 347:  
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There might not exist an ideal definition for general systems, upon which a general 
systems theory could be developed so that this theory would serve as the theoretical 
foundation for all approaches of systems analysis, developed in various disciplines. 
Though nearly all of the above mentioned theories have some formal or intuitive 
notion of a 'state' of a system a precise definition of a 'state' seems to be very diff icult. 
Zadeh ([48], p.40) wrote in his paper 'The Concept of State in System Theory':  
To define the notion of state in a way which would make it applicable to all systems is 
a difficult, perhaps impossible, task. In this chapter, our modest objective is to sketch 
an approach that seems to be more natural as well as more general than those em-
ployed heretofore, but still falls short of complete generality. 
Clearly, a general definition of 'state' can be given only within a general system de-
scription – and that should cover the most simple and useful system descriptions 
namely protocols of statements or measurements taken at some 'real system'. While 
arbitrary statements about a 'real system' are formally represented by n-ary relations 
measurements and their values at a certain 'object' or at a certain 'point of time' are 
usually represented in data tables, hence by a ternary relation interpreted as 'the 
measurement taken at a certain point of time yields a certain value'.  

1.2 Data Tables, Concept Latt ices, and States 

The practical relevance of data tables for knowledge representation in general and the 
theoretical importance of lattices introduced by Birkhoff [ 10] led Will e [37] to the 
basic notion of a 'formal concept' of a given 'formal context' and the introduction of 
Formal Concept Analysis. The standard reference is Ganter, Will e [17,18]. For earlier 
related work the reader is referred to Barbut [4] and Barbut, Monjardet [5]. The con-
nection to arbitrary data tables, formally described as many-valued contexts, was 
investigated in the Research Group Concept Analysis at Darmstadt University of 
Technology and led to the development of Conceptual Scaling Theory [16].  
Applications of Formal Concept Analysis to temporal data led the author to the idea 
that the notion of 'state' should be defined as a formal concept of a suitable formal 
context which describes the observations at a 'real system'. Therefore, a general sys-
tem description was needed. It should contain a general time description and a de-
scription of events such that the states of the system are related to these descriptions 
in a simple and meaningful way, for example, that a system is at each 'point of time' 
in exactly one state. These ideas led the author to the development of a Conceptual 
System Theory [42,45] where the definition of a Conceptual Time System was intro-
duced. In contrast to many other theories these systems are described from the data 
side and not from the side of the laws. Then laws can be defined using implications, 
clauses and, more generally, the object distribution [46]. 

1.3 Granular ity and Conceptual Scaling 

Besides that 'data – law polarity' the representation of granularity plays an important 
role. It seems to be obvious that the choice of a coarser granularity in the data yields 
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fewer states. Therefore, to define 'states' a granularity tool should be introduced in the 
formal description of a system. In Conceptual Time Systems the granularity tool is 
Conceptual Scaling Theory which yields flexible possibiliti es for the generation of 
mental frames. These frames are constructed as concept lattices of formal contexts 
(called scales) which are used to describe the contextual meaning of the values of 
many-valued contexts ([16,18]). Each many-valued context together with a family of 
scales generates a formal context, the derived context ([18], p.38). The concept lattice 
of the derived context can be embedded into the direct product of the concept lattices 
of the chosen scales. The indiscernabilit y classes of objects in the derived context 
describe the granularity generated by these scales on the object set of the given many-
valued context.  
Conceptual Scaling Theory is closely related to other granularity describing theories, 
as for example Fuzzy Theory (Zadeh [49,50], Wolff [ 40,41]), Rough Set Theory 
(Pawlak [27,28], Wolff [ 43]) and the theory of information channels in the sense of 
Barwise and Seligman [6] as described by the author [44]. 

1.4 Time in Conceptual Time Systems 

Now, we shortly discuss the formal representation of 'time' in Conceptual Time Sys-
tems. There are many possibiliti es to represent 'time' in many-valued contexts. A 
simple and often used way is to collect all the data for a given 'time point' in a row of 
a data table. But what is a 'time point'? Should we start with a set of 'time points' used 
as formal objects of a many-valued context? Should we introduce a linear ordering on 
this set? Should we introduce intervals of a linearly ordered set of time points? How 
to represent the non-linear ordering of the intervals? Should we introduce time meas-
urements as many-valued attributes of a many-valued context? What is the role of 
other measurements in space or other domains?  
To give a short answer: we introduce a set G whose elements are called 'time gran-
ules' or 'time objects'. They play the role of 'elementary pieces of time' or 'time in-
stants' like 'morning' and they are contextually described by two many-valued con-
texts T and C on the same set G of time granules. The first many-valued context T, 
called the 'time part' describes the time granules by time measurements, for example, 
the time granule 'morning' begins at 9 and ends at 12 o'clock. The second many-
valued context C, called the 'event part' describes all other measurements taken at the 
'real system'. Each many-valued attribute in the time part and the event part has a 
conceptual scale describing the granularity we wish to use for its values.  
That simple and general framework of a Conceptual Time System together with Con-
ceptual Scaling Theory [16,18] allows for introducing states as object concepts of the 
event part. The idea of a space-time description of a system leads to the definition of 
the 'general phase space' as a concept lattice from which the state space can be ob-
tained by a simple projection omitting the time part. That includes the classical state 
spaces in physics as well a discrete state spaces in psychology, biology, linguistics, 
and computer sciences.   
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2 Example: Temporal Concept Analysis of Some Observations of 
Stars 

The following example serves for several purposes: At first we use it to demonstrate 
(for readers not famili ar with Formal Concept Analysis) a formal context, its concept 
lattice, object concepts, attribute concepts and line diagrams. Then we use it as the 
derived context of a conceptual time system, for the introduction of 'conceptual time 
systems with parts', 'object construction', and 'conceptual time systems with actual 
objects'.  

2.1 Observing Stars 

The following Table 1 is a cross-table of a formal context K  = (G,M,I) with 4 objects 
and 7 attributes. It is understood as a short protocol of some observations of stars. 

  
 

observation Monday Tuesday morning evening east west luminous 
1   ××    ××  ××    ×× 
2   ××         ××  ××   ×× 
3    ××   ××  ××    ×× 
4    ××    ××  ××   ×× 

    
Table 1: A cross-table of a formal context 
 
Clearly, the first observation tells us that at Monday morning in the east a luminous 
star was observed. The concept lattice B(K ) is graphically represented by the follow-
ing line diagram. 

 

 
 
Figure 1: A line diagram of the concept lattice of K 
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Reading example: Observation 1 has the attributes 'Monday', 'morning', 'east' and 
'luminous'. The attributes 'east' and 'morning' have the same attribute concept, namely 
the concept (A,B) with the extent A = { 1,3} and the intent B = { east, morning, lumi-
nous} . The two object concepts of 1 and 3 are sub-concepts of (A,B). For an intro-
duction to FCA the reader is referred to [38,39]. 

2.2  A Conceptual Time System 

The following Table 2 describes in some sense the 'same' situation as Table 1. Indeed, 
Table 1 is the derived context of the conceptual time system given by Table 2 and the 
scales in Table3. There are four 'time objects' or 'time granules', labeled 1,2,3,4, 
interpreted as 'pieces of time' during which some measurements took place. For each 
time object g there is a time description of g (in the second and third column) and an 
event description (in the fourth and fifth column).  

 
 

observation  day day time  space    brightness 
      1   Monday morning  east    luminous 
      2   Monday evening  west    luminous 
      3   Tuesday morning  east    luminous 
      4   Tuesday evening  west    luminous 

 
Table 2: A many-valued context of four observations of stars 

 
In the general definition of a conceptual time system such tables are described by two 
many-valued contexts on the same set G of 'time objects'. By definition a conceptual 
time system contains also for each of its many-valued attributes a scale. In this 
example the scales are given by the following Table 3 (using some abbreviations): 
 

 Mo Tu   mo ev   east west   lum 
Mo ××   mo ××   east ××   lum ×× 
Tu  ××  ev  ××  west  ××    

 
Table 3: The nominal scales for the 4 many-valued attributes. 
  
To get a flavour of the rich possibiliti es of conceptual scaling the reader is referred to 
Wolff [ 39], Ganter, Will e [16,18]. 

3 Conceptual System Theory 

At first we give a short description of Conceptual System Theory developed by the 
author [42,45]. The basic notion in Conceptual System Theory is that of a Conceptual 
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Time System which is used as a quite general definition of a system. In contrast to 
system descriptions using laws Conceptual Time Systems describe the observations 
taken at 'real systems'. While system descriptions using laws (for example differential 
equations) do not refer in their theoretical framework to the 'dirty data' and the 
granularity of the data Conceptual Time Systems represent the data as well as a 
granularity tool, namely the conceptual scales. The implications and clauses in the 
resulting derived contexts yield the laws which are valid in these systems with respect 
to the chosen granularity.  

3.1 Conceptual Time Systems 

Definition: 'conceptual time system'  
Let G be an arbitrary set and T := ((G, M , W, IT), (Sm | m ∈ M )) and  
C := ((G, E, V, I), (Se | e ∈ E )) scaled many-valued contexts (on the same object set 
G). Then the pair (T, C) is called a conceptual time system on G. 
T is called the time part and C the event part of (T, C). 
 
The elements of the set G are called time granules or time objects, interpreted as 
pieces of time like 'morning' which are described by time measurements, formally 
represented by the many-valued attributes of the many-valued context (G, M , W, IT). 
The scales Sm of the time measurements m ∈ M  describe the granularity of this 
conceptual 'language' about the values of the time measurements. The many-valued 
context (G, E, V, I)  of the event part C is interpreted as the measurement table of the 
events of that system. The scales Se  of the events e ∈ E  describe the chosen 
granularity for the values of the event measurements.    

3.2 States in Conceptual Time Systems 

In a conceptual time system (T, C) we would like to say 'The system is at time gran-
ule g in state s(g)'. This is introduced in the following definition where the object 
concepts of the derived context K C are defined as the states. As to the time part we 
call the object concepts of the derived context K T the time states or time granule con-
cepts. 

 
Definition: 'state space of a conceptual time system' 
Let (T, C) be a conceptual time system and K T and K C the derived contexts of T and 
C. For each time granule g we define the state s(g) of (T, C ) at time granule g by  
s(g) := γC(g) := the object concept of g in K C and the time state or time granule con-
cept t(g) of (T, C ) at time granule g by  t(g) := γT(g) := the object concept of g in K T. 
The set S(T, C):= { s(g) | g ∈ G } is called the state space of (T, C). We say that the 
system (T, C) is at time granule g in the state s ∈ S(T, C) iff  s = s(g).  
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This definition yields the 'partition meaning' of states, namely, that the set G of time 
granules is partitioned by the extents of the states, or, equivalently, that a system is at 
each time granule in exactly one state. Clearly, for any two time granules g and h, 
s(g) = s(h) iff f or each event e the values e(g) and e(h) have the same scale attributes 
and therefore the same object concept in the scale Se.  
For the following discussion we need the notion of a subsystem of a conceptual time 
system and an embedding of the concepts of a subsystem into the concept lattice of 
the given system.  

3.3 States in Subsystems 

Definition: 'subsystem of a scaled many-valued context'  
Let C = ((G, E, V, I), (Se | e ∈ E )) be a scaled many-valued context; for an arbitrary 
subset R ⊆ E let IR := { (g,e,v) ∈ I |  e  ∈ R} . Then  
C(R) := ((G, R, V, IR), (Se | e ∈ R )) is called the R-part of C or a subsystem of C. 

 
Analogously we define the  'R-part of a formal context (G, M, I)' (where R ⊆ M); 
([18], p. 98).  

Definition: 'par t embedding ϕϕR'  
Let K  := (G, M, I) be a formal context, and R ⊆ M, and K (R) the R-part of K . Then 
the mapping ϕR which maps each concept (A,B) of K (R) onto the concept ϕR((A,B)) 
:= (A,A↑) of K  with the same extent, but possibly a larger intent A↑ in K  is called the 
part embedding from B(K(R)) into B(K). 

 
The part embedding ϕR is a meet-preserving order-embedding ([18], p.98). It demon-
strates the diff iculties that arise, if one does not distinguish between the states of a 
system and the states of a subsystem. It was shown by the author in [42] that ϕR is not 
state preserving which led to the notion of 'general time granules' and 'general states' 
for arbitrary concepts of K T and K C.  

3.4 Phase Spaces 

In classical Mathematical System Theory [20] a phase of a system is a pair (t, s) of a 
point t of time and a state s. This classical division is represented in the notion of a 
conceptual time system (T, C), which allows us to introduce the notion of the phase 
space of an arbitrary conceptual time system [42]. 

Definition: 'phase space of a conceptual time system' 
Let (T, C) be a conceptual time system on G and K T and K C the derived contexts of T 
and C.  
The apposition K T|K C of the derived contexts is called the phase context of  (T, C). 
The concept lattice B(K T|K C) is called the phase space of (T, C).  
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For any 'general time granule' (A,B) ∈ B(K T) and any 'general state' (C,D) ∈ B(K C) 
we say, that the system (T, C)  is during the general time granule (A,B) always in the 
general state (C,D) iff  A ⊆ C (which is equivalent to ϕT(A,B) ≤ ϕC(C,D) in 
B(K T|K C), where  ϕT and ϕC are the part embeddings of B(K T) and B(K C) into 
B(K T|K C)). And we say, that the system (T, C)  is during the general time granule 
(A,B) sometimes  [never] in the general state (C,D) iff  A ∩ C ≠ ∅   
[resp. A ∩ C = ∅]. 

 
In Table 1 the formal context K  is the apposition of K T (with 4 time attributes) and 
K C (with 3 event attributes). For time granule 1 the pair (t(1), s(1)) is the 'first' phase 
of this system, where t(1) = ({ 1} , { Monday, morning} ) and s(1) = ({ 1,3} , { east, lu-
minous} ). By the previous definition  (T, C) is during time granule 1 always in the 
state s(1) since ϕT(t(1)) = ({ 1} , { Monday, morning, east, luminous} ) ≤ ({ 1,3} , { morn-
ing, east, luminous} ) = ϕC(s(1)) in B(K ) = B(K T|K C). 

3.5 Object Construction and Object – Time Duali ty  

If we interpret the observations in the previous example as being caused by a single 
star, then this star could be nicely represented by the attribute concept of 'luminous'. 
The extent of this concept describes the time when this star was 'discovered' by the 
observation of its 'permanent' attribute 'luminous'. This star looks like a 'planet' since 
'it moves' in the state space. 
If we interpret the same observations as being caused by two stars, namely the 'morn-
ing star' which 'always' (Monday and Tuesday) occurs in the morning in the east, and 
the 'evening star' which 'always' occurs in the evening in the west, then these two stars 
look like fixed stars. The 'morning star' can be nicely represented as the formal con-
cept ({ 1,3} , { morning, east, luminous} ). Clearly, we could explain these observations 
also by four stars which might be represented as the object concepts of the four time 
granules. 
This example shows that Conceptual Time Systems might be useful to understand 
from a philosophical point of view the role of objects, its construction from temporal 
phenomena and therefore its intimate relationship to our notion of time. For further 
discussions I call this relationship the 'object – time duality'. Is there any meaningful 
connection to the 'particle – wave duality' or the complementarity of energy and time?   

4 Formal Representations of Time Objects and 'Usual' Objects 

Clearly, since time granules are used as formal objects in conceptual time systems the 
introduction of 'usual' objects like 'morning star' leads to the problem of the formal 
representation of them. Let us assume that we have accepted two objects 'morning 
star' and 'evening star'; then we might introduce these two stars as subsystems of a 
system of some stars. The following definition describes such conceptual time sys-
tems with (some selected ) subsystems or parts.  
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4.1 Conceptual Time Systems with Par ts 

In applications a conceptual time system with parts might describe not only its speci-
fied subsystems but also the relations among these subsystems, for example the flow 
of information among several participants of a computer network. 

Definition: 'conceptual time system with par ts' 
Let (T, C) be a conceptual time system, T = ((G, M , W, IT), (Sm | m ∈ M )),  
C = ((G, E, V, I), (Se | e ∈ E )) and P some index set. If f or each p ∈ P  Tp is the M p –
part of T for some M p ⊆ M and  Cp is the Ep –part of C for some Ep ⊆ E then  
(T, C, ((Tp, Cp) | p ∈ P)) is called a conceptual time system with parts from P. 
 

 
observ.  day day time    morning star 

   space      brightness 
   evening star 

    space      brightness 
1   Monday morning east luminous     /         / 
2   Monday evening   /      /  west luminous 
3   Tuesday morning east luminous     /         / 
4   Tuesday evening   /      /  west luminous 

 
Table 4: A conceptual time system with parts 'morning star' and 'evening star' 
 
In Table 4 the time part of the 'morning star' is described by the columns 1,2,3 and the 
event part by the columns 1,4,5.  
The corresponding scales are chosen as nominal scales for 'day' and 'day time' and as 
the following scales (scaling also the missing value "/") for the columns 4,5,6,7 : 

 
 east   luminous   west 
east        ××  luminous          ××  west        ×× 
      /         /   /  

 
Table 5: The scales for columns 4, 5 (7), and 6. 
 
The set P of parts is chosen as { morning star, evening star} , their time parts are 
chosen as T, their event parts are described by columns 4, 5 respectively 6, 7 
(together with the corresponding scales). 

4.2 Subposition of Par ts: Actual Objects 

In many applications objects are introduced as something which is relatively stable, 
but sometimes objects are changing quite rapidly with time. Then we usually combine 
such an object with a 'piece of time' as for example 'my father in his youth' or the 
'morning star at Monday morning'.  
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If we like to use the parts as new objects, then it is very natural to combine a part p 
and a time granule g to a pair (p,g). This is done in the following example. 

 
observation  day day time  space           brightness 

  (ms,1)   Monday morning   east   luminous 
  (ms,2)   Monday evening     / / 
  (ms,3)   Tuesday morning   east   luminous 
  (ms,4)   Tuesday evening     / / 
  (es,1)   Monday morning     / / 
  (es,2)   Monday evening   west luminous 
  (es,3)   Tuesday morning     / / 
  (es,4)   Tuesday evening   west luminous 

 
Table 6: The subposition of parts: The pairs (part, time granule) as 'actual objects' 
 
In Table 6 the information of Table 4 (where the parts are graphically represented 
using apposition of their tables) is now represented using subposition of their tables. 
(For a definition of apposition and subposition the reader is referred to [18], p. 40.)  
In general we take some of the elements of P×G as time objects of a new conceptual 
time system with a suitable time part (representing some common aspect of the time 
parts Tp , p ∈ P) and a suitable event part (representing some common aspect of the 
event parts Ep , p ∈ P) usually with suitable refinements in the scales. Then we obtain 
a 'conceptual time system with actual objects' in the sense of the following definition. 

Definition: 'conceptual time system with actual objects' 
Let P and G be sets and Π ⊆ P×G , then a conceptual time system (T,C) on Π is 
called a conceptual time system with actual objects from P×G. P is called the set of 
objects or particles, G the set of time points and Π the set of actual objects (which is 
the set of time granules of (T,C)). 
Clearly, each conceptual time system with actual objects can be transformed (in many 
ways) into a conceptual time system with parts. While in conceptual time systems 
with parts for each time granule g the intent of g (in the derived context) contains all 
the information given in all parts, 'this information' is distributed over the intents of 
all actual objects (p,g). The details of these constructions are not explained here. 

5. Applications 

Conceptual time systems with actual objects can be used to represent the development 
of many objects in a common phase space or – omitting the time part – in a common 
state space. Classical examples are a swarm of birds or a physical system of particles. 
The author has applied this method in cooperation with a computer firm in the 
production of wafers based on process data of a reactor; it was applied in a chemical 
plant for the visualization of a chemical process in a distill ation column [45]. Now we 
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describe two applications in greater detail , one in an air-conditioning plant and the 
other in a therapeutic treatment of an anorectic young woman.  

5.1 A Phase Space of an Air -Conditioning Plant 

In this application an air-conditioning plant in the pharmaceutical industry was inves-
tigated to control the behavior of the plant. Therefore several temperature time series 
were collected. The usual visual inspection of these discrete data represented in 
'curves' finds some phases which occur nearly every day, for example the phase that 
during the afternoon the temperature outside and inside is relatively high.  
To represent such phases systematically we constructed several conceptual time sys-
tems with different scales based on the same many-valued context describing the 
original temperature measurements taken at each hour of the first six months (=182 
days) of the year 2000 using 4368 = 182 x 24 hours as time objects. Each hour is 
described in the time part by three attributes 'month', 'day', and 'hour' where the values 
of 'hour'  range from 0 to 23. Clearly, the temperature measurements form the event 
part.   
To demonstrate the method we take from these data only the first three days and only 
two temperatures, namely the outside temperature and the temperature in one of the 
production rooms. For the 72 = 3 x 24 hours we use labels, for example '100' for the 
midnight hour of the first day, and '323' for the last hour of the third day. The line 
diagram in Figure 2 shows the phase space of a conceptual time system using an 
ordinal scale with five concepts for the attribute 'hour' and two ordinal scales each 
with three concepts for the temperatures inside and outside.  
The process starts at midnight of the first day (in the phase of time granule 100) 
where the temperatures outside and inside are low. The system changes to another 
phase at time granule 108, but remains in the same state. After time granule 110 the 
system changes to a state with a medium inside temperature. The change to the phase 
of 112 shows that the transitions between two phases clearly need not follow the lines 
of the line diagram. Omitting the 'hour'-attributes we get the projection of this phase 
space onto the state space (described by the six points in the upper-left part) which 
can be embedded into a 3 x 3 –grid spanned by the two 3-chains for the temperatures. 
A typical phase space implication: hour:>=16 ⇒ Temp-outside:<=6.0. 
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Figure 2: A phase space of an air-conditioning plant 

5.2 A State Space of a Therapeutic Process of an Anorectic Young Woman 

In the following example a conceptual time system with actual objects is described. 
We represent a therapeutic process of an anorectic young woman over a period of 
about three years [34,35]. During the course of treatment at four points of time the 
patient was asked to describe herself and her family using a repertory grid. This is a 
many-valued context where (in this example) the objects are the members of the 
family denoted by SELF (the patient), FATHER, MOTHER, together with IDEAL 
(self-ideal of the patient). The many-valued attributes are self-chosen pairs of 
constructs like 'rational - emotional' and the values are marks from 1 to 6, for example 
'1' for 'very rational' and '6' for 'very emotional'. Application of  Formal Concept 
Analysis led to four concept lattices – one for each time point. Since the chosen 
attributes changed from time point to time point there was no common formal 
framework for the representation of the whole process. Therefore the 'main 
information' in these four repertory grids was described by the therapeut using a 
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suitable common set of attributes for all points of time. The following line diagram 
demonstrates the state space of the corresponding conceptual time system with 16 
actual objects (for example SELF1 denotes SELF at time point 1).  
 

 
 
Figure 3: A state space of a therapeutic process of an anorectic young woman 

 
From the line diagram in Figure 3 we see for example that SELF1 and SELF3 are in 
the same state described by the attributes 'pessimistic', 'self-accusation', 'distrust', and 
'reduced spontaneity'. SELF2 has only the first two of these attributes while SELF4 
has none of the used attributes just like her IDEAL at the time points 2, 3, and 4. The 
development of the FATHER is quite remarkable since he is stable during the first 
three time points in the state 'self-accusation', 'distrust', and 'reduced spontaneity' and 
in the forth time point he is judged as having all of the used attributes except the at-
tribute 'morally closed' which was used for none of the 'actual persons'. 
This investigation is based on a long cooperation with my friend Norbert Spangen-
berg [34,35] at the Sigmund-Freud-Institute Frankfurt.  

 

K.E. Wolff ICCS’01 Int’l. Workshop on Concept Lattices−based KDD

103



6 Future Research in Temporal Concept Analysis 

The actual state of Formal Concept Analysis and Conceptual System Theory seems to 
be a promising starting point for a new discipline in Conceptual Knowledge Process-
ing namely Temporal Concept Analysis understood as the theory of temporal phe-
nomena described with tools of Formal Concept Analysis. On the basis of a clear 
definition of states and phases as formal concepts a general description of temporal 
phenomena in all areas of science can be developed.  
One of the next steps will be a conceptual transition theory such that transitions in 
automata theory [1,11] and in the theory of Petri Nets [7,29,30] can be understood in 
a temporal conceptual framework. Future research is necessary for the conceptual 
understanding of temporal logics, temporal dependencies and temporal relational 
structures. 
For the application of Temporal Concept Analysis programs have to be developed 
which represent complex temporal systems in easily understandable visualizations. 
One of the most promising possibiliti es are conceptual movies introduced by the 
author [42,45]. A diploma thesis on conceptual movies was written by Freimuth [13]. 
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