A graph b-coloring based scheme for
Composition-Oriented Web Services Abstraction:
COWSA

Lyes DEKAR
supervised by Hamamache KHEDDOUCI

Université de Lyon, Lyon, F-69003, France; Laboratoire LIESP, Université Lyonl
Batiment Nautibus (ex.710), 43 bd du 11 Novembre 1918 F-69622 Villeurbanne
Cedex, France
{1ldekar,hkheddou}@bat710.univ-lyonl.fr

Abstract. We propose in this paper a self-learning scheme named COWSA,
which aims to enhance the performances of existing Web services com-
position algorithms. Our scheme is based on a new dynamic clustering of
Web services, that is oriented to Web services composition. This cluster-
ing is performed through using the b-coloring of graphs. We conduct a
series of experiments to evaluate the contribution and the performances

of our scheme.

1 Introduction

The Web services composition has drawn a great deal of attention recently. With
the growth of the Web services number, it is essential to organize them in order
to facilitate the discovery of services participating to the composition process. In
this paper, we propose to regroup the Web services according to the compositions
made by the users (through their requests for composed services). This approach
seems to be a new approach for the Web services classification since the majority
of Web services classification methods [3] is based on the similarity between
Web services. To achieve our clustering, we use a b-coloring of graphs [2]. The
b-coloring can be defined as follows : Let G = (V, E') be an undirected connected
and simple graph with a vertex set V' and an edge set E. The b-coloring of G
is a vertex coloring function ¢ from V' to the set of colors {1,2, ..., k} such that:
1- for each pair of adjacent vertices (v;,v;) € E, c(v;) # c(v;) (proper coloring).
2- In each color class, there exists at least one vertex having neighbors in all
other color classes. Such a vertex is called a dominating vertex. A color that has
a dominating vertex is called a dominating color.

2 The Composition-Oriented Web Services Abstraction:
COWSA

In this paper, we identify two kinds of services: atomic services and composite
services (C'S). An atomic service is a Web service that fulfils requests without

depending on other Web services. A composite service is a Web service that
includes a set of atomic services, called component Web services, and can be
itself a part of another composite service. We define a complex request as a
user’s request that consists of a set of service functions F7, ..., Fj, which cannot
be satisfied by one atomic service. A complex request is satisfied by a composite
service. In order to satisfy a complex request, a composite service should be
constructed through the Web services discovery and composition operations. The
aim of this paper is to propose a method to organize the Web services in such a
way to enhance the performances of the web services composition methods. Our
proposed method consists of regrouping Web services that are often composed
together in clusters. A set of services is assumed often composed together if they
appear often in a same composite service when satisfying users complex requests.
This approach aims to identify stable services sets, which contain services that
are regularly and frequently composed together. Then, we obtain an Abstraction
of Web services, where every identified set of services represent a template of
composite services, or what we name a meta composite service (MCS). A MCS
exhibits a WSDL interface and can be invoked as an atomic service. The M CS
are used by the Web services composition methods to accelerate the discovery
of component Web services that are required in the composition process. Then,
the M CS are used to fulfill the users complex requests. Since the users requests
can change over the time, then the M C'S can change too. Therefore, we propose
to give our method following a self-learning model.

We model our system by an undirected edge-weighted graph G = (V, E), where
V is the vertex set and E is the edge set. Vertices in G represent services,
edges correspond to the composition relation between services, and edge weights
represent the number of times two linked services are composed. This information
is presented in the Composition Weight Matrix (CWM). The clustering here
consists to regroup services such that we obtain a large intracluster composition
weight and a small intercluster composition weight.

The filtered graph: In order to regroup the services joined by a large weighted

S1[52(53|54|55(S6|S7|S8[Se
S11 0
S21 210
S3|11(13|0
S411213 1210
Ss| 5 (14|23| 3|0
Se| 91144 |5 |15/ 0
Szl 1|17/6|0|9 (12| 0
Sg|12|19| 1 |18(12] 4 [14| 0
So|13| 6 |17(201 3|2 1(16/2 |0

Fig.1l. A composition weight matrix

(CWM). Fig. 2. The filtered graph.

link in the same cluster, we remove all edges with a weight larger than a threshold
a. Consequently, after removing these edges, we obtain a filtered graph G, =
(V,E<q), such that E., = {(v;,v;) | CWM(v;,v;) < a}. Figure 2 gives the
filtered graph G.g corresponding to the composition weight matrix given in
Figure 1.

3 A partial dynamic algorithm for a b-coloring of graphs

The proposed algorithm is composed of two parts. The first part of our algorithm
constructs a b-coloring to obtain a partition of the filtered graph G, into
disjoined color classes {C4,Cy, ...,Cy} that represent clusters. The second part
of our algorithm maintains this clustering when edges are added or removed from
the filtered graph. Then, the proposed algorithm is a partial dynamic algorithm.
Before presenting the algorithm, we first give some notations and definitions.
We let A be the maximum degree of G and ¢(v) be the color of the vertex v
in the graph G. For every vertex v, we define N(v) its open neighborhood, as
the set of vertices adjacent to v. The set of colors of N(v) is denoted N.(v). We
note L the color set used in the graph. For each color ¢ used in the graph, we
associate a variable Dom|[c] that indicates if the color ¢ is a dominating or a non-
dominating color (true: if ¢ is dominating. false: otherwise). Finally, we define a
function weight(v,c) that indicates the composition weight between the vertex v
and the color ¢. This function is defined by: weight(v,¢) = max{CW M (v,v") |

c(v') = c}.

3.1 The clustering construction algorithm

In this subsection, we give the first part of our algorithm, which performs the
b-coloring and constructs the clusters. The b-coloring is made in two steps:
Procedure 1: the coloring initialization: In the first procedure, the graph is
initialized by coloring it with a maximum number of colors (A + 1). The proce-
dure starts by coloring the vertex having maximum degree A by the color 1 and
adds it to a list S. Then, the procedure color the remaining vertices as follows:
the vertex v; with the largest degree among all colored vertices belonging to S
is selected. If there is non-colored vertices v; adjacent to v; then a new color is
assigned to every one of them and are added to S. The assigned color must be
different from those appearing in the neighborhood of v; or v;, and must not
Exceed A + 1. Finally, the procedure checks if the color of v; is a dominating
color. In this case, this color is marked as dominating. After that, the vertex v;
is removed from S. The operation is repeated for every colored vertex until all
the graph is colored. Let us consider the filtered graph G g obtained in Figure
2. By performing the procedure 1, the filtered graph G.9 has an initial coloring
with a maximum number of colors A+ 1 = 6, as shown in Figure 3. Among this
colors, only the vertex Sy is a dominating vertex, and then only the color 1 is
dominating (Dom/[l] = true).

Procedure 2: find a b-coloring of G: In the coloring obtained after the execu-
tion of the previous procedure, some colors could be not dominating. Then, the
Procedure 2 finds a b-coloring of a graph G where all the colors are dominating.
Hence, the strategy consists to remove a non-dominating color p from the graph
by recoloring every vertex colored with p by an already used color not appearing
in its neighborhood. If there is choice between many colors, then the color that
has the largest composition weight with the vertex is selected. After that, the
procedure checks if there is non-dominating colors that have dominating vertex.
The operation is repeated until all the colors are marked as dominating. Let us
consider the colored graph obtained after the execution of the procedure 1 and
given in Figure 3. By performing the procedure 2, we obtain a b-coloring of a
graph G g, as shown in Figure 4. We can observe that four colors appear in the

Fig. 3. A graph G g Coloring initializa-

. Fig. 4. the b-coloring of a graph G«9.
tion.

graph G <g. This means that the Weighted composition graph is partitioned into
four color classes. The composition weight between the services that are in the
same cluster (color class) is larger than a.

3.2 The clustering maintenance algorithm

The composition weights between services can evolve in the time because the
self-learning of our method. Then, an edge can appear (resp. disappear) in (resp.
from) the filtered graph if its weight becomes under the threshold value (resp.
its weight exceeds the threshold value). Then, we propose an edge-dynamic al-
gorithm to maintain the b-coloring when edges are added or removed from the
graph. We assume in this algorithm that if a color class contains several dom-
inating vertices, then only one of them represents this class. This one is called
representative dominating vertex. A representative dominating vertex x is said
satisfied if for any color ¢ in the graph, there exists at least one vertex y € N(x)
such that ¢(y) = g. If there exists only one such a vertex then this one is called
a Satisfaction vertex. Any change of the satisfaction vertex color can affect the
b-coloring. The vertices that are neither representative dominating vertices nor
satisfactions vertices are called Normal vertices.

The edge adding When an edge (v,y) is added to the graph, we can distin-
guish three different cases, according to the endpoints of the added edge:

1- The edge is added between two vertices having different colors: In
this case, the b-coloring of the graph is not affected. 2- The edge is added
between a normal vertex v and another vertex having the same color:
In this case, the coloring is not anymore proper, and the b-coloring conditions
are not verified. Then, the color of the normal vertex must be changed. Hence,
we can distinguish four different cases: (a) The vertex v is adjacent to a domi-
nating vertex of every color in the graph: In this case, we give the vertex v a new
color for which v will be dominating. (b) There exists at least a color ¢ to which
the vertex v is not adjacent: In this case, we give the vertex v this color. (¢) The
verter v is adjacent to all the colors in the graph, and there exists at least one
color ¢ that appears only on normal vertices w: in this case, the vertex v takes
the color ¢, which causes a not proper coloring. Then, the vertex w takes an-
other color ¢’ not appearing in its neighborhood. (d) The vertex v is adjacent to
satisfaction and/or dominating vertices with every color in the graph and there
exists at least one color ¢ that does not appear on a dominating vertex adjacent
to v, but on satisfaction vertices w adjacent to v: in this case, the vertex v takes
the color c. Hence, the coloring is not anymore proper. Then, we give to the
satisfaction vertex w another color not appearing in its neighborhood. The color
change of w implies that the dominating vertex x that was satisfied by w is not
anymore satisfied. If this dominating vertex is the only one for its colors then
the b-coloring is not satisfied. In order to reestablish the b-coloring without sys-
tematically removing the non-dominating color, we try to put the previous color
of w on another normal vertex z adjacent to v (by respecting a proper coloring)
to reestablish the dominating condition. If such a vertex does not exist then we
remove the color ¢(x) from the graph and we color every uncolored vertex with
the smallest color not appearing in its neighborhood. 3- The edge is added
between a satisfaction vertex v and another satisfaction or representa-
tive dominating vertex y having the same color: The coloring is not proper
and then the color of one of the endpoints vertices must be changed. Then, we
change the color of a satisfaction vertex v. Hence, the dominating vertex x sat-
isfied by v does not respect anymore the dominating condition. Therefore, we
make the same actions as in the point (d) of the previous case.

The edge removing If an edge between a unique dominating vertex v of a
color ¢ in the graph and one of its satisfaction vertices y is removed, then v is
not anymore dominating. Hence, we perform the same actions as in the point
(d) of the second case of edge adding.

4 Experiments

In this section, we evaluate the performance and the contribution of our scheme.
We implement the Web services composition method given in [1]. Then, we com-
pare the performances of this method with the same method using our scheme.
Two metrics are defined to evaluate the performance of our scheme: the Clus-

ters stability rate and the average search time (AST). The clusters stability rate
is the ratio of Web services that change cluster during an interval of time At.
The average search time AST is the average time required by the service search
engine of the composition process to find all the Web services implied in the com-
position. Figure 5 shows the clusters stability rate according to the simulation

100 2%

g
80
g 70

N
3

—+— Composition without
% COwWSA

40
g 30

—=— Composition with COWSA

Clusters stability rate (
8

Average search time
5 &

10

o«

°
IS
°
®
5

°

IS

®

5

Simulation time Simulation time

Fig.5. Clusters (Meta composite ser- Fig. 6. The average search time vs. Sim-
vices) stability rate vs. Simulation time. ulation time.

time. We can observe that the cluster stability rate increase with time. This is
explained by the self-learning process of COWSA, which enables it to learn more
about the behavior of users in the construction of their complex requests. Then,
the clusters become more stable and less sensitive to new composite services.
Figure 6 shows the average search time (AST) of the Web services composition
method given in [1] with using COWSA and without using it. We can observe
that from the third time, the AST of the composition using COWSA becomes
less than the AST of the composition not using COWSA. We can explain this
behavior by the self-learning process of COWSA appearing in Figure 5.

5 Conclusion and future works

In this paper, we present a composition-oriented Web services abstraction scheme,
called COWSA. COWSA is a self-learning method that aims to enhance the per-
formances of Web services composition methods.

References

1. Pat. P. W. Chan and M. R. Lyu. Dynamic web service composition: A new ap-
proach in building reliable web service. 22nd International Conference on Advanced
Information Networking and Applications, pages 20—25, 2008.

2. B. Effantin and H. Kheddouci. A distributed algorithm for a b-coloring of a graph.
International Symposium on Parallel and Distributed Processing and Applications
(ISPA-2006), Lecture Notes in Computer Science, 4330:430-438, 2006.

3. S. RAM, Y. Hwang, and H. Zhao. A clustering based approach for facilitating
semantic web service discovery. 15th Annual Workshop on Information Technolgies
and Systems (WITS), 2006.

