
Why URI Declarations?
A comparison of architectural approaches

David Booth
 HP Software

 dbooth@hp.com

Latest version of this document: http://dbooth.org/2008/irsw/

Views expressed herein are those of the author and do not necessarily reflect those of HP.

Abstract. When a Semantic Web application encounters a new URI in an
RDF statement, how should it determine what resource that URI is
intended to denote, and learn more about it? Since assertions are the
currency of Semantic Web applications, in practical terms this question
can be viewed as asking: What additional assertions should be used if the
application wishes to learn more about the URI's denoted resource, and
what mechanism should be used to find those assertions? This paper
compares two architectural approaches from this perspective: one based on
the notion of URI declarations, the other based on a marketplace of
competing definitions. It argues that the URI declarations approach offers
more desirable architectural characteristics for the Semantic Web, largely
because it reduces URI collision.

Key words: Semantic Web, RDF, identity, URI declaration, URI
definition

1 Introduction

"When I use a word it means just what I choose it to mean -- neither more nor less."
-- Humpty Dumpty, in Lewis Carroll's Through the Looking Glass [11]

The goal of the Semantic Web is to enable data from multiple sources to be readily
combined based on common URIs. Various Semantic Web practitioners have
advocated the practice of serving a set of assertions that should be accessible when a
URI (or its racine -- the part before the fragment identifier -- if it contains a fragment
identifier) is dereferenced. For example, Dan Connelly recommends [1]:

"1. To mint a term in the community, choose a URI of the form doc#id and
publish at doc some information that motivates others to use the term in a
manner that is consistent with your intended meaning(s).
2. Use of a URI of the form. doc#id implies agreement to information
published at doc."

The term "URI declaration" was coined [2] to help crystalize, explain and promote
this practice (though extended to also accommodate hashless 303-URIs [3]).
However, this practice has not yet been universally accepted in the Semantic Web
community. In particular, a less constrained architectural approach, which we will
call the "competing definitions" approach, is sometimes used.

To compare the merits of these approaches, we will make certain assumptions about
how Semantic Web applications use URIs to denote resources. For simplicity, we
will restrict our attention to URIs that denote non-information resources [4], however
the comparison could be extended to URIs that denote information resources.
Furthermore, although the examples show hash URIs [3], the analysis applies equally
to hashless 303-URIs [3].

2 The "meaning" of a URI as a set of assertions

Suppose a Semantic Web application reads an N3 [8] statement, S1, such as

:thermostat :adjust <http://alice.example#foo> .

involving a previously unknown URI, http://alice.example#foo, that is intended to
indicate whether a thermostat should be adjusted up or down. In an RDF statement
like this, the URI is treated as a name -- not merely as a literal string of characters --
for the denoted resource. In order to understand what the statement "means", the
application needs to know what http://alice.example#foo "means", i.e., it needs to
know what resource the URI was intended to denote.

What does this mean operationally to the application? The answer may of course
depend on the application. But for convenience we will assume that the question of
what the URI "means" or denotes can be viewed as asking: What set of assertions
defines the "meaning" of that URI? In other words, what additional assertions should
the application use in conjunction with this URI?

For convenience, we will call these identifying assertions, because presumably they
serve to constrain the denoted resource's identity; however, we make no requirement
that they actually do. Thus, from an application's perspective, the identity of the
denoted resource is assumed to be solely determined by the set of identifying
assertions that constrain it: if two set sets of identifying assertions are equivalent, then
they indicate the same resource. Given this assumption, the application's task upon
discovering this new URI is to locate the identifying assertions that constitute the
appropriate definition for that URI.

So far so good. But suppose there are multiple sets of assertions available that all
involve this URI, any of which might potentially be interpreted as "identifying
assertions". Does it matter which set the application chooses? Clearly it does: if the

application does not choose the set that the author of statement S1 intended, then it
may misinterpret the author's intent, perhaps adjusting the thermostat up instead of
down. Less obviously, even if the sets differ only slightly -- one being more
restrictive than the other -- the application may still have trouble if it chooses a
different set than the author intended.

For example, if the identifying assertions for http://example#dbooth were taken to be
only the following N3 [8] assertions (omitting the foaf: [10] namespace declaration):

<http://example#dbooth> foaf:name "David Booth" .
<http://example#dbooth> foaf:workplaceHomepage
"http://www.hp.com/" .

instead of the more restrictive set that was intended:

<http://example#dbooth> foaf:name "David Booth" .
<http://example#dbooth> foaf:workplaceHomepage
"http://www.hp.com/" .
<http://example#dbooth> foaf:mbox "dbooth@hp.com" .

then a statement involving <http://example#dbooth> would apply to any of the three
people named "David Booth" who work for HP, which may not be what the statement
author intended.

Conversely, if the application chooses a more restrictive set of identifying assertions
than the statement author intended, then the application may produce absurd results or
incur a logical contradiction when that statement is combined with other statements
involving the same URI. For example, suppose an author writes the following
statement, S2:

<http://example#dbooth> a :male .

and bases the statement on the following URI definition for http://example#dbooth>:

<http://example#dbooth> a :human .
<http://example#dbooth> :hasHairColor :gray .

If an application reading S2 instead uses the following, more constraining URI
definition:

<http://example#dbooth> a :human .
<http://example#dbooth> :hasHairColor :gray .
<http://example#dbooth> a :female .

then the application will erroneously conclude that <http://example#dbooth> is both
:male and :female.

Therefore, we will make the further assumption that the application's task in
determining the "meaning" of a URI is to locate the specific set of identifying
assertions that the statement author intended: the URI definition relevant to that
statement. In summary, we will assume: When an application needs to determine the
"meaning" of a URI used in a statement, this boils down to the task of locating and
accepting the specific set of "identifying assertions" that the statement author
intended: the "URI definition" corresponding to that use of the URI.

3 The follow-your-nose algorithm

One obvious way the application might locate the intended URI definition is by
"following its nose" from the URI. If the URI contains a fragment identifier -- a so
called "hash URI" such as http://alice.example#foo -- this means dereferencing the
racine (i.e., the part before the fragment identifier: http://alice.example) in search of a
URI definition. If the URI does not contain a fragment identifier -- a "hashless" or
"303 URI" -- it means dereferencing the URI itself to obtain a new URI, which in turn
is dereferenced in search of a URI definition. For brevity, we will call the document
obtained by this algorithm the follow-your-nose document (or f-y-n document), and
the identifying assertions that it contains will be called the follow-your-nose
definition (or f-y-n definition) of that URI.

The follow-your-nose algorithm is not the only way that an application might locate
the URI definition. If there were a standardized, machine processable convention for
the author to indicate where to find it, then that could be used. For example, if, in the
same file as S1, the author also wrote:

<http://alice.example#foo> rdfs:isDefinedBy
<http://alice.example/ont> .

then a new architectural convention might stipulate that, to locate the URI definition
for http://alice.example#foo that pertains to statements contained in the same
document, the application should dereference http://alice.example/ont (instead of
using the "follow your nose" algorithm). However, to date this use of
rdfs:isDefinedBy [5] has not been standardized.

4 URI collision

URI collision [4] occurs when the same URI is used in different contexts to denote
different resources. Since we are treating the "meaning" of a URI operationally as
indicating what identifying assertions an application should use in conjunction with
that URI, the problem of URI collision translates into the problem of having different
sets of identifying assertions associated with the URI in different contexts -- alternate
URI definitions. For example, if the author of statement S1 intended the reader to use
one URI definition, and the author of statement S2 intended the reader to use a

different definition of the same URI (indicating different identifying assertions), it
would constitute a URI collision that would inhibit the ability of an application to use
S1 and S2 together, because doing so could cause the application to make incorrect
inferences or incur a logical contradiction. To avoid this problem, an application in
this situation would have to treat S1 and S2 as though they were talking about
different resources -- as in effect they would be -- thus undermining a key goal of the
Semantic Web: the ability to easily combine data based on common URIs. In short,
URI collisions are harmful, and in a Semantic Web application, URI collision is
manifested as different statements using the same URI but requiring different URI
definitions, i.e., different sets of identifying assertions.

Given the above assumptions of how URI meaning can be viewed in terms of sets of
identifying assertions, we can now describe and compare two architectural approaches
for specifying and using such assertions.

5 URI declarations versus competing definitions

Loosely, the competing definitions approach takes the view that all assertions are
created equal, and it is up to the community or marketplace to decide which assertions
become the prevailing definition of a particular URI. In contrast, the URI
declarations approach is based on the guiding principle that use of a URI implies
agreement with its follow-your-nose definition. Thus it takes the view that assertions
are not created equal: some are special from the outset -- namely, the URI
declaration's "core assertions" -- and should be consistently used as the URI's
definition in all statements. Although this is the fundamental architectural difference
between these approaches, in order to further explain how the URI declarations
approach can work under various circumstances we will also make a few more
assumptions about the architectural rules that they might involve, in terms of the
obligations of the URI owner and those of a statement author wishing to use the URI
to make statements.

5.1 The URI owner's obligations

In both the URI declarations approach and the competing definitions approach
we will assume that the URI owner's obligations are the same:

Rule A. A URI owner minting a new URI SHOULD [6] publish a follow-your-
nose definition of that URI.

For example, when Alice mints http://alice.example#foo, she should publish its
definition at http://alice.example.

Of course, there are many other best practice guidelines that might be recommended
also, such as:

• The URI owner should make best efforts to separate "essential" properties
[7] from other properties of the resource, which should be published in a
separate document from the follow-your-nose definition.

• As a convenience to statement authors, the URI definition should include
pointers (perhaps via rdfs:seeAlso) to other known sets of assertions about
the resource that statement authors may find useful but are not part of the
URI definition.

• The follow-your-nose definition should indicate known relationships
between this URI and other URIs. (See comments about this in the "URI
relationships" section below.)

• The f-y-n definition's change policy should be clearly indicated, and
substantive changes should be avoided, and change can cause URI collision.

• The URI should be persistent [13], such as by use of a Persistent URL
(PURL).

• Etc.

However, such additional guidelines are beyond the scope of this paper and can be
better covered in other works.

5.2 The statement author's obligations

To be clear, when we speak of an author "using a URI" in a statement, unless
otherwise indicated, we mean that the author is using the URI to denote a resource, as
http://alice.example#foo does in statement S1 above -- not merely as a string literal.
Also, before we describe the differences between the URI declarations approach and
the competing definitions approach, we will assume that they both involve the
following obligation:

Rule B: If a statement is based on a URI definition other than the f-y-n definition,
the statement author MUST indicate where that URI definition can be found. This
will be called an alternate URI definition.

Although in some cases it may be feasible to include an alternate URI definition -- the
identifying assertions themselves -- in the same document as the statement that
requires it, this is unlikely to be practical in general. Hence, we will assume only that
the location of the alternate URI definition is specified (as a URL).

The statement author's remaining obligations vary, depending on which of three cases
the statement author believes the URI falls under:

Case 1 URI: Normal case.

In this case, the URI has a reasonable follow-your-nose definition, at least for its
intended application domain. The identifying assertions in that URI definition might
only be useful to, or usable by, some applications -- for example, they may contain
approximations that are too imprecise for many applications -- but they are not clearly
erroneous.

Case 2 URI: Newly minted URI with missing or erroneous f-y-n definition.
In this case, either a follow-your-nose definition is not available or it is clearly

erroneous, and the URI does not have a URI definition that is already entrenched in
the community.

Case 3 URI: Entrenched URI with missing or erroneous f-y-n definition.
In this case, the URI has a set of identifying assertions that have been widely

accepted in the community, but a follow-your-nose definition is not available or it is
clearly erroneous -- perhaps due to a clerical error, or because the domain was
hijacked. In this case, the community's URI definition may need to take precedence
over an erroneous f-y-n definition.

Under the competing definitions approach the statement author's remaining
obligations are:

Rule C-CD:
1: A statement using a case 1 URI SHOULD be based on the URI's f-y-n
definition.
2: A statement using a case 2 URI MAY be based on any URI definition.
3: A statement using a case 3 URI SHOULD be based on the URI's community-
accepted definition.

Under the URI declarations approach the statement author's remaining obligations
are:

Rule C-UD:
1: A statement using a case 1 URI MUST be based on the URI's f-y-n definition.
2: A statement SHOULD NOT use a case 2 URI.
3: A statement SHOULD NOT use a case 3 URI.

Prohibiting the statement author from using the URI does not prevent the author from
saying what he'she wishes to say, it merely means that the author needs to use a
different URI to do so. For example, in the case of an erroneous f-y-n definition, a
statement author can, if desired, mint a new URI with a corrected URI definition, in
which case, as mentioned under "URI owner's obligations", the new URI definition
should indicate the new URI's relationship to the old URI.

The intent of rules C-UD-2 and C-UD-3 is to discourage the use of a newly minted
URI that has a missing or obviously erroneous follow-your-nose document, thus
encouraging the URI owner to turn his/her case 2 URI into a case 1 URI and prevent
it from becoming a case 3 URI. One reason this is important is because a statement

author considering the use of a URI may not be able to accurately determine whether
that URI should fall under case 1, 2 or 3, particularly if the statement author is not
very familiar with "the community".

However, rules C-UD-2 and C-UD-3 say "SHOULD NOT" instead of "MUST NOT"
largely because:

• It seems reasonable to use a URI if its f-y-n definition is known but
temporarily unavailable.

• If a URI is very entrenched in common usage -- to the point where its
meaning is hard wired into applications, for example -- it may not be worth
the cost of changing to a case 1 URI. However, if a case 3 URI is used then
only the entrenched, community-accepted URI definition must be used, and
ideally the location of the definition should be explicitly indicated, so that an
application can verify that the URI is being used according to its entrenched
definition.

The precise details of rules C-CD and C-UD could perhaps be improved, but they
are good enough for this architectural comparision. The point is that the competing
definitions approach willingly permits competing definitions for a URI. It is
somewhat like saying: "When I use a URI it means just what I choose it to mean." In
contrast, the URI declaration approach is more like saying: "When I use a URI it
means just what the URI owner chose it to mean." Or, from the URI owner's
perspective, it would be like saying: "When I mint a URI it means just what I choose
it to mean."

The rationale behind the greater discretion offered by the competing definitions
approach is that it permits the statement author to use an alternate URI definition that,
at least in that author's view, is better than the follow-your-nose definition. The
concommitent assumption is that if competing URI definitions are offered to the
community, the community will eventually converge on a common URI definition for
that URI, and this will be A Good Thing. In contrast, under the URI declarations
approach, these same market or community forces are expected to operate on
competing URIs (rather than on competing URI definitions), with the same kind of
beneficial effect. But as explained below, the overall impact of these two
architectural approaches is not equivalent.

5.3 Application impact

As stipulated above, when a Semantic Web application reads a statement involving
a previously unknown URI, and it needs to know more about that URI, its task is to
locate the URI definition that the statement author intended. In case 1 (normal case),
under the URI declarations approach (rule C-UD-1) the process is simple: the
application uses the URI's follow-your-nose definition. But under the competing
definitions approach (rule C-CD-1) the application faces two problems:

1. Until there is a standard mechanism for specifying an alternate URI
definition (to be used instead of any f-y-n definition), the application cannot,
without assistance, be assured of getting the right URI definition, hence
violating the self-describing Web [12] principle.

2. Alternate URI definitions cause URI collision, as described above.
Of course, problem 1 will go away if such a mechanism is standardized. But

problem 2 will not. In short, in the normal case, any architectural rule that permits
statement authors using the same URI to base their statements on different URI
definitions leads to harmful URI collision.

Furthermore, even if the problem of URI collision is viewed as a necessary harm en
route to the higher goal of community-accepted URI definitions, the notion of a
"community-accepted definition" is tenuous, because different communities might
"standardize" the definition of a URI differently. That would be bad, because the
Semantic Web should enable serendipitous combinations of data across
communities. In fact, it may be difficult to even ascertain whether a community-
accepted definition had reached the globally accepted stage. Furthermore, as the
number of parties increases, the difficulty of reaching agreement increases. In such
situations it seems much more likely that the eventual outcome would not be a single,
community-accepted definition, but a community-accepted definition for each
community, thus perpetuating URI collision indefinitely.

5.4 URI-translating proxy

Regardless of which of the three cases in rule C-CD or C-UD a URI fell under
when a statement is made, the situation may have changed by the time an application
reads that statement: documents, may have been moved or changed, etc. How can the
application still use the right URI definition?

One simple implementation strategy is to use a URI-translating proxy that
transparently redirects from a URI definition's old URI to its new URI. The proxy
can be driven by an exception list of <oldURI, newURI> pairs, such that if the
application attempts to dereference oldURI, the proxy will instead dereference
newURI, thus insulating the application from the exceptions. The exception list can
thus cover cases in which:

• the f-y-n definition is unavailable;

• the f-y-n definition is erroneous (for example, if the domain was hijacked);
or

• the f-y-n definition should be superceded (for example, by a community-
accepted URI definition).

Such a proxy could be used in either the URI declarations approach or the
competing definitions approach, and the exception list would have to be updated as
links break, definitions are accepted or deprecated by the community, etc. However,
since the competing definitions approach encourages the indefinite accumulation of
community-defined URIs, and a URI may more freely change from using the f-y-n
definition to a community-accepted definition, maintenance of the exceptions list
becomes significantly less burdensome under the URI declarations approach, which
discourages such exceptions.

6 URI relationships

Suppose Bob does not wish to agree with one of the identifying assertions in
Alice's URI definition for http://alice.example#foo. Bob would like to use a URI
definition that is essentially the same as Alice's except that it would omit the
offending assertion that Bob doesn't like. He therefore decides to mint a new URI,
http://bob.example#foo, with a new URI definition, and indicate its relationship to
Alice's URI. Bob's URI would therefore denote a skos:broader [7] concept than
Alice's URI denotes.

How should Bob indicate the relationship between his URI and Alice's URI? If Bob
were to naively write something like the following:

<http://alice.example#foo> skos:broader
<http://bob.example#foo> . # WRONG!

then his use of Alice's URI would be imply agreement with Alice's offending
assertion! To avoid this problem, Bob needs to indicate the relationship without using
Alice's URI in its usual denotational way. This can be done by using Alice's URI as
a string literal, and using a property such as log:uri [14] to relate Alice's URI as a
string literal to the resource that Alice's URI normally denotes:

Right:
_:aliceFoo log:uri "http://alice.example#foo" .
_:aliceFoo skos:broader <http://bob.example#foo> .

where the log:uri property relates a URI to the resource it denotes, such that for any
URI u, if u is used to denote a resource, then the following relationship is implied:

<u> log:uri "u"^^xsd:anyURI .

This use of a blank node and log:uri shows one way the relationship between Bob's
URI and Alice's URI can be expressed without implying agreement to the assertions
in Alices's URI definition. Other quoting mechanisms may work also.

7 Conclusions

This comparison has shown that under certain assumptions that view "meaning" as
sets of assertions, the URI declarations approach has architectural properties that
better support the Semantic Web than the competing definitions approach. Of course,
some readers may disagree with some of the assumptions made herein, and the
comparison of pros and cons may lack criteria that some readers find important.
Furthermore, there are many other architectural policies that could have been
compared instead of those chosen to represent the "competing definitions" approach,
and perhaps they would have been better choices for comparison. But this
comparison can at least act as a starting point -- a concrete stake in the ground -- in
the discussion of how Semantic Web architecture should work.

8 Acknowledgements

Thanks to Pat Hayes for his always interesting discussion on these ideas.

9 References

1. Connelly, Dan: A Pragmatic Theory of Reference for the Web, IRW 2006, 26-
May-2006, http://www.w3.org/2006/04/irw65/urisym

2. Booth, David: URI Declaration Versus Use, 25-July-2007,
http://dbooth.org/2007/uri-decl/

3. Sauermann, Leo; Cyganiak, Richard: Cool URIs for the Semantic Web, W3C
Working Draft 17-Dec-2007, http://www.w3.org/TR/cooluris

4. Jacobs, Ian; Walsh, Norman: Architecture of the World Wide Web, Volume One,
W3C Recommendation 15-Dec-2004, http://www.w3.org/TR/webarch/

5. Brickley, Dan; Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Recommendation 10-Feb-2004, http://www.w3.org/TR/rdf-schema/

6. Bradner, S.: Key words for use in RFCs to Indicate Requirement Levels, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

7. Miles, Alistair; Bechhofer, Sean: SKOS Simple Knowledge Organization System
Reference, W3C Working Draft 25-January-2008, http://www.w3.org/TR/skos-
reference

8. Berners-Lee, Tim: Notation 3, W3C, first published 1998,
http://www.w3.org/DesignIssues/Notation3.html

10. Brickley, Dan; Miller, Libby: FOAF Vocabulary Specification 0.91, 2-Nov-2007,
http://xmlns.com/foaf/spec/

11. Carroll, Lewis: Through the Looking Glass,
http://www.sabian.org/Alice/lgchap06.htm

12. Mendelsohn, Noah: The Self-Describing Web, W3C Draft TAG Finding, 08-Feb-
2008, http://www.w3.org/2001/tag/doc/selfDescribingDocuments

13. Berners-Lee, Tim: Cool URIs don't change, 1998,
http://www.w3.org/Provider/Style/URI

14. Berners-Lee, Tim: log.n3 - n3 definition of some Semantic Web terms, 2006,
http://www.w3.org/2000/10/swap/log.n3 . Also available in RDF/XML at
http://www.w3.org/2000/10/swap/log .

24-Apr-2008: Changed section 6 example to be clearer; minor edits.
30-May-2008: Changed section 2 explanation to the effect that "equivalent identifying
assertions => same resource" instead of "different identifying assertions => different
resource", because I'm starting to suspect that even if :a and :b have non-equivalent
URI declarations -- presumably one broader than the other -- it is fine to say ":a
owl:sameAs :b .".
13-Mar-2008: Initial version

