
Describing and Communicating Uncertainty
within the Semantic Web

Matthew Williams1 (williamw@aston.ac.uk), Lucy Bastin1, Dan Cornford1,
and Ben Ingram1

Knowledge Engineering Group, Aston University, Birmingham, United Kingdom

Abstract. The Semantic Web relies on carefully structured, well defined
data to allow machines to communicate and understand one another. In
many domains (e.g. geospatial) the data being described contains some
uncertainty, often due to bias, observation error or incomplete knowl-
edge. Meaningful processing of this data requires these uncertainties to
be carefully analysed and integrated into the process chain. Currently,
within the Semantic Web there is no standard mechanism for interoper-
able description and exchange of uncertain information, which renders
the automated processing of such information implausible, particularly
where error must be considered and captured as it propagates through a
processing sequence. In particular we adopt a Bayesian perspective and
focus on the case where the inputs / outputs are naturally treated as
random variables.
This paper discusses a solution to the problem in the form of the Uncer-
tainty Markup Language (UncertML). UncertML is a conceptual model,
realised as an XML schema, that allows uncertainty to be quantified in a
variety of ways: i.e. realisations, statistics and probability distributions.
The INTAMAP (INTeroperability and Automated MAPping) project
provides a use case for UncertML. This paper demonstrates how ob-
servation errors can be quantified using UncertML and wrapped within
an Observations & Measurements (O&M) Observation. An interpolation
Web Processing Service (WPS) uses the uncertainty information within
these observations to influence and improve its prediction outcome. The
output uncertainties from this WPS may also be encoded in a variety
of UncertML types, e.g. a series of marginal Gaussian distributions, a
set of statistics, such as the first three marginal moments, or a set of re-
alisations from a Monte Carlo treatment. Quantifying and propagating
uncertainty in this way allows such interpolation results to be consumed
by other services. This could form part of a risk management chain or a
decision support system, and ultimately paves the way for complex data
processing chains in the Semantic Web.

1 Introduction

As the Semantic Web evolves, increasing quantities of data are being formatted
to allow distribution, discovery and consumption by machines operating over
networks. This approach requires clear conceptualisation of real-world objects



and phenomena, their attributes and relationships, to allow rich datasets to be
fully exploited by automated parsers and processes. Uncertainty in measurement
(for example of objects’ bounds and parameters) is sometimes considered as a
part of the metadata taxonomy, but rarely in any significant detail, and currently
no uniform standard exists for capturing and communicating the errors and un-
certainties which are inherent in almost all real-world datasets. We would argue
that, in many cases, data without quantified uncertainty has severely reduced
value for analysis and decision making.

Currently, there is a trend in software engineering to move away from tightly
coupled legacy systems and towards loosely coupled, interoperable, services [1]
based on XML. The Web Services approach, whereby functionality is exposed
and consumed over networks, is a particular context where standardised de-
scriptions of capabilities and outputs ensures interoperability, and allows data
to be passed sequentially through Services in processing chains. As Semantic
Web Services evolve, these descriptions will become richer, but even now there
is a need for uncertainty information to be passed between and ‘understood’
by automated processes. This is especially important where error propagates
through a processing sequence — for example, in the case of automatically mon-
itored and interpolated temperature data, where sensor error and random noise
in the original measurements can combine with artefacts from the techniques
used to characterise and interpolate the data, to produce significant levels of
posterior uncertainty. This uncertainty should ideally be explicitly estimated
and quantified, either as simple means and variances or as fully-characterised
probability distributions, over all inputs, parameters and the final outputs. It
is also critical to communicate data uncertainty where the outputs are to be
used for decision-making — for example, where national radiation data is used
to plan for evacuations after a critical incident. In this case, the uncertainty in
predicted radiation at any location might be represented as exceedance prob-
abilities, showing the probability that a critical threshold is exceeded at any
location, or as sets of realised samples from the predicted distribution.

The above two examples have a spatial component, and utilise Web Ser-
vice standards specifically designed to handle geospatial data (for example, the
OGC Web Coverage Service, Web Feature Service and Web Processing Service
standards). Error propagation in geospatial data and geostatistics has been well
documented, particularly in natural resources and decision making contexts [2–
4]. However, there is a pressing need, in the context of the Semantic Web, to
represent uncertainty far more generically, using a clear and flexible standard
which can be incorporated into a variety of existing ontologies and schemata.
Our proposal is UncertML, an XML schema designed for communicating uncer-
tainty in an interoperable way, based on a conceptual model which allows data
uncertainty to be flexibly represented in combination with any other structured
data model, including commonly-used XML schemata such as O&M (Observa-
tions and Measurements) and GML (Geography Markup Language). These un-
certainty representations currently include sets of summary statistics, marginal
or joint distributions, and sets of realisations generated by sampling, and it is



anticipated that they will be extended to other representations such as fuzzy
sets.

In order to maintain flexibility and extensibility within UncertML, we have
made considerable use of Uniform Resource Identifiers (URIs) in combination
with a weak-typed design pattern to allow elements such as statistical distribu-
tions and algorithmic sampling techniques to be fully described in dictionaries,
rather than encoded as concrete types. These dictionaries could be written in
GML (the current option within UncertML), Resource Definition Framework
(RDF) or Web Ontology Language (OWL). This paper describes the conceptual
model for UncertML, with examples of how one might encode uncertainty in
XML, illustrated by examples arising within the INTAMAP project.

2 UncertML Conceptual Model

Fig. 1. Package overview of UncertML. Each package contains a set of elements for
describing uncertainty.

UncertML is divided into three distinct packages. Each package is tailored
toward describing uncertainty using a specific mechanism; either through real-
isations, statistics or probability distributions. Sections 2.1– 2.3 introduce the
conceptual outline for each package and discuss the component types.

2.1 Realisations

In some situations the user may not be able to parametrically describe uncer-
tainties in their data. Typically, in such a situation they may provide a sample,
often using Markov Chain Monte Carlo methods, from the probability distri-
bution of the data which allows the uncertainties to be described implicitly.



Fig. 2. Realisations can either be encoded singly using the Realisation type or ag-
gregated in the RealisationArray.

However, a sufficiently large sample of data is required to properly assess un-
certainty, therefore efficient encapsulation of large data volumes is an important
issue for UncertML.

Realisation. As with all uncertainty types, a Realisation inherits the defini-
tion property from the AbstractUncertainty type. In this instance the URI
should resolve to a definition of the concept of a realisation. Greater informa-
tion about any particular realisation may be included with the realisedFrom
and samplingMethod properties. Both these properties are URIs that link to
dictionaries, providing information about the distribution the sample was re-
alised from and the method by which the data was sampled, respectively. The
final property of a Realisation is the value. This property contains the actual
value of the realisation; i.e. the number generated by the sampling mechanism.

RealisationArray. Working with large arrays of realisations is more common
practice, since we are often dealing with joint distributions. UncertML pro-
vides the RealisationArray type for such purposes. As with all other array
types in UncertML, the RealisationArray is based around the SWE Common
DataArray type [5]. The elementType property describes the element that is con-
tained within the array, in this instance it is a Realisation. The elementCount
property is an integer value that defines the number of elements, or realisations,
within the array. The SWE Common encoding schema [5] provides an efficient
and flexible solution to encoding these data arrays. Loosely speaking, the for-
mat of the data (binary, ASCII, XML etc) is described in an encoding property,
while a values property contains the data which relates to the elementType, or
realisations.

2.2 Statistics

There is an extensive range of options available in UncertML for describing
‘summary statistics’. Such statistics are used to provide a summary of a ran-
dom variable, ranging from measures of location (mean, mode, median etc) to
measures of dispersion (range, standard deviation, variance etc). While certain
statistics (e.g. mean, mode) do not provide any information about uncertainty
in isolation, they are often used in conjunction with other statistics (e.g. vari-
ance, standard deviation) to provide a concise summary. It should be noted that



providing a location value which is explicitly defined as the mean conveys signif-
icantly more information than simply providing a value, since the value might
represent many things including the mean, mode, median or even a realisation.

Fig. 3. UncertML model for summary statistics.

The Statistic type extends the AbstractUncertainty type, inheriting a
definition property, which in this instance should resolve to a definition of the
particular statistic, e.g. mean, variance or mode etc. The other property of a
Statistic is the value which contains the actual value of the statistic, encoded
as a double. This generic and concise concept of a statistic allows most statistics
to be encoded, but for certain statistics more information is required.

One such example is a quantile; here the user needs to know which quantile
is being referred to. UncertML provides a specific Quantile type which extends
the Statistic type and provides an additional property, level. Continuous
and discrete probabilities follow a similar pattern; extending the Statistic
type with additional properties, and allowing encoding of histograms, exceedance
probabilities and discrete random variables.

Due to the soft-typed approach of UncertML all simple statistics will look
identical. What separates a ‘mean’ from a ‘median’ is the URI (and definition
upon resolving) of the definition property. Assuming the existence of a dic-
tionary containing definitions of the most common statistics, only the URI is
needed in order for an application to ‘understand’ how to process the data.

StatisticsRecord. A grouped set of summary statistics provides a mecha-
nism for summarising a particular variable’s uncertainty. UncertML provides
the StatisticsRecord type for such use cases. As with all ‘record’ types within
UncertML, the StatisticsRecord is closely modelled on the SWE Common
DataRecord type [5].



A StatisticsRecord consists of a number of field properties. Each field
of a StatisticsRecord may be a Statistic, Quantile, DiscreteProbability,
Probability, StatisticsArray or StatisticsRecord. Grouping statistics into
a single structure can be an efficient mechanism for describing the uncertainty
surrounding a particular variable. For example, a user might wish to convey the
mean value of a variable, and the probability that it exceeds a certain threshold.

StatisticsArray. Arrays of statistics are useful when describing a variable at
several locations, or several variables at a given location. The StatisticsArray
type in UncertML, closely modelled on the DataArray of SWE Common, pro-
vides such a mechanism. Unlike the RealisationArray type, the elementType
property of a StatisticsArray may be any type from within the AnyStatistic
union. This flexibility allows arrays of single statistics, or an array of Statistics-
Records to provide multiple summaries. More complex structures such as two
dimensional arrays are also possible.

2.3 Distributions

Fig. 4. Distributions in UncertML are encoded using one of the types above.

When the uncertainties of a dataset are more clearly understood, it may
be desirable to describe them through the use of probability distributions. The
types contained within this section of UncertML are specifically designed to
allow a concise encapsulation of all probability distributions without sacrificing
the simplicity of UncertML.



Distribution. In the simplest case, where a user wishes to describe the prob-
ability distribution of a single variable, UncertML provides the Distribution
type. In the case of distributions the definition may contain both a textual de-
scription, and a complex mathematical description of the distribution’s functions
(for example cumulative distribution function and probability density function).

Complementing the definition property is a parameters property that
contains a number of Parameter types. Each Parameter of a distribution is not
considered to be an uncertainty type, however, it contains a definition property
which can be used to specify this particular parameter. Each Parameter also has
a value property holding the actual value of that parameter.

It is important to note that the Distribution type is not a mechanism for
completely describing a probability distribution in terms of its functions, param-
eters and how they relate to each other; it should be thought of as a mechanism
for describing an instance of a distribution — which is defined elsewhere. Gener-
ating a weak-typed framework such as this allows any distribution to be encoded
in one generic ‘distribution’ type. Providing the processing applications under-
stand which distribution is being described (by resolving the URIs) then there
exists no need to include any functions. The decision to extract all mathematical
functions from the encoding of a distribution has enabled a complex notion such
as a Gaussian distribution to be encoded in a simple framework.

DistributionArray. The DistributionArray type is similar to both the
StatisticsArray and RealisationArray. However, in this instance the element-
Type property is realised as a type from the AnyDistribution union. The rest of
the properties remain the same as in the StatisticsArray & RealisationArray,
but one subtle difference exists. Distributions often have numerous parameters
that help describe them (e.g. a Gaussian distribution has both a mean and a
variance parameter). In this instance the Distribution contained within the
elementType property acts as a form of ‘record’. Therefore, when encoding the
distributions within the values property, care should be taken in interpretation
to clearly understand which values refer to which parameter.

MixtureModel. A MixtureModel is a specialised form of record. When de-
scribing a variable using a mixture of distributions, a specific weight is assigned
to each distribution specifying the relative importance of that distribution. This
constraint meant that a simple ‘DistributionRecord’ type would not have been
sufficient, so a dedicated MixtureModel was designed.

The distributions property is equivalent to the fields property of a stan-
dard record type which may contain a type from the AnyDistribution union.
The addition of a weights property allows a weight (double) to be assigned to
each distribution within the distributions property.

MultivariateDistribution. The final type provided by UncertML is the
MultivariateDistribution type. A typical use case for a multivariate (or joint)



distribution is when two variables are correlated. As this scenario (usually) re-
quires the inclusion of a covariance matrix the DistributionArray is not suffi-
cient to describe the variable.

A MultivariateDistribution is similar to the Distribution type, con-
taining both a definition and parameters property. However, a significant
difference is that the parameters property of a MultivariateDistribution
now contains a number of ParameterArrays rather than Parameter types, due
to the fact that multivariate distributions, by definition, always deal with arrays
of parameters.

The ParameterArray type is similar to all other array types within Un-
certML, consisting of an elementType, elementCount, encoding and values
properties. The elementType property contains a Parameter type which pro-
vides a definition property. The values property then contains all values for
that given parameter. A collection of such arrays allows the description of com-
plex joint distributions in an efficient manner.

3 Integrating UncertML into Existing Taxonomies - the
INTAMAP Example

The INTAMAP project aims to provide sophisticated functionality across the
Web, exposing data cleaning, outlier detection and geostatistical interpolation
functions via a Web Processing Service (WPS). The approach prioritises in-
teroperability, with a particular focus on the future consumption of data from
automatic monitoring networks via Sensor Observation Services. Our specific
case study involves the processing of radiation data from stations across Eu-
rope (the European Radiological Data Exchange Platform (EURDEP)) whose
spacing, sensitivity and error characteristics are patchy and heterogeneous, and
real-time prediction of radiation values to unknown locations between the sam-
pling locations by specialised methods such as Projected Process Kriging [6].
In this context, it is vital that the uncertainty in the monitoring data and the
predicted outputs is clearly and fully characterised and communicated.

Several XML schemata exist which are of value in representing this data
as it is collected: The Observations & Measurements schema [7] allows results
recorded from a sensing instrument to be encoded along with information on
the observation time, the specific phenomenon being observed and the spatial
extent of the feature of interest. Two important pieces of XML can be used as
property values to enrich the information encoded in an Observation. Firstly,
an UncertML type, rather than a simple value, can be given as the ‘result’
property of the Observation, to describe the uncertainty inherent in observed
values. This allows a wide range of uncertainty information to be supplied, from
a simple marginal mean and variance to a joint distribution with full covariance
information. Secondly, the ‘procedure’ property will typically contain a sensor
model encoded in SensorML [5] allowing users a fuller understanding of the
physical methods by which the observation was collected.



The INTAMAP WPS interface accepts requests for interpolation, each of
which includes a collection of observations, encoded in the O&M schema. The
availability of both the error characteristics of a sensor and the observation
uncertainty in a machine-parsable form allows us to employ flexible, powerful
techniques that take into account the different characteristics and uncertainties,
based on a Bayesian framework, to perform the interpolation request. Depending
on user preferences made in the request, the result of an interpolation can take
several forms. The bulk of the data will be encoded in any one of the uncertainty
types within UncertML and additional information may be added by separate
schemata. A typical result may consist of a regular grid, possibly defined in
GML [8], of some variable defined by a series of Gaussian distributions encoded
in UncertML. Figure 5 shows an example of the WPS workflow.

Fig. 5. Example workflow for an interpolation request in the INTAMAP project. A
client may obtain observations from multiple sensor systems before submitting them
to INTAMAP for processing. Within this Service Oriented Architecture, clients may
also be services, forming ’process chains’.

In the INTAMAP example, geographic information (usually in the form of
GML) is added to the Observation as a separate layer (see Figure 6). Uncertainty
in the spatial location of an Observation could, in theory, be added by nesting
UncertML records within an adapted form of GML. Our intention is to make
UncertML generic and usable within a large variety of applications, which can
replace existing value types with UncertML types.



Fig. 6. UncertML can be used in combination with other schemata for specific contexts
- here, an environmental measurement with a location is encoded.

4 UncertML in use - adding value to automated
environmental measurements

Here we present a geospatial use case from the INTAMAP project which illus-
trates how, in this context, uncertainty information can be interoperably ex-
changed and used to improve the outputs of automatic interpolation. A set of
radiation measurements for a given area are collected from two overlapping sen-
sor networks with very different error characteristics (see Figure 7): In network
A, the error can be characterised as additive positive exponential noise, while
measurements from network B tend to vary around the true value according
to a Gaussian distribution with known parameters. In practice, each measure-
ment (encoded as an O&M observation) has a location in 2- or 3-D space, but
for clarity, only points along a 1-D transect are considered for this illustration.
Figure 7a shows the case where an automatic interpolation algorithm has at-
tempted to allow for uncertainty in the measurements, but, in the absence of
specific uncertainty information for each observation, has been forced to assume
that all measurements have Gaussian noise. Sections of the transect where mea-
surements come from network A are very badly predicted. Using UncertML, a
representation of the distinct error for each measurement can be encoded and
communicated to the INTAMAP WPS, which can utilise the known error distri-
bution for each specific observation to produce a far more accurate prediction,
as shown in Figure 7b. The communication of uncertainty in this example is
two-way: for every prediction location, the uncertainty of prediction is returned
as an UncertML type (this uncertainty is summarised in the figures as a light-
grey confidence envelope). In this case, the uncertainty returned is a Gaussian
variance, but a wide variety of metrics and measures can be requested by the
user according to the decisions they must make. For example, exceedance proba-
bilities are of value for evacuation planning in environmental emergencies, while



sets of Monte Carlo realisations might be requested as an input to a sensitivity
analysis, (which could in turn feasibly be carried out by a separate chained Web
Service).

Fig. 7. a) Without specific error information on individual measurements, an auto-
mated Bayesian interpolation algorithm is forced to assume Gaussian noise on all mea-
surements, and thus achieves a bad estimate of the true environmental state as shown
in the left-hand figure. (b) When observation-specific error characteristics are supplied
via UncertML, the performance of the automated interpolator is much improved, as
shown on the right.

5 Conclusion

As the Semantic Web and Web Services evolve into a loosely coupled, interop-
erable framework, sophisticated processing functions such as the geo-processing
example described here will become more widely available, along with detailed
and rich datasets for analysis. Machine-readable summaries of data quality will
become increasingly important, both as a metric on which ‘discovered’ datasets
can be judged for their suitability, and as statistical inputs into analyses where
the risks of being wrong need to be quantified. Already, sophisticated users
recognise that a single summary of error or precision across an entire dataset
(for example, the Root Mean Square registration error commonly supplied as the
‘accuracy’ metadata on a registered aerial photograph) is rarely representative,



and that excellent use may be made of more detailed error estimates, stratified
by time, space, measurement instrument or even by individual measurements.
In order to filter and judge the wealth of data which will become available via
the Web in coming years, clear and standardised semantic descriptions of data
uncertainty are vital, and we believe that UncertML can fulfil this need.

However, for true interoperability, several areas require greater attention. A
conceptual model for extending the use of UncertML to random functions is
under way, and further work on conditional distributions (or graphical models
/ belief networks) is envisaged. Other extensions to the UncertML model will
include the addition of fuzzy memberships.

Currently, we are undergoing discussions with the Open Geospatial Consor-
tium with the view of making the UncertML specification an official, governed,
standard. A working interpolation service using UncertML will be available for
testing online shortly. More information and latest developments can be found
at the INTAMAP website (http://www.intamap.org).

Acknowledgements

This work is funded by the European Commission, under the Sixth Framework
Programme, by Contract 033811 with DG INFSO, action Line IST-2005-2.5.12
ICT for Environmental Risk Management.

References

1. Erl, T.: Service-Oriented Architecture : Concepts, Technology, and Design. Prentice
Hall PTR (August 2005)

2. Atkinson, P.M.: Geographical information science: geostatistics and uncertainty.
Progress in Physical Geography 23 (1999) 134–142

3. Couclelis, H.: The Certainty of Uncertainty: GIS and the Limits of Geographic
Knowledge. Transactions in GIS 7(2) (2003) 165–175

4. Heuvelink, G.B.M., Goodchild, M.F.: Error Propagation in Environmental Mod-
elling with GIS. CRC Press (1998)

5. Botts, M., Robin, A.: OpenGIS Sensor Model Language (SensorML) Implemen-
tation Specification. OpenGIS standard 07-000, Open Geospatial Consortium Inc
(July 2007) http://www.opengeospatial.org/standards/sensorml.

6. Ingram, B., Cornford, D., Evans, D.: Fast algorithms for automatic mapping with
space–limited covariance functions. Stochastic Environmental Research and Risk
Assessment 22(5) (2008) 661–670

7. Cox, S.: Observations and Measurements – Part 1 - Observation schema.
OpenGIS standard 07-022r1, Open Geospatial Consortium Inc (December 2007)
http://www.opengeospatial.org/standards/om.

8. Portele, C.: OpenGIS Geography Markup Language (GML) Encoding Stan-
dard. OpenGIS standard 07-036, Open Geospatial Consortium Inc (August 2007)
http://www.opengeospatial.org/standards/gml.


