
Storing and Querying Fuzzy Knowledge
in the Semantic Web

Nick Simou, Giorgos Stoilos, Vassilis Tzouvaras,
Giorgos Stamou, and Stefanos Kollias

Department of Electrical and Computer Engineering,
National Technical University of Athens,

Zographou 15780, Greece
{nsimou,gstoil,tzouvaras,gstam}@image.ntua.gr

Abstract. The great evolution of ontologies during the last decade, bred
the need for storage and querying for the Semantic Web. For that pur-
pose, many RDF tools capable of storing a knowledge base, and also
performing queries on it, were constructed. Recently, fuzzy extensions to
description logics have gained considerable attention especially for the
purposes of handling vague information in many applications. In this
paper we investigate on the issue of using classical RDF storing systems
in order to provide persistent storing and querying over large-scale fuzzy
information. To accomplish this we first propose a novel way for serial-
izing fuzzy information into RDF triples thus classical storing systems
can be used without any extensions. Additionally, we extend the exist-
ing query languages of RDF stores in order to support expressive fuzzy
queries proposed in the literature. These extensions are implemented
through the FiRE fuzzy reasoning engine, which is a fuzzy DL reasoner
for fuzzy-SHIN . Finally, the proposed architecture is evaluated using
an industrial application scenario about casting for TV commercials and
spots.

1 Introduction

Ontologies, through the OWL language [11], are expected to play a significant
role in the Semantic Web. OWL is mainly based on Description Logics (DLs)
[2], a popular family of knowledge representation languages. However, despite
their rich expressiveness, they are insufficient to deal with vague and uncertain
information which is commonly found in many real-world applications such as
multimedia content, medical informatics etc. For that purpose a variety of DLs
capable of handling imprecise information in many flavors, like probabilistic [13]
and fuzzy [15, 14] have been proposed.

Fuzzy ontologies are envisioned to be very useful in the Semantic Web. Simi-
lar to crisp ontologies, they can serve as basic semantic infrastructure, providing
shared understanding of certain domains across different applications. Further-
more, the need for handling fuzzy and uncertain information is crucial to the
Web. This is because information and data along the Web may often be uncertain
or imperfect.

Therefore sophisticated uncertainty representation and reasoning are neces-
sary for the alignment and integration of Web data from different sources. This
requirement for uncertainty representation has led W3C to set up the Uncer-
tainty Reasoning for the World Wide Web XG1. Recently, fuzzy DL reasoners
such as fuzzyDL2 and FiRE3 that can handle imprecise information have been
implemented. Despite these implementations of expressive fuzzy DLs there is still
no other work on persistent storage and querying, besides the work of Straccia
[16] and Pan [10], which are based on fuzzy DL-lite and can be considered as
closely related to databases, but on the other hand they don’t use RDF triple
store technologies.

The main contributions of this paper are the following:

1. It presents a novel framework for persistent storage and querying of expres-
sive fuzzy knowledge bases,

2. It presents the first ever integration of fuzzy DL reasoners with RDF triple
stores, and

3. It provides experimental evaluation of the proposed architecture using a
real-world industrial strength use-case scenario.

The rest of the paper is organized as follows. Firstly, in section 2 a short
theoretical description of the fuzzy DL f-SHIN [6] is made. In section 3 the
proposed triples syntax accommodating the fuzzy element used for storing a
fuzzy knowledge base in RDF-Stores, is presented. Additionally, the syntax and
the semantics of expressive queries that have been proposed in the literature [10]
to exploit fuzziness are briefly presented. In the following section (4) the fuzzy
reasoning engine FiRE which is based on the fuzzy DL f-SHIN and the way
in which it was integrated with the RDF-Store Sesame are presented. In the
last section (5) the applicability of the proposed architecture is demonstrated,
presenting a use case based on a database of human models. This database was
used by a production company for the purposes of casting for TV commercials
and spots. Some entries of the database were first fuzzified and then using an
expressive knowledge base, abundant implicit knowledge was extracted. The ex-
tracted knowledge was stored to a Sesame repository, and various expressive
queries were performed in order to benchmark the proposed architecture.

2 Preliminaries

2.1 The Fuzzy DL fKD-SHIN

In this section we briefly present the notation of DL f-SHIN which is a fuzzy
extension of DL SHIN [7]. Similar to crisp description logic languages, a fuzzy
description logic language consist of an alphabet of distinct concepts names (C),
role names (R) and individual names (I), together with a set of constructors to
1 http://www.w3.org/2005/Incubator/urw3/
2 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
3 http://www.image.ece.ntua.gr/~nsimou/FiRE/

2

construct concept and role descriptions. If R is a role then R− is also a role,
namely the inverse of R. f-SHIN -concepts are inductively defined as follows,

1. If C ∈ C, then C is a f-SHIN -concept,
2. If C and D are concepts, R is a role, S is a simple role and n ∈ N, then

(¬C), (C " D), (C # D), (∀R.C), (∃R.C), (≥ nS) and (≤ nS) are also
f-SHIN -concepts.

In contrast to crisp DLs, the semantics of fuzzy DLs are provided by a fuzzy
interpretation [15]. A fuzzy interpretation is a pair I = 〈∆I , ·I〉 where ∆I is a
non-empty set of objects and ·I is a fuzzy interpretation function, which maps
an individual name a to elements of aI ∈ ∆I and a concept name A (role name
R) to a membership function AI : ∆I → [0, 1] (RI : ∆I ×∆I → [0, 1]).

By using fuzzy set theoretic operations the fuzzy interpretation function can
be extended to give semantics to complex concepts, roles and axioms [8]. FiRE
uses the standard fuzzy operators of 1− x for fuzzy negation and max, min for
fuzzy union and intersection, respectively.

A f-SHIN knowledge base Σ is a triple 〈T ,R,A〉, where T is a fuzzy TBox,
R is a fuzzy RBox and A is a fuzzy ABox. TBox is a finite set of fuzzy concept
axioms which are of the form C - D called fuzzy concept inclusion axioms and
C ≡ D called fuzzy concept equivalence axioms, where C, D are concepts, saying
that C is a sub-concept or C is equivalent of D, respectively. Similarly, RBox is
a finite set of fuzzy role axioms of the form Trans(R) called fuzzy transitive role
axioms and R - S called fuzzy role inclusion axioms saying that R is transitive
and R is a sub-role of S respectively. Finally, ABox is a finite set of fuzzy
assertions of the form 〈a : C#$n〉, 〈(a, b) : R#$n〉, where #$ stands for ≥, >,≤ or
<, or a / .= b, for a, b ∈ I. Intuitively, a fuzzy assertion of the form 〈a : C ≥ n〉
means that the membership degree of a to the concept C is at least equal to n.

3 Storing and Querying a Fuzzy Knowledge Base

3.1 Fuzzy OWL Syntax in triples

In order to use the existing RDF storing systems to store fuzzy knowledge with-
out enforcing any extensions we have to provide a way of serializing fuzzy knowl-
edge into RDF triples. Some work has already been done in this issue. In [9] the
authors use RDF reification, in order to store membership degrees, while the au-
thors in [17] use datatypes. Our goal is to neither use reification nor datatypes.
On the one hand, it is well-known that reification has weak, ill-defined model
theoretic semantics and its support by RDF tools is doubtful while on the other
hand, we do not want to use a concrete feature like datatypes to represent ab-
stract information such as fuzzy assertions. For those reasons we propose a more
clarified way based on the use of blank nodes. First, we define three new enti-
ties, namely frdf:membership, frdf:degree and frdf:ineqType as types (i.e.
rdf:type) of rdf:Property.

3

Our syntax becomes obvious in the following example. Suppose that we want
to represent the assertion 〈(paul : Tall) ≥ n〉. The RDF triples representing this
information are the following:

paul frdf:membership :paulmembTall .
:paulmembTall rdf:type Tall .
:paulmembTall frdf:degree “n^^xsd:float” .
:paulmembTall frdf:ineqType “=” .

where :paulmembPaul is a blank node used to represent the fuzzy assertion of
paul with the concept Tall.

On the other hand, mapping fuzzy role assertions is more tricky since RDF
does not allow the use of blank nodes in the predicate position. Thus, we have
to use new properties for each assertion. Thus, the assertion 〈(paul, frank) :
FriendOf ≥ n〉 is mapped to

paul frdf:paulFriendOffrank frank .
frdf:paulFriendOffrank rdf:type FriendOf .
frdf:paulFriendOffrank frdf:degree “n^^xsd:float” .
frdf:paulFriendOffrank frdf:ineqType “=” .

3.2 Extensions to Query Languages

One of the main advantages of persistent storage systems, like relational databases
and RDF storing systems, is their ability to support conjunctive queries. Con-
junctive queries generalize the classical inference problem of realization of De-
scription Logics [2], i.e. get me all individuals of a given concept C, by allowing
for the combination (conjunction) of concepts and roles. Formally, a conjunctive
query is of the following form:

q(X) ← ∃Y .conj(X,Y) (1)

or simply q(X) ← conj(X, Y), where q(X) is called the head, conj(X,Y) is
called the body, X are called the distinguished variables, Y are existentially
quantified variables called the non-distinguished variables, and conj(X, Y) is a
conjunction of atoms of the form A(v), R(v1, v2), where A, R are respectively
concept and role names, v, v1 and v2 are individual variables in X and Y or
individuals from the ontology.

Since in our case we extend classical assertions to fuzzy assertions, new meth-
ods of querying such fuzzy information are possible. More precisely, in [10] the
authors extend ordinary conjunctive queries to a family of significantly more
expressive query languages, which are borrowed from the fields of fuzzy infor-
mation retrieval [5]. These languages exploit the membership degrees of fuzzy
assertions by introducing weights or thresholds in query atoms. In particular,
the authors first define conjunctive threshold queries(CTQs) as:

q(X) ← ∃Y.
n∧

i=1

(atomi(X, Y) ≥ ki), (2)

4

where ki ∈ [0, 1], 1 ≤ i ≤ n, atomi(X, Y) represents either a fuzzy-DL concept or
role and all ki ∈ (0, 1] are thresholds. Intuitively, an evaluation [X 1→ S] (where
S is a set of individuals) is a solution if atomI

i (X,Y)[X "→S,Y "→S′] ≥ ki for some
S and for 1 ≤ i ≤ n. As it is obvious answers of CTQs is a matter of true or
false, in other words an evaluation either is or is not a solution to a query. The
authors also propose General Fuzzy Conjunctive Queries (GFCQs) that further
exploit fuzziness and support degrees in query results. The syntax of a GFCQ
is the following:

q(X) ← ∃Y.
n∧

i=1

(atomi(X, Y) : ki), (3)

where atomi(X, Y) and ki are as above. As it is shown in [10], this syntax is gen-
eral enough to allow various choices of semantics, which emerge by interpreting
differently the association of the degree of each fuzzy-DL atom (atomi(X, Y))
with the degree associated weight (ki). For example if this association is inter-
preted by a fuzzy implication (J) [8] then we obtain fuzzy threshold queries:

d = sup
S′∈∆I×...×∆I

{tni=1 J (ki, atomI
i (v̄)[X "→S,Y "→S′])}.

Similarly we can use fuzzy aggregation functions [8] or fuzzy weighted t-norms
[4]. Variations of semantics of GFCQs can be effectively used to model impor-
tance of query atoms, preferences, and many more. The interested reader is
referred to [10] for more details on the semantics of GFCQs.

4 Implementation with FiRE and Sesame

FiRE is a JAVA implementation of a fuzzy reasoning engine for imperfect knowl-
edge currently supporting f-SHIN . It can be found at http://www.image.ece.
ntua.gr/~nsimou/FiRE/ together with installation instructions and examples.
Its syntax is based the Knowledge Representation System Specification [1] pro-
posal which has been extended to fit uncertain knowledge. In this section the
inference services of FiRE are presented and the way in which it was integrated
with RDF Store Sesame 4 in order to support CTQs and GFCQs is demon-
strated.

4.1 Inference services

Crisp DL reasoners offer reasoning services such as deciding satisfiability, sub-
sumption and entailment of concepts and axioms w.r.t. an ontology. In other
words, these tools are capable of answering queries like “Can the concept C have
any instances in models of the ontology T?” (satisfiability of C), “Is the concept
D more general than the concept C in models of the ontology T ?” (subsumption
C - D) or does axiom Ψ logically follows from the ontology (entailment of Ψ).
4 http://www.openrdf.org/

5

These reasoning services are also available by f-SHIN together with greatest
lower bound queries which are specific to fuzzy assertions. FiRE uses the tableau
algorithm of f-SHIN , presented by Stoilos et al [6], in order to decide the key
inference problems of a fuzzy ontology. In the case of fuzzy DL, satisfiability
queries are of the form “Can the concept C have any instances with degree of
participation #$n in models of the ontology T ?”. Furthermore, it is in our interest
to compute the best lower and upper truth-value bounds of a fuzzy assertion.
The term greatest lower bound of a fuzzy assertion w.r.t. Σ was defined in [15].
Roughly speaking, greatest lower bound are queries like “What is the greatest
degree n that our ontology entails an individual a to participate in a concept
C?”. Entailment queries ask whether our knowledge base logically entails the
membership of an individual to a specific concept to a certain degree.

Finally, FiRE allows the user to make greatest lower bound queries (GLB).
GLB queries are evaluated by FiRE performing entailment queries of the indi-
vidual participating in concept of interest for all the degrees contained in the
ABox, using the binary search algorithm in order to reduce the degrees search
space [15]. Furthermore a user can perform global GLB for a fuzzy knowledge
base. Global GLB service of FiRE, creates a file containing the greatest lower
bound degree of all the concepts of Σ participating in all the individuals of Σ.

4.2 Sesame Integration with FiRE

FiRE was enhanced by the functionalities of the RDF-Store Sesame (Sesame 2
beta 6). The RDF Store is used as a back-end for storing and querying RDF
triples in a sufficient and convenient way. In this architecture the reasoner is the
front-end which the user can use in order to store and query a fuzzy knowledge
base. Additionally, a user is able to access data from a repository, apply any of the
available reasoning services on this data and then store the implicit knowledge
extracted from them back in the repository.

Another important benefit from this integration is the use of the query lan-
guage SPARQL [12] in the implementation of the fuzzy queries of section 3.
These queries are performed using the Queries inference tab of FiRE, and in the
case of generalized fuzzy conjunctive queries, users can choose among semantics,
such as fuzzy threshold queries, fuzzy aggregation and fuzzy weighted queries.

Example 1. A threshold query that reveals their syntax in FiRE follows:

x,y <- Tall(x) >= 0.8 ^ has-friend(x,y) >= 0.4 ^ Short(y) >= 0.7

Queries consist of two parts: the first one specifies the individuals that will
be evaluated while the second one states the condition that has to be fulfilled
for the individuals. This query asks for individuals x and y, x has to participate
in concept Tall to at least the given degree, it also has to be the subject of a
has-friend assertion with participation greater than 0.4, having as a role-filler
individual y which has to participate in concept Short to at least the given
degrees.

6

Example 2. We can issue a GFCQ by using the symbol “:” followed by the
importance of participation for each condition statement instead of inequality
types. Hence we can get all female models and rank those who have long hair
higher than those who are good-looking:

x <- Female(x) : 1 ^ Goodlooking(x) : 0.6
^ has-hairLength(x,y) : 1 ^ Long(y) : 0.8

In case of CTQs, a query is firstly converted from the FiRE conjunctive query
syntax to SPARQL query language. Based on the fuzzy OWL syntax in triples
that we have defined in section 3.1 the query of Example 1 is as follows in
SPARQL. The query results are evaluated by Sesame engine and visualized by
FiRE.

SELECT ?x WHERE {
?x ns5:membership ?Node1 .
?Node1 rdf:type ?Concept1 .
?Node1 ns5:ineqType ?IneqType1 .
?Node1 ns5:degree ?Degree1 .
FILTER regex (?Concept1 , "CONCEPTS#Tall")
FILTER regex (?IneqType1 ,">")
FILTER (?Degree1 >= "0.8^^xsd:float")

?BlankRole2 ns5:ineqType ?IneqType2 .
?BlankRole2 ns5:degree ?Degree2 .
?BlankRole2 rdf:type ?Role2 .
?x BlankRole2 ?y .
FILTER regex (?Role2 , "ROLES#has-friend")
FILTER regex (?IneqType1 ,">")
FILTER (?Degree2 >= "1.0^^xsd:float")
...

}

In case of general fuzzy conjuctive queries the operation is different. The
SPARQL query is constructed in a way that retrieves the participation degrees
of every Role or Concept used in the atoms criterions, for the results that satisfy
all of the atoms. The participation degrees retrieved for each query atom are
then used together with the degree associated weight by FiRE for the ranking
procedure of the results according to the selected semantics.

It is worth mentioning that the proposed architecture obviously does not
provide a complete query answering system for f-SHIN since queries are issued
against the stored assertions of the RDF repository. Hence queries that include,
for example, transitive or inverse roles are not correctly evaluated. On the one
hand, query answering for fuzzy-DLs is still an open problem even for inex-
pressive fuzzy-DLs while on the other hand, even for classical DLs it is known
that the algorithms are highly complex [3] and no practically scalable system
is known. However, in order to limit the effects of incompleteness, the f-SHIN

7

expressibility is used by FiRE for the extraction of implicit knowledge that is
stored in the repository performing GLB tests.

5 Evaluation

5.1 Models use case

In this section we present the use case of human models utilized for the evaluation
of our proposal. The data were taken from a production company database
containing 2140 human models. The database contained information on each
model regarding their height, age, body type, fitness type, tooth condition, eye-
condition and color, hair quality, style, color and length, ending with the hands’
condition. Apart from the above, there were some additional, special-appearance
characteristics for certain models such as good-looking, sexy, smile, sporty, etc.
introduced by the casting producer. Finally for a minority of models, a casting-
video was stored in the database. The main objective of the production company
was to pick a model, based on the above features, who would be suitable for a
certain commercial spot. Furthermore, depending on the spot type, inquiries
about models with some profession-like characteristics (like teacher, chef, mafia
etc.) were also of interest.

Despite the fact that the database information on each model was rich
enough, there was great difficulty in querying models of appropriate charac-
teristics. The main reason for that was that the database information was not
semantically organized. The various tables of a database made the searching for
combined characteristics antiliturgical. Additionally, retrieval of models based
on threshold criteria for their age or height was most of the times inaccurate
since this kind of information is clearly fuzzy. Hence, selection was restricted
among models that had videotaped castings or those that had worked with the
producers in previous spots, thus not taking advantage of their database infor-
mation.

In order to eliminate these limitations we have implemented a fuzzy knowl-
edge base using f-SHIN . For the generation of the fuzzy ABox the characteris-
tics given by numerical values being the height and age, were fuzzified defining
new concepts, while the remaining characteristics were used as crisp assertions.
Therefore, the fuzzification process of age was made by setting fuzzy partitions
depending on age by defining the concepts Kid, Teen, Baby, 20s, 30s, 40s, 50s,
60s and Old. Hence, as can be observed from the age fuzzification graph, a model
who is 29 years old participates in both concepts 20s and 30s with degrees 0.35
and 0.65 respectively. Similarly for the fuzzification process of height, the con-
cepts Very Short, Short, Normal Height, Tall and Very Tall were defined. In the
case of the height characteristic, the fuzzy partition used for female models was
different from the one used for males, since the average height of females is lower
than that of males. The fuzzification graphs of age and men’s height are shown
in Figure 1. An example of the produced assertions is shown in Example 3.

Example 3. An excerpt of ABox for the model michalis1539 is

8

Fig. 1. Fuzzification graphs

〈michalis1539 : 20s ≥ 0.66〉, 〈michalis1539 : 30s ≥ 0.33〉
〈michalis1539 : Normal Height ≥ 0.5〉
〈michalis1539 : Tall ≥ 0.5〉, 〈michalis1539 : GoodLooking ≥ 1〉
〈(michalis1539, good) : has− toothCondition ≥ 1〉, 〈good : Good ≥ 1〉

5.2 The fuzzy knowledge base

In order to permit knowledge-based retrieval of human models we have imple-
mented an expressive terminology for a fuzzy knowledge base. The alphabet of
concepts used for the fuzzy knowledge base consists of the features described
above while some characteristics like hair length, hair condition etc. were repre-
sented by the use of roles.

The effective extraction of implicit knowledge from the explicit one requires
an expressive terminology capable of defining higher concepts. In our case the
higher domain concepts defined for human models lie into five categories: age,
height, family, some special categories and the professions. Hence, the profes-
sion Scientist has been defined as male, between their 50s or 60s, with classic
appearance who also wears glasses. In a similar way we have defined 33 domain
concepts; an excerpt of the TBox can be found in Table 1.

At this point we must mention the fact that the proposed fuzzy knowledge
base does not fully utilize the expressivity of f-SHIN . This restriction is due to
the application domain (i.e transitive and inverse roles or number restrictions
are not applicable in this domain), but nevertheless it is more expressive that
an fuzzy DL-Lite ontology.

5.3 Results

All the experiments were conducted under Windows XP on a Pentium 2.40 GHz
computer with 2. GB of RAM.

The described fuzzy knowledge base was used in the evaluation of our ap-
proach. Implicit knowledge was extracted using the greatest lower bound service
of FiRE, asking for the degree of participation of all individuals, in all the defined

9

domain concepts. The average number of assertions per individual was 13 while
the defined concepts were 33, that together with the 2140 individuals (i.e entries
of the database) resulted to 29460 explicit assertions and the extraction of 2430
implicit. These results, together with concept and role axioms, were stored to
a Sesame repository using the proposed fuzzy OWL triples syntax to form a
repository of 529.926 triples.

The average time for the GLB reasoning process and the conversion of explicit
and implicit knowledge to fuzzy OWL syntax in triples was 1112 milliseconds.
The time required for uploading the knowledge to a Sesame repository depends
on the type of repository (Memory or Native) and also on repository’s size. Based
on our experiments, we have observed that the upload time is polynomial to the
size of the repository but without significant differences. Therefore, the average
minimum upload time to an almost empty repository (0-10.000 triples) is 213
milliseconds while the average maximum upload time to a full repository (over
500.000 triples) is 700 milliseconds.

FiRE and Sesame were also examined in the use of expressive fuzzy queries.
The performance in this case mainly depended on the complexity of the query
but also on the type and size of the repository. Queries using role names in com-
bination with large repositories can dramatically slow down the response. Table
2 illustrates the response times in milliseconds using both types of repositories
and different repository sizes. Repository sizes was set by adjusting the number
of assertions. As it can be observed, very expressive queries seeking for young fe-
male models with beautiful legs and eyes as well as long hair, a popular demand
in commercial spots, can be easily performed. It is worth mentioning that these
queries consist of higher domain concepts defined in our fuzzy knowledge base.

Since our system is not a sound and complete query answering system for
f-SHIN , the GLB service performed before uploading the triples is employed in
order to use as much of the expressivity of the language as possible producing
new implied assertions.

Furthermore, the results regarding query answering time are also very encour-
aging, at least for the specific application. Although, compared to crisp querying,
over crisp knowledge bases, our method might require several more seconds to
be answered (mainly due to post processing steps for GFCQs or due to very
lengthy SPARQL queries for CTQs) this time is significantly less, compared to

T = {MiddleAged ≡ 40s " 50s,
TallChild ≡ Child # (Short " Normal Height),

Father ≡ Male # (30s "MiddleAged),
Legs ≡ Female # (Normal Height " Tall)

#(Normal " Perfect) # (Fit " PerfectFitness),
Teacher ≡ (30s "MiddleAged) # Elegant # Classic,
Scientist ≡ Male # Classic # (50s " 60s)

#Serious # ∃has− eyeCondition.Glasses }
Table 1. An excerpt of the Knowledge Base (TBox).

10

the time spent by producers on casting (usually counted in days), since they
usually have to browse through a very large number of videos and images before
they decide.

6 Conclusions

Due to the fact that imperfect information is spread along the web, the effective
management of imperfect knowledge is very important for the substantial evolu-
tion of the Semantic Web. In this paper, we have proposed an architecture that
can be used for storing and querying fuzzy knowledge bases for the semantic web.
Our proposal which is based on DL f-SHIN , consists of the RDF triples syn-
tax accommodating the fuzzy element, the fuzzy reasoning engine FiRE and its
integration with RDF Store Sesame which permits very expressive fuzzy queries.

The proposed architecture was evaluated using an industrial application sce-
nario about casting for TV commercials and spots. The obtained results are very
promising from the querying perspective. From the initial 29460 explicit asser-
tions made by database instances for models, 2430 new implicit assertions where
extracted and both uploaded in the Sesame repository. In this way expressive
semantic queries like “Find me young female models with beautiful legs and eyes
as well as long hair”, that might have proved very difficult or even impossible
using the producing company’s database, are applicable through FiRE. This re-
veals both the strength of knowledge-based applications, and technologies for
managing fuzzy knowledge, since a wealth of the information of the databases,
like age, height, as well as many high level concepts of the specific application,
like “beautiful eyes”, “perfect fitness” and “scientist look” are inherently fuzzy.

As far as future directions are concerned, we intend to further investigate on
different ways of performing queries using expressive fuzzy description logics. Fi-
nally, it would be of great interest to attempt a comparison between the proposed
architecture and approaches using fuzzy DL-lite ontologies and approximation.

Query Native Memory
100.000 250.000 500.000 100.000 250.000 500.000

x ← Scientist(x) 1042 2461 3335 894 2364 3332
x ← Father(x) ≥ 1 ∧ Teacher(x) ≥ 0.8

∧Normal Height(x) ≥ 0.5. 1068 2694 3935 994 2524 3732
x ← Scientist(x) : 0.8 2562 4173 5235 3042 4543 6027

x ← Father(x) : 0.6 ∧ Teacher(x) : 0.7
∧Normal Height(x) : 0.8. 4318 6694 8935 4341 7896 9306

Table 2. Fuzzy queries evaluation. Queries performed on repositories of size 100.000
250.000 and 500.000. The response time is in milliseconds

11

Acknowledgements.

This work is supported by the FP6 Network of Excellence EU project X-Media (FP6-

026978) and K-space (IST-2005-027026).

References

1. Description-logic knowledge representation system specification from the KRSS
group of the ARPA knowledge sharing effort. http://dl.kr.org/krss-spec.ps.

2. F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press, 2002.

3. B.Glimm, I.Horrocks, C.Lutz, and U.Sattler. Conjunctive query answering for
SHIQ. Technical report, University of Manchester, 2006.

4. A. Chortaras, Giorgos Stamou, and Andreas Stafylopatis. Adaptation of weighted
fuzzy programs. In Proc. of the International Conference on Artificial Neural
Networks (ICANN 2006), pages 45–54. Springer, 2006.

5. V. Cross. Fuzzy information retrieval. Journal of Intelligent Information Systems,
3:29–56, 1994.

6. G.Stoilos, G.Stamou, V.Tzouvaras, J.Z.Pan, and I.Horrocks. Reasoning with very
expressive fuzzy description logics. Journal of Artificial Intelligence Research,
30(5):273–320, 2007.

7. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the De-
scription Logic SHIQ. In David MacAllester, editor, CADE-2000, number 1831
in LNAI, pages 482–496. Springer-Verlag, 2000.

8. G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall, 1995.

9. M.Mazzieri and A.F.Dragoni. A fuzzy semantics for semantic web languages. In
ISWC-URSW, pages 12–22, 2005.

10. J.Z. Pan, G. Stamou, G. Stoilos, and E. Thomas. Expressive querying over fuzzy
DL-Lite ontologies. In Proceedings of the International Workshop on Description
Logics (DL 2007), 2007.

11. P.F.Patel-Schneider, P.Hayes, and I.Horrocks. Owl web ontology language seman-
tics and abstract syntax. Technical report, World Wide Web Consortium, 2004.

12. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF, 2006.
W3C Working Draft, http://www.w3.org/TR/rdf-sparql-query/.

13. R.Giugno and T.Lukasiewicz. P-SHOQ(D): A probabilistic extension of SHOQ(D)
for probabilistic ontologies in the semantic web. In JELIA ’02: Proceedings of
the European Conference on Logics in Artificial Intelligence, pages 86–97, London,
UK, 2002. Springer-Verlag.

14. G. Stoilos, G. Stamou, V. Tzouvaras, J. Z. Pan, and I. Horrocks. Fuzzy OWL:
Uncertainty and the Semantic Web. In Proc. of the OWL-ED 2005.

15. U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research, 14:137–166, 2001.

16. U.Straccia and G.Visco. DLMedia: an ontology mediated multimedia information
retrieval system. In Proceeedings of the International Workshop on Description
Logics (DL 07), volume 250, Insbruck, Austria, 2007. CEUR.

17. V. Vaneková, J. Bella, P. Gurský, and T. Horváth. Fuzzy RDF in the semantic web:
Deduction and induction. In Proceedings of Workshop on Data Analysis (WDA
2005), pages 16–29, 2005.

12

