Proposal of a Prolog-based Knowledge Wiki*

Grzegorz J. Nalepa and Igor Wojnicki

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Krakéw, Poland
gjn@agh.edu.pl, wojnicki@agh.edu.pl

Abstract This paper presents a proposal of a knowledge wiki system
and describes its prototype implementation. The system design is based
on a wiki concept regarding authoring policies and user access, extended
with an ability of storing knowledge in addition to the human-readable
content. The knowledge is expressed in the Prolog language by means of
predicate logic. An inference engine is coupled with the wiki providing
means for an automated knowledge processing and interpretation. Se-
lected applications, examples, and further extensions are also presented.

1 Introduction

The Internet has become a single most important resource for instant infor-
mation sharing. From the point of view of ordinary users it can be considered
to constitute a very flexible and powerful version of the so-called blackboard
architecture. The rapid growth of the Internet prompted a rapid development
of specific software. This software addresses different aspects of information or-
ganization and interchange related issues, such as storing, retrieval, searching,
indexing, aggregating, sharing, updating, etc. Taking into account the size and
flexibility of the system as a whole, these problems constitute a real challenge.
Today web technologies constitute an advanced and universal programming
framework. This framework has a very heterogeneous structure including: data
encoding and structuring languages (such as HTML and XML), meta-data lan-
guages (such as RDF), data transformation languages (such as XSL/T/FO),
data presentation languages (such as CSS), server-side programming languages
(such as PHP, JSP), and client-side programming languages (such as Javascript).
Building on these Content Management Systems (CMS for short) emerged
as a technology providing a unified interface for large databases or data ware-
houses. However, they do not solve all the challenges in the area. Some of the
persistent problems include distributed authoring, where number of users pro-
vide and modify the content, the difference between content and knowledge,
where the system should not just store data. Some of these issues were partially
resolved with the introduction of specialized CMS called wikis, that introduce a

* The paper is supported by the HEKATE Project funded from 2007-2009 resources
for science as a research project.



highly distributed authoring model. This technology is being enhanced with the
development of semantic wikis allowing for semantic annotation of the content.
The next step towards true knowledge-based systems is provided by knowledge
wikis, that introduce explicit knowledge representation.

In this paper a new approach to the knowledge wiki architecture is proposed.
It is based on a simple yet flexible and powerful idea of incorporating Prolog
language code into the content stored in the wiki system. In the paper the
design of such a wiki, based on the DokuWiki is introduced and a prototype
implementation is discussed.

The rest of the paper is organized as follows. In Sect. 2 a discussion of main
features and limitations of CMS is contained. Next, in Sect. 3 the wiki systems
are discussed. The main problem with classic CMS, including wikis, is the lack
of support for true knowledge management, as pointed out in Sect. 4. Some Wiki
extensions, such as semantic and knowledge wikis presented in Sect. 5, aim at
overcoming it. A knowledge wiki can be built around the classic knowledge rep-
resentation techniques used in the Prolog language (see Sect. 6). A Prolog based
extension to a wiki system is proposed in Sect. 7, with a prototype implemen-
tation for the DokuWiki introduced in Sec. 8. Some examples for the prototype
are shown in Sect. 9. The paper ends with directions for future work in Sect. 10.

2 Content Management Systems

In a broad sense a Content Management System (CMS) consists of: a RDBMS
(Relational Data Base System) which stores the data, and a complex web-based
application or interface providing the access to the data. The web interface is
built around common web technologies. This software requires a proper and
efficient run-time environment, including a web server. An important aspect of
a CMS system is the possibility of user personalization, and interactive use.

Multiple CMS categories can be identified: web portals, groupware suites,
forum sites, and e-learning toolkits. In each of these cases the content they man-
age differs. Several classes or groups can be identified. The main differentiating
factor is the type of services they are oriented for. A special case of CMS is a
wiki, described in the next section.

From a knowledge engineering and management perspective, content may be
seen as a particular kind of knowledge. While all of the CMS systems provide
some kind of content structuration, few of them focus on using proper knowl-
edge representation methods. The gathered content is only human readable, and
hardly subject to machine processing. This, in fact, exposes an important con-
ceptual gap between content and knowledge management systems. Wheres the
former simply store data, the latter should allow for a semantic-aware processing.

3 Wiki Systems

The wiki concept emerged in the 90’s. The main idea was to create a simple
and expressive tool for communication and knowledge sharing. A wiki system is



mainly a collaboration tool. It allows multiple users to access, read, edit, upload
and download documents. It has a regular client-server architecture. Documents
are text-based, enriched with so-called wiki markup. It is a simplistic, tag-based,
text only language which allows the user to annotate text with information re-
garding its structure and presentation. Such an enriched text is called wikitext.
The tags allow users to make sections, subsections, tables, items and other ty-
pographic and structural operations. A wikitext remains human readable, tags
are intuitive and easy to learn.

Each document is uniquely identified by a keyword, which makes the wiki
concept similar to the encyclopedia concept. Furthermore a document, in ad-
dition to typographic tags mentioned earlier, can contain hyperlinks to other
documents. A hyperlink is a document name enclosed by a link tag. The wiki
allows users to upload images, as well as other files and link them together. One
of the most important features of a wiki is an integrated version control. Each
page modification is recorded. At any time a user can access any previous version
of any page.

Wikis are mostly web-based. The web interface allows users to access, see
and edit wiki pages. Depending on the particular solution, there might be access
control and authorization mechanisms implemented. A wiki system is usually
based on server side processing technologies providing the web application, and
optionally a database back-end. As a front-end a web browser is used.

It is worth pointing out that wiki systems currently blend with regular Con-
tent Management Systems. Some CMS provide wiki functionality while some
wikis evolve into CMS. Similarly wikis are more and more often merged with
e-Learning systems to support collaborative knowledge gathering and sharing.

One of the most interesting wiki systems for developers is DokuWiki (wiki.
splitbrain.org/wiki:dokuwiki). It is designed to be both easy to use and easy
to set up. DokuWiki is based on PHP and does not require any database back-
end. Pages are stored as versioned text files which enables easy backup-restore
operations. It allows for image embedding, and file upload and download. Pages
can be arranged into so-called namespaces which act as a tree-like hierarchy
similar to directory structure. It also provides syntax highlighting for in-page
embedded code for programming languages such as: C/C++, Java, Lisp, ADA,
PHP, SQL and others, using GeSHi (qbnz.com/highlighter).

Furthermore, it supports extensive user authentication and authorization
mechanisms including Access Control Lists (ACL). Its modularized architec-
ture allows the user to extend DokuWiki with plugins which provide additional
syntax and functionality. The most popular plugins provide: user and ACL man-
agement, blog, gallery of pictures, discussion board, calendar, IXTEX symbols
rendering, and GraphViz visualization.



4 Content vs. Knowledge

A review of the selected CMS, including wikis reveals some common limitations;
namely: technical limitations, content management and portability problems,
and most importantly, oversimplified knowledge representation.

When it comes to the the actual management of the content the main problem
is, that CMS systems provide limited content portability. As long as content is
simply data, such as HTML, PDF documents, pictures and so-on, CMS acts as a
repository. When it comes to sharing information about the content, meta-data,
or meta-knowledge, CMS systems do not provide appropriate facilities. This is
mainly related to the lack of some common knowledge representation standards,
while focusing on low-level encoding, and visual presentation of content.

From a knowledge management point-of-view, the crucial problem with CMS
systems is, that they escape the knowledge representation and management pit-
falls by assuming some predefined CMS structure, e.g. a portal. In this sense a
CMS is only a set of modifiable portal templates. It is difficult to choose knowl-
edge representation for current CMS solutions, because the knowledge they store
can be considered implicit, or even hidden.

This criticism implicitly assumes that what CMS were designed to manage,
and make available, is somehow knowledge. That would put the process of de-
ploying a CMS in the context of knowledge engineering. In this field concepts
such as knowledge representation, management, or validation are used referring
to common tasks. However, considering how most of CMS are built, they can-
not be considered Knowledge Management Systems. Turning current CMS into
knowledge-oriented CMS should involve an introduction of number of features.

There seems to be generic areas that should be supported by any ”knowl-
edge server”; these are: knowledge representation and organization support; the
system should provide appropriate structures and languages, knowledge process-
ing and inference; the system should be capable of multi-paradigm reasoning
and automated operations on knowledge, inference and operation control, user
support, and operational decision making, knowledge acquisition support and
extraction of knowledge from different sources, contextual user interface - both
for operational use and administration/design, truth-maintenance, verification
and validation support, learning and optimization.

There are numerous efforts to meet these requirements. However, because of
lack of consistent and uniform theoretical foundations, efforts oriented towards
building a knowledge server replacing, subsuming and covering database services,
web applications and decision processes, are far from being satisfactory. Recent
developments in the area of intelligent web authoring and collaboration tools
include the development of semantic wiki systems. They offer the functionality
of semantic annotation of the content. The next stage is provided by knowledge
wikis, which add explicit knowledge representation and processing capabilities
with the introduction of decision rules and trees.



5 Semantic Knowledge Wikis

A first step in the direction of enriching standard wikis with the semantic infor-
mation has been performed by the introduction of the so-called semantic wikis,
such as the IkeWiki [1], or OntoWiki [2]. In such systems the standard wikitext is
extended with the semantic annotation. Such annotations allow for building an
ontology of the domain with which the content of the wiki is related. This exten-
sion introduces not just new content engineering possibilities, but also semantic
search and analysis of the content. In order to provide annotations semantic
wikis allow for RDF or OWL annotations.

However, from the knowledge engineering point of view expressing semantics
is not enough. In fact a knowledge-based system should provide effective knowl-
edge representation and processing methods. In order to extend semantic wikis
to knowledge-based systems, the concept of semantic knowledge wikis has been
introduced, see [3,4]. An example of such a system is the KnowWE semantic
knowledge wiki [3,5]. In such a system the semantic knowledge is extended with
the problem-solving domain-specific knowledge. The system allows for introduc-
ing knowledge expressed with decision rules and trees related to the domain
ontology. So conceptually it is built on top of the semantic wikis.

The approach presented in this paper shares goals with the semantic knowl-
edge wikis. However, it differs with respect to the methods used. In the paper a
generic solution based on the use of Prolog as the language for expressing both
the semantics, and the knowledge processing information is presented.

6 Prolog Knowledge Representation Model

The Prolog language [6,7] is a prime example of applied programming in logic,
where knowledge representation and processing is critical. Knowledge is rep-
resented with use of facts and rules as Horn clauses in First-Order Predicate
Calculus. This formal representation intuitively corresponds to statements in
the natural language. The language offers powerful knowledge processing capa-
bilities, including recursive processing, unification and resolution. The flexibility
of this approach, and the extensibility of the language made it an Al tool of
choice for many systems.

Prolog natively uses a backwards chaining reasoning strategy, that corre-
sponds to logical abduction. However, thanks to its meta-programming facilities
it is easy to build any Prolog-based interpreter for a custom reasoning, including
forward chaining.

Knowledge is expressed as clauses being facts or rules, often referred to as
the knowledge base. Clauses constitute predicates. The way how facts are stated
is close to the natural language, with a verb and a set of nouns being predicate
name and predicate arguments respectively. Let us assume that there are some
facts regarding student project management: there is a student Frank, a teacher
Bob, both of them work on project knowledgeWiki, and the project is already
finished (done).



is_student (frank) .

is_teacher (bob).

works_on_project (frank,knowledgeWiki) .
works_on_project (bob,knowledgeWiki) .
project_status(knowledgeWiki,done) .

Rules are expressed in a similar way with use of Predicate Calculus which in-
troduces a concept of variable (indicated as capitalized identifiers). Finding out
which student needs to be graded can be formulated as:

need_grade (Who,Project) : -
is_student (Who), works_on_project(Who,Project),
project_status(Project,done), \+ grade(Who,Project,_).

which can be read as: Who needs a grade from Project if Who is a student and
he works on Project, and the project status is done and Who dos not have a
grade assigned (\+ means negation).

Combining facts and rules gives a very powerful and expressive technique for
storing knowledge. It is far more capable than simple representations such as
RDF, which defines facts only.

Furthermore, Prolog allows to specify a goal to the inference engine to ac-
tually query the knowledge base. To find out who works on the knowledgeWiki
project a query could be issued:

?7- works_on_project(Who,knowledgeWiki) .

Prolog will try to unify a solution with Who variable giving the answer. Queries
are just like complex clauses, they can be integrated with the knowledge base.
The following displays on standard output who works on knowledgeWiki:

:— works_on_project (Who,knowledgeWiki), write(Who).

Prolog-based knowledge representation can be possibly far richer than the
ones used in the current knowledge wikis implementations. In the next section a
new proposal of a knowledge wiki is introduced. It allows for a direct integration
of Prolog code with the wikitext.

7 Prolog Knowledge Wiki Proposal

A simple concept for a generic knowledge wiki is to integrate Prolog code into the
wiki text. Such Prolog annotations or attachments would enhance the content
with semantics, as well as provide an inference technique. This idea was first
proposed in [8].

The basic functionality should at least include:

1. ability to include Prolog code into wikitext,
2. spawning the Prolog inference engine in order to interpret the code embedded
in wiki pages,



3. possibility of analyzing wiki contents by the Prolog program.

This would ultimately mean that a bidirectional Wiki-to-Prolog interface has to
be developed.

The first requirement seems to be easy to fulfill. Considering how wikitext
is built, a special markup for the Prolog code can be provided. A function to
interpret larger Prolog files included as files in the wiki can also be considered.

The second one needs some low-level runtime integration, where the web-
server is able to spawn custom process. A Prolog interpreter would be run, with
Prolog-related wiki contents provided.

It should be possible to access and analyze the contents of the wiki from
within the Prolog code. A special library of predicates that access the wiki,
using wiki-specific references should be provided.

Another issue are the actual use scenarios for the system. Several possibilities
have to be taken under consideration:

— enhance wiki with some meta-knowledge,
— describe the meaning of wiki contents with Prolog,
— provide knowledge processing for the wiki.

Common vocabulary, predicate names, their arities, and meaning should be
defined as well. It would give a common meaning to the knowledge gathered in
the wiki forming an ontology. Applying OWL or RDFS at this point should be
evaluated. The proposed enhancement addresses issues presented in Sect. 4.

8 System Implementation

A preliminary implementation of concepts described in the previous section has
been carried out within two students projects in the Knowledge Engineering
Methods class of 2008 at AGH UST and a master’s thesis research, see [9)].
The prototype is based on the DokuWiki system. The implementation uses a
dedicated Prolog plugin for DokuWiki. The plugin meets requirements 1. and 2.
(see Sect. 7), being able to interpret Prolog code embedded into wiki, as well as
spawning the Prolog interpreter.
The Prolog code is included using a simple construct:

wikitext

<prolog>
color(red) .
</prolog>

wikitext

This instructs the wiki, that the contents should be parsed by the Prolog
plugin.

In order to run the code, thus spawn the Prolog interpreter, a Prolog goal
should be explicitly stated with the plugin invocation, e.g.:



wikitext

<prolog goal="color(X),write(X),nl,fail.">
color(red) .

color(green) .

color(blue).

</prolog>

wikitext

Input output issues are resolved as follows. Knowledge gathered in the wiki
is treated as input, there is no explicit user input of any kind (no forms, input
fields etc.). This knowledge is subject to processing in the way specified above.
Prolog standard output is rendered in the page in the place where the plugin
invocation is present. Thus, the above example is seen as a wiki page as follows:

wikitext

red
green
blue

wikitext

since write/1 generates variable value and n1/0 a new line on standard out-
put. In this very case fail/0 forces backtracking, which makes X to be resolved
with red, green, blue values in turn.

The interpreter can access selected areas of the wiki, using an explicit scope
specification, such as:

<prolog goal="color(X),write(X),nl,fail." scope="pl:miw">
<prolog goal="female(X),write(X),nl,fail." scope="pl:miw:proj.*08">

In the first case the contents of the whole wiki namespace! is parsed (all
documents within pl:miw namespace). In the second case a number of pages
matching the given regular expression are parsed (which are pages within pl:miw
namespace which names start with proj. and end with 08). The contents of all
the pages are concatenated into a single Prolog file and then analyzed by the
interpreter.

Another solution allows for using Prolog files stored in wiki, or outside it,
accessible with an URL. This is especially useful in case of larger files e.g.:

<prolog goal="female(X),write(X),nl,fail" file="pl:miw:test.pl">
<prolog goal="female(X),write(X),nl,fail" url="http://sth.org/test.pl">

The current implementation is a proof-of-concept prototype. It does have
some limitations, including:

! The concept of a namespace is typical to DokuWiki, however it is also present in other
wiki systems, particular syntax indicating a namespace differs between systems.



— scope specification — it is not entirely compatible with the default DokuWiki
namespace handling,

— full input/output from the Prolog program — currently it is limited to explicit
output handling encoded in the goal specification for the plugin,

— flexible goal specification — in general one can use the : - expression anywhere
in the Prolog file, to provide a goal, with the current version of the plugin
this not always works as expected,

— caching — this poses some important problems related to both functionality
as well as efficiency; in some cases it is desirable to override or disable the
DokuWiki rendering cache to get results generated by the Prolog engine; on
the other hand a separate caching mechanism for the Prolog code itself is
provided, however, it does have certain limitations,

— unidirectional interface — currently it is only possible to invoke Prolog in-
terpreter from the wiki; there is no way to actually query the wiki from
Prolog,

— there is no syntax checking of Prolog code — it is possible to enter syntacti-
cally incorrect code without any notification about it,

— there is no editing support such as code completion.

See https://ai.ia.agh.edu.pl/wiki/prolog:prologwiki for project pro-
gress as well as testing area. There is also an ongoing master’s thesis research
carried out in this domain.

9 Use Example

The examples discussed here present some basic use for the plugin. They are also
available online, see https://ai.ia.agh.edu.pl/wiki/prolog:prologwiki.

====== Smith Family ======
There is Kate and Liz obviously girls, and a couple of boys: Tom and Bob.
Kate is Bob’s mom, while Tom is his dad.

Tom is also Liz’s dad.

<prolog scope="family">

female(person(kate,smith)) .

female(person(liz,smith)).

male(person(tom,smith)).

male (person(bob,smith)) .

parent (person(kate,smith) ,person(bob,smith)).

parent (person(tom,smith) ,person(bob,smith)) .

parent (person(tom,smith) ,person(liz,smith)).

</prolog>

Figure 1. smith_family: Smith family description

Expressing family relationships is a good example for using knowledge wiki.
An example description of Smith Family as smith_family page, is given in Fig. 1.



It defines both a description of the family (clear wikitext) and corresponding,
formal definition with use of female/1, male/1 and parent/2 predicates. Fur-
thermore there is a scope defined, which interprets knowledge gathered in family
page, see Fig. 2. These are additional, common rules allowing to infer family re-
lationships such as maternity or paternity.

====== Family Definitions ======

===== Father and Mother =====

A parent and a female is somebody’s mother.
A parent and a male is somebody’s father.
<prolog>

mother (X,Y) :- parent(X,Y),female(X).
father(X,Y) :- parent(X,Y),male(X).
</prolog>

Figure 2. family: Common definitions regarding families

====== Families ======

Knowledge about all families is gathered in this namespace.
<prolog scope=".*_family">

</prolog>

Figure 3. families: Gathering knowledge about all families

There could be another page (families) which gathers knowledge about all
families present in the wiki (within current namespace), see Fig. 3.

10 Perspectives for Future Work

This paper presents an original idea of implementing a semantic knowledge wiki
using Prolog for knowledge representation and processing. In the paper a proof-
of-concept prototype implementation for the DokuWiki system is described.
Since the current prototype has number of limitations, there is an ongoing effort
to extend this idea.

Embedding predicate logic in terms of Prolog code into a wiki system delivers
a powerful tool for expressing and processing knowledge. However, there are some
constraints needed to make knowledge exchangeable and reusable. A similar
approach can be observed in the AceWiki [10] project (http://attempto.ifi.
uzh.ch/acewiki). It provides a semantic wiki that uses a controlled natural
language called ACE. Compared to most other semantic wikis it does not use
RDF or OWL directly, the semantics is contained directly in the wiki text and
not in form of annotations.



A vocabulary should be defined which establishes a relationship between
predicates and their meaning. Knowing a list, probably structured, of predicates
and their meanings, gives a basis for using, reusing and extending them. Simi-
larly, there should be a clear mechanism for defining such relationships. Existing
technologies such as ontologies should be considered, as well as these close to
the Prolog language, such as self-documenting help mechanism. There are three
directions visible now: an OWL or RDF based ontology, a wiki-based one, or a
purely Prolog-based one.

Current version of the prototype does not introduce Prolog debugging fea-
tures. It is not possible to check the syntax of the Prolog code, or assist the user
in entering it. In the future both debugging and syntax highlighting features
are planned. And extended interface that uses automatic hinting could also be
provided.

There are obviously some performance issues regarding knowledge processing
within a wiki system based on Prolog code interpretation. Extracting knowledge
from many pages and processing it could be a time consuming operation. Some
smart caching techniques should be used then. A research regarding this issue
has already been started. It is based on the caching mechanism present in the
DokuWiki system.

As it is described in Sect. 8 a goal for the inference engine could be specified
at the prolog tag. This approach seems to be a little redundant since there
is already a Prolog built in mechanism to state a goal, integrating it with a
knowledge base, with use of :-, see Sect.6. Application of either one and their
semantical differences will be researched.

Using scope attribute can lead to some ambiguity. If there are many prolog
elements within a page with different scopes, a global scope of the page is a sum
of all the scopes. Alternatively there could be no such a concept as the page
global scope. In this case scopes will be applied on element basis. Alternatively
a scope could be defined with use of a special predicate instead of an attribute.

The proposed Prolog-based knowledge wiki is not compatible with the se-
mantic annotation mechanism found in semantic wikis. These include the use
of technologies such as OWL or RDF. There should be some bridging interface
allowing for such cooperation and knowledge exchange established.

One of the promising applications of the proposed technology is to provide
a learning environment for students taking Artificial Intelligence courses. The
knowledge wiki gives a chance to learn Prolog without using other technolo-
gies than a web browser. Furthermore, even complicated knowledge repositories
with distributed facts and rules spanning over many wiki pages, with multiple
users and cooperative user interaction, can be build this way. It suits very well
demonstration purposes as gathered knowledge can be put to work immediately.

References

1. Schaffert, S.: Tkewiki: A semantic wiki for collaborative knowledge management. In:
WETICE ’06: Proceedings of the 15th IEEE International Workshops on Enabling



10.

Technologies: Infrastructure for Collaborative Enterprises, Washington, DC, USA,
IEEE Computer Society (2006) 388-396

. Auer, S., Dietzold, S., Riechert, T.: Ontowiki - a tool for social, semantic collab-

oration. In Cruz, I.LF., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L., eds.: International Semantic Web Conference. Volume
4273 of Lecture Notes in Computer Science., Springer (2006) 736-749
Baumeister, J., Reutelshoefer, J., Puppe, F.: Knowwe: community-based knowl-
edge capture with knowledge wikis. In: K-CAP ’07: Proceedings of the 4th in-
ternational conference on Knowledge capture, New York, NY, USA, ACM (2007)
189-190

Reutelshoefer, J., Baumeister, J., Puppe, F.: Ad-hoc knowledge engineering with
semantic knowledge wikis. In: Proc. of SemWiki 2008 - The Wiki Way of Semantics,
Workshop co-located with the 5th European Semantic Web Conference, Tenerife,
Spain (2008)

Baumeister, J.; Puppe, F.: Web-based knowledge engineering using knowledge
wikis. In: Proc. of the AAAT 2008 Spring Symposium on ”Symbiotic Relationships
between Semantic Web and Knowledge Engineering”, Stanford University, USA

(2008) 1-13
Bratko, I.: Prolog Programming for Artificial Intelligence. 3rd edn. Addison Wesley
(2000)

Covington, M.A., Nute, D., Vellino, A.: Prolog programming in depth. Prentice-
Hall (1996)

Nalepa, G.J., Wojnicki, I.: Concept of an interactive web portal for teaching prolog.
In: FLAIRS2008. (2008) accepted.

Kotra, M.: Dokuwiki plugins for graphviz and prolog. Knowledge Engineering
Project (MIW), G. J. Nalepa supervisor (2008)

Kuhn, T.: AceWiki: Collaborative Ontology Management in Controlled Natural
Language. In: Proceedings of the 3rd Semantic Wiki Workshop, CEUR Workshop
Proceedings (2008)



