A Protégé Plugin for Querying and Reasoning
on Persistent OWL Ontologies

Maria del Mar Roldan-Garcia, Joaquin J. Molina-Castro and Jose F.
Aldana-Montes

University of Malaga, Computer Languages and Computing Science Department
Malaga 29071, Spain,
(mmar, jmolina, jfam)@lcc.uma.es,
WWW home page: http://khaos.uma.es

1 Introduction

The OWL language [1] is being widely used to define ontologies in the Web. This
language provides three increasingly expressive sublanguages, namely OWL Lite,
OWL-DL and OWL Full. The OWL-DL XML based syntax together with its
correspondence with Description Logics (DL) [2], make it a good candidate to be
the standard language for defining ontologies used by Semantic Web applications.
However, there are still relatively few tools that allow us to manipulate, store
and query ontologies defined using this language. Furthermore, Semantic Web
applications, such as biological tools, use large ontologies, that is, ontologies with
a large number (millions) of instances. Description logic based tools allow us to
manage OWL-DL ontologies, but not very large ontologies. The development of
tools for storing and querying OWL ontologies is currently under investigation.
In this paper we present a plugin for the Protégé [3] environment for reasoning
and querying OWL-DL ontologies stored in a relational database. We define a
relational schema for storing OWL ontologies and a query/reasoning language,
which supports reasoning on both, ontology structure and ontology instances.
However, the main feature of this plugin is that developers of OWL-DL reasoners
can customize it in order to use their own database and their own query language
by means of several configurations files.

2 Architecture of the Plugin

In case that a reasoner developer wants to customize the plugin for building his
or her own tool, he or she has to provide two different kinds of information. On
the one hand, information about how to access the ontology information stored in
the database. This includes functions to obtain information about the ontology
structure, such us properties domain and range, all classes and properties in the
ontology, etc. These functions are used for showing the ontology information in
a graphical way. On the other hand, information about the query and reasoning
language implementation. That is, the operators of the query mechanism and
both Thox and Abox reasoning that the specific language supported. Information



about the implementation of the language for one or more specific repositories is
also needed. All this information is provided by means of several configuration
files. These files are XML files. We have chosen XML because there exists many
java libraries to manage XML. The use of RDF or RDFS could also be an
option, but there are more tools for managing XML than RDF. We will consider
changing to RDF in the later versions of the tool.

Finally, using all this information, the query and reasoning tool generator
customizes a Protege generic graphical interface, which shows the information
about the ontology using the ontology information configuration files, and the
specific reasoning supported by the specific query language.

Once the tool is generated, it allows users to make queries using the specific
operators defined in the query and reasoning configurations files. These queries
will be performed in a persistent repository. Note that the tool does not im-
plement the query language. It is the language developer who has to give an
implementation for each element of the language.

3 Developing a Plugin for Relational Databases

We have developed our plugin for querying and reasoning on OWL ontologies
stored in a relational database. Specifically, it implements the ECQ (Extended
Conjunctive Queries) language [4] which supports reasoning defined in the con-
text of the system DBOWTL [5]. It uses Oracle as Database Management System.
We will briefly describe the configuration files for this particular language. The
aim of this section is not to present the query language, but to present how, and
how easy, it is to use and to configure our Plugin. We are supposing that the
ontology is already stored in an Oracle database. The schema of the database is
described in [5].

3.1 Configuration Files

The file ontinformation.zml contains the functions for obtaining the ontology
information from the relational database. For example, we define a function for
obtaining all the features of a specific property or a function for obtaining all
the restrictions for a specific class. Due to these functions are trivial, we will
describe only the query and reasoning configurations files.

The queryLanguage element of the queryLanguages.xml file contains the fol-
lowing information. The name of the language is REC(Q, from Reasoning and Ex-
tended Conjunctive Queries. It is the language developer who chooses the name.
The storage model is relational and the DBMS used for implementing it is Ora-
cle. The file RECQQueries.zml defines the operators for the query mechanism.
In our case, allowed operators are and, or, all, max and min. The RECQTbox.xml
and RECQAbox.zml files specify respectively, the Thox and the Abox reasoning
supported. We only have to specify name, description and parameters names for
each inference. Finally, the RECQoracle.xml file defines the implementation for
the queries (which will use the query operators and the Abox reasoning) and



also the implementations for the Tbox inferences. Note that the first rule in the
file implements the connection to the Oracle DBMS.

Once the configuration files are defined, the use of the tool is really easy.
First, the user must select the ontology. The content of the queryLanguages.zml
file is used in order to allow the user to select the query language he/she wants
to use. Once the language is selected, using the configuration files, the tool cus-
tomizes the generic graphical interface for the selected language. Only reasonings
supported by it are enabled, and the panel for building the queries is provided
only to the supported operators. A window asking the login and password for
connecting to the database is also shown. In order to see the description of a
specific language or reasoning, the user only has to place the mouse on the cor-
responding element and the tool shows its description. The user is now able to
make queries over the selected repository.

4 Conclusions

This paper presents a Protégé Plugin that helps developers to build query and
reasoning tools for OWL ontologies, which are persistently stored in a database.
It is possible to customize the Plugin to different query languages according to
the needs of the users. In order to do this, some configuration files are defined.
These files define the query mechanism and specify the Thox and Abox reason-
ings supported by the specific query language. Using this Plugin it is possible to
implement the same query language using different storage models and different
DBMS easily, and to use a common graphical interface to perform queries and
reasoning. We have also presented an example of how to use this tool for querying
and reasoning on an OWL ontology which is stored in a relational database.

5 Acknowledgements

This work has been supported by the Spanish MEC Grant (TIN2005-09098-C05-
01).

References

1. OWL Web Ontology Language Reference. W3C Working Draft, 10 February 2004.
http://www.w3.org/ TR /owl-ref/, 2004.

2. Borgida, A., Lenzerini, M. and Rosati, R.. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press, 2003.

3. The Protégé Ontology Editor and Knowledge Base Acquisition System.
http://protege.stanford.edu/

4. Roldan-Garcia, M.M., Molina-Castro, Joaquin J., Aldana-Montes, J.F. ECQ: A Sim-
ple Query Language for the Semantic Web. Proceedings of DEXA 2008. Turin, Italy.
2008.

5. Roldan-Garcia, M.M., Aldana-Montes, J.F. DBOWL: Towards a Scalable and Per-
sistent OWL reasoner. Proceedings of the Third International Conference on Inter-
net and Web Applications and Services. Athens, Greece. 2008.



