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Abstract. The definition of new concepts or roles for which extensional
knowledge become available can turn out to be necessary to make a DL
ontology evolve. In this paper we reformulate this task as a machine
learning problem and study a solution based on techniques borrowed
from that form of logic-based machine learning known under the name
of Inductive Logic Programming (ILP). More precisely, we propose to
adapt previous ILP results to the knowledge representation framework of
DL+log in order to learn rules to be used for changing SHIQ ontologies.

1 Introduction

Encoding of human knowledge in ontologies using logical formalisms, e.g. De-
scription Logics (DLs) [1], is one of the crucial tasks to be performed towards
the realization of the vision of the Semantic Web. Actually building ontologies
is simply the first step because ontologies, just like any structure holding knowl-
edge, need to be maintained as well. Ontology Evolution is the timely adaptation
of an ontology to changed business requirements, to trends in ontology instances
and patterns of usage of the ontology-based application, as well as the consistent
management/propagation of these changes to dependent elements [20]. As oppo-
site to Ontology Modification, Ontology Evolution must preserve the consistency
of the ontology. According to [15] one can distinguish between conceptual, spec-
ification and representation changes. E.g., modifying a relation is a conceptual
change because it affects the conceptualization itself. Also [15] proposes a set
of change operations for ontologies considering the effects on the compatibil-
ity between two versions of an ontology. E.g., the creation of a class/slot is a
lossless change operation because no data is lost. In this paper we consider the
conceptual changes of a DL ontology due to extensional knowledge (e.g., facts of
the instance level of the ontology) previously unknown but classified which may
become available. In particular, we consider the task of defining new concepts
or roles which provide the intensional counterpart of this extensional knowledge.
One such task, if adequately reformulated, can be partially automated by apply-
ing machine learning algorithms. E.g., the new facts LONER(Joe), LONER(Mary),
and LONER(Paul) concerning known individuals may raise the need for having
a definition of the concept LONER in the ontology. One such definition can be



learned from these facts together with prior knowledge about Joe, Mary and
Paul, i.e. facts concerning them and already available in the ontology. A crucial
requirement is that the definition must be expressed as a DL formula or similar.

The use of prior or background knowledge (BK) during the learning process
is a distinguishing feature of Inductive Logic Programming (ILP) [14]. ILP has
been historically concerned with the induction of rules from examples for classi-
fication purposes. Unfortunately, it adopts the Knowledge Representation (KR)
framework of Logic Programming, i.e. Clausal Logics (CLs) [13], which differ
from DLs in several respects. Yet, KR hybrid formalisms exist that combine
DLs and CLs. Among the many recent KR proposals, DL+log [16] is a very
powerful framework that allows for the tight integration of DLs and disjunctive
Datalog with negation (Datalog¬∨) [6]. A point in favour of DL+log is its
decidability for many DLs, notably for SHIQ [10]. Since the SH family of very
expressive DLs was the starting point for the design of OWL [9], SHIQ+log is
a good candidate for investigation in the (Semantic) Web context. In this paper,
we consider a decidable instantiation of DL+log obtained by choosing SHIQ
for the DL part and Datalog¬ for the CL part, denoted as SHIQ+log¬, and
adapt ILP techniques to SHIQ+log¬ in order to learn rules that represent the
aforementioned conceptual changes for SHIQ ontologies.

The paper is organized as follows. Section 2 introduces the KR framework of
DL+log. Section 3 states the learning problem of interest, defines the core ingre-
dients of an ILP solution to it and sketches an application scenario in Ontology
Evolution. Section 4 concludes the paper with final remarks.

2 Representing Rules with DL+log

The KR framework of DL+log [16] allows for the tight integration of DLs [1]
and Datalog¬∨ [6]. More precisely, it allows a DL KB to be extended with
weakly-safe Datalog¬∨ rules. The condition of weak safeness allows to overcome
the main representational limits of the approaches based on the DL-safeness
condition, e.g. the possibility of expressing conjunctive queries (CQ) and unions
of conjunctive queries (UCQ)1, by keeping the integration scheme still decidable.
In a certain extent, DL+log is between AL-log [5] and Carin [11].

Formulas in DL+log are built upon three mutually disjoint predicate alpha-
bets: an alphabet of concept names PC , an alphabet of role names PR, and an
alphabet of Datalog predicates PD. We call a predicate p a DL-predicate if
either p ∈ PC or p ∈ PR. Then, we denote by C a countably infinite alphabet
of constant names. An atom is an expression of the form p(X), where p is a
predicate of arity n and X is a n-tuple of variables and constants. If no variable
symbol occurs in X, then p(X) is called a ground atom (or fact). If p ∈ PC ∪PR,
the atom is called a DL-atom, while if p ∈ PD, it is called a Datalog atom.
1 A Boolean UCQ over a predicate alphabet P is a first-order sentence of the form
∃X.conj1(X) ∨ . . . ∨ conjn(X), where X is a tuple of variable symbols and each
conji(X) is a set of atoms whose predicates are in P and whose arguments are either
constants or variables from X. A Boolean CQ is a Boolean UCQ with n = 1.



Given a description logic DL, a DL+log KB B is a pair (Σ, Π), where Σ is
a DL KB and Π is a set of Datalog¬∨ rules, where each rule R has the form

p1(X1) ∨ . . . ∨ pn(Xn)←
r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),¬u1(W1), . . . ,¬uh(Wh)

with n, m, k, h ≥ 0, each pi(Xi), rj(Yj), sl(Zl), uk(Wk) is an atom and:

– each pi is either a DL-predicate or a Datalog predicate;
– each rj , uk is a Datalog predicate;
– each sl is a DL-predicate;
– (Datalog safeness) every variable occurring in R must appear in at least

one of the atoms r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk);
– (weak safeness) every head variable of R must appear in at least one of the

atoms r1(Y1), . . . , rm(Ym).

We remark that the above notion of weak safeness allows for the presence
of variables that only occur in DL-atoms in the body of R. On the other hand,
the notion of DL-safeness can be expressed as follows: every variable of R must
appear in at least one of the atoms r1(Y1), . . . , rm(Ym). Therefore, DL-safeness
forces every variable of R to occur also in the Datalog atoms in the body of
R, while weak safeness allows for the presence of variables that only occur in
DL-atoms in the body of R. Without loss of generality, we can assume that in a
DL+log KB (Σ,Π) all constants occurring in Σ also occur in Π.

For DL+log two semantics have been defined: a first-order logic (FOL) se-
mantics and a nonmonotonic (NM) semantics. In particular, the latter extends
the stable model semantics of Datalog¬∨ [7]. According to it, DL-predicates are
still interpreted under OWA, while Datalog predicates are interpreted under
CWA. Notice that, under both semantics, entailment can be reduced to satisfi-
ability. In a similar way, it can be seen that CQ answering can be reduced to
satisfiability in DL+log. Consequently, Rosati [16] concentrates on the satisfi-
ability problem in DL+log KBs. It has been shown that, when the rules are
positive disjunctive, the above two semantics are equivalent with respect to the
satisfiability problem. In particular, FOL-satisfiability can always be reduced (in
linear time) to NM-satisfiability. Hence, the satisfiability problem under the NM
semantics is in the focus of interest.

The problem statement of satisfiability for finite DL+log KBs relies on the
following problem known as the Boolean CQ/UCQ containment problem2 in DLs:
Given aDL-TBox T , a Boolean CQ Q1 and a Boolean UCQ Q2 over the alphabet
PC ∪ PR, Q1 is contained in Q2 with respect to T , denoted by T |= Q1 ⊆ Q2,
iff, for every model I of T , if Q1 is satisfied in I then Q2 is satisfied in I. The
algorithm NMSAT-DL+log for deciding NM-satisfiability of DL+log KBs looks
for a guess (GP , GN ) of the set G of Boolean CQs in the DL-grounding of Π,
denoted as grp(Π), that is consistent with the DL-KB Σ (Boolean CQ/UCQ
containment problem) and such that the Datalog¬∨ program Π(GP , GN ) has
a stable model. Details on NMSAT-DL+log can be found in [16].
2 This problem was called existential entailment in [11].



The decidability of reasoning in DL+log, thus of ground query answering, de-
pends on the decidability of the Boolean CQ/UCQ containment problem in DL.
Consequently, ground queries can be answered by applying NMSAT-DL+log.

Theorem 1 [16] For every description logic DL, satisfiability of DL+log-KBs
(both under FOL semantics and under NM semantics) is decidable iff Boolean
CQ/UCQ containment is decidable in DL.

Corollary 1. Given a DL+log KB (Σ,Π) and a ground atom α, (Σ, Π) |= α
iff (Σ, Π ∪ {← α}) is unsatisfiable.

From Theorem 1 and from previous results on query answering and query con-
tainment in DLs, it follows the decidability of reasoning in several instantia-
tions of DL+log. Since SHIQ is the most expressive DL for which the Boolean
CQ/UCQ containment is decidable [8], we consider SHIQ+log¬ (i.e. SHIQ
extended with weakly-safe Datalog¬ rules) as the KR framework in our study
of ILP for the Semantic Web.

3 Learning Concepts and Roles in SHIQ+log¬ with ILP

3.1 The problem statement

We consider the problem of inducing rule-based definitions of concepts/roles that
do not occur in an existing SHIQ ontology. At this stage of work the scope of
induction does not matter. Therefore the term ’observation’ is to be preferred
to the term ’example’.

Definition 1. Given:

– a SHIQ+log¬ KB B
– a new target SHIQ predicate name p
– a set O of observations for p
– a language L of hypotheses

the problem of inducing a definition for p is to build a hypothesis H ∈ L for p
such that B ∪H is correct w.r.t. O.

We assume that the intensional part K (i.e., the TBox T plus the set ΠR of
rules) of B plays the role of BK and the extensional part F (i.e., the ABox A
plus the set ΠF of facts) contributes to the definition of observations. We choose
to work within the setting of learning from interpretations [4] which requires an
observation to be represented as a set of ground unit clauses.

Example 1. Suppose we have a SHIQ+log¬ KB (adapted from [16]) consisting
of the following intensional knowledge K:

[A1] RICHuUNMARRIED v ∃ WANTS-TO-MARRY−.>
[R1] RICH(X) ← famous(X), ¬ scientist(X)
[R2] happy(X) ← famous(X), WANTS-TO-MARRY(Y,X)



and the following extensional knowledge F :

UNMARRIED(Mary)
UNMARRIED(Joe)
famous(Mary)
famous(Paul)
famous(Joe)
scientist(Joe)

that can be split into FJoe = {UNMARRIED(Joe), famous(Joe), scientist(Joe)},
FMary = {UNMARRIED(Mary), famous(Mary)}, and FPaul = {famous(Paul)}.
Note that [R2] is weakly-safe but not DL-safe because the variable Y does not
occur in any Datalog literal of [R2].

The language L of hypotheses must allow for the generation of SHIQ+log¬

rules starting from three disjoint alphabets PC(L) ⊆ PC(B), PR(L) ⊆ PR(B),
and PD(L) ⊆ PD(B). More precisely, we consider linked3 and range-restricted4

weakly-safe Datalog¬ clauses of the form

p(X)← r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),¬u1(W1), . . . ,¬uh(Wh)

where p is a SHIQ-predicate, each rj , uk is a Datalog-predicate, and each sl is
a SHIQ-predicate. Note that p represents the target predicate, i.e. the predicate
to be defined by learned SHIQ+log¬ rules.

Example 2. Suppose that the target predicate is the SHIQ-concept LONER. If
LLONER is defined over PD(LLONER) ∪ PC(LLONER) = {famous/1, scientist/1} ∪
{UNMARRIED/1}, then the following SHIQ+log¬ rules

HLONER
1 LONER(X) ← scientist(X)

HLONER
2 LONER(X) ← scientist(X), UNMARRIED(X)

HLONER
3 LONER(X) ← UNMARRIED(X)

HLONER
4 LONER(X) ← ¬famous(X)

belong to LLONER and represent hypotheses of definition for LONER.

Example 3. Suppose now that the SHIQ-role LIKES is the target predicate
and the set PD(LLIKES) ∪ PC(LLIKES) ∪ PR(LLIKES) = {happy/1} ∪ {RICH/1} ∪
{WANTS-TO-MARRY/2} provides the building blocks for the language LLIKES. The
following SHIQ+log¬ rules

HLIKES
1 LIKES(X,Y) ← WANTS-TO-MARRY(X,Y)

HLIKES
2 LIKES(X,Y) ← WANTS-TO-MARRY(X,Y), happy(X)

HLIKES
3 LIKES(X,Y) ← WANTS-TO-MARRY(X,Y), RICH(Y)

HLIKES
4 LIKES(X,Y) ← happy(X), RICH(Y)

3 A clause H is linked if each literal li ∈ H is linked. A literal li ∈ H is linked if at least
one of its terms is linked. A term t in some literal li ∈ H is linked with linking-chain
of length 0, if t occurs in head(H), and with linking-chain of length d + 1, if some
other term in li is linked with linking-chain of length d. The link-depth of a term t
in li is the length of the shortest linking-chain of t.

4 A clause H is range-restricted if each variable occurring in head(H) also occur in
body(H).



belonging to LLIKES can be considered hypotheses of definition for LIKES.

Note that a hypothesis H may consist of more than one SHIQ+log¬ rule.
Also H is valid as a solution to the learning problem in hand if it changes the
input ontology by keeping it consistent. This requirement is guaranteed by the
correcteness condition in Definition 1.

3.2 The ingredients for an ILP solution

In order to solve the learning problem in hand with the ILP methodological ap-
proach , the language L of hypotheses needs to be equipped with (i) a generality
order �, and (ii) a coverage relation covers so that (L,�) is a search space and
covers defines the mappings from (L,�) to the set O of observations.

A generality order for SHIQ+log¬ rules The definition of a generality
order for hypotheses in L can disregard neither the peculiarities of SHIQ+log¬

nor the methodological apparatus of ILP. One issue arises from the presence of
NAF literals (i.e., negated Datalog literals) both in the background knowledge
and in the language of hypotheses. As pointed out in [18], rules in normal logic
programs are syntactically regarded as Horn clauses by viewing the NAF-literal
¬p(X) as an atom not p(X) with the new predicate not p. Then any result ob-
tained on Horn logic programs is directly carried over to normal logic programs.
Assuming one such treatment of NAF literals, we propose to adapt generalized
subsumption [2] to the case of SHIQ+log¬ rules. The resulting generality re-
lation will be called K-subsumption, briefly �K, from now on. We provide a
characterization of �K that relies on the reasoning tasks known for DL+log and
from which a test procedure can be derived.

Definition 2. Let H1,H2 ∈ L be two hypotheses standardized apart, K a back-
ground knowledge, and σ a Skolem substitution5 for H2 with respect to {H1}∪K.
We say that H1 is more general than H2 under K-subsumption (H1 �K H2) iff
there exists a ground substitution θ for H1 such that (i) head(H1)θ = head(H2)σ
and (ii) K ∪ body(H2)σ |= body(H1)θ.

Note that condition (ii) is a variant of the Boolean CQ/UCQ containment prob-
lem because body(H2)σ and body(H1)θ are both Boolean CQs. The difference
between (ii) and the original formulation of the problem is that K encompasses
not only a TBox but also a set of rules. Nonetheless this variant can be reduced
to the satisfiability problem for finite SHIQ+log¬ KBs. Indeed the skolemiza-
tion of body(H2) allows to reduce the Boolean CQ/UCQ containment problem
to a CQ answering problem. Due to the aforementioned link between CQ an-
swering and satisfiability, checking (ii) can be reformulated as proving that the
KB (T ,ΠR ∪ body(H2)σ ∪ {← body(H1)θ}) is unsatisfiable. Once reformulated
this way, (ii) can be solved by applying the algorithm NMSAT-DL+log.
5 Let B be a clausal theory and H be a clause. Let X1, . . . , Xn be all the variables

appearing in H, and a1, . . . , an be distinct constants not appearing in B or H. Then
the substitution {X1/a1, . . . , Xn/an} is called a Skolem substitution for H w.r.t. B.



Example 4. Let us consider the hypotheses

HLONER
1 LONER(A) ← scientist(A)

HLONER
2 LONER(X) ← scientist(X),UNMARRIED(X)

reported in Example 2 up to variable renaming. We want to check whether
HLONER

1 �K HLONER
2 holds. Let σ = {X/a} a Skolem substitution for HLONER

2 with
respect to K ∪ HLONER

1 and θ = {A/a} a ground substitution for HLONER
1 . The

condition (i) is immediately verified. The condition

(ii) K ∪ {scientist(a), UNMARRIED(a)} |= {scientist(a)}

is a ground query answering problem in SHIQ+log. It can be easily proved that
all NM-models for K ∪ {scientist(a), UNMARRIED(a)} satisfy scientist(a).
Thus, HLONER

1 �K HLONER
2 . The viceversa does not hold. Also, HLONER

3 �K HLONER
2

and HLONER
4 is incomparable with all the first three hypotheses.

Example 5. With reference to Example 3, it can be proved that HLIKES
1 �K

HLIKES
2 and HLIKES

1 �K HLIKES
3 . Conversely, the hypotheses HLIKES

2 , HLIKES
3 , and

HLIKES
4 are incomparable under K-subsumption.

It is straightforward to see that the decidability of K-subsumption follows from
the decidability of SHIQ+log¬. It can be proved that �K is a quasi-order (i.e. it
is a reflexive and transitive relation) for SHIQ+log¬ rules, therefore the space
of hypotheses can be searched by refinement operators.

A coverage relation for SHIQ+log¬ rules The definition of a coverage
relation depends on the representation choice for observations. An observation
oi ∈ O is represented as a couple (p(ai),Fi) where p is the target SHIQ pred-
icate, ai is a tuple of individuals occurring in the ABox A and Fi is a set
containing ground facts concerning individuals in ai. Note that when p is a
SHIQ role name, the tuple ai is a pair < a1

i , a
2
i > of individuals and the set Fi

is given by the union of F1
i and F2

i . We assume K ∩O = ∅.

Definition 3. Let H ∈ L be a hypothesis, K a background knowledge and oi ∈
O an observation. We say that H covers oi under interpretations w.r.t. K iff
K ∪ Fi ∪H |= p(ai).

Therefore the coverage test can be reduced to query answering in SHIQ+log¬

KBs which in its turn can be reformulated as a satisfiability problem of the KB.

Example 6. With reference to Example 2, the hypothesis HLONER
1 covers the ob-

servation oJoe = (LONER(Joe),FJoe) because all NM-models for B = K ∪ FJoe ∪
HLONER

1 do satisfy scientist(Joe). Note that it does not cover the observations
oPaul = (LONER(Paul),FPaul) and oMary = (LONER(Mary),FMary). The hypothesis
HLONER

2 convers only oJoe for analogous reasons. It can be proved that HLONER
3

covers oMary and oJoe while HLONER
4 none of the three observations.



Example 7. None of the hypotheses HLIKES
1 , HLIKES

2 , and HLIKES
3 reported in Ex-

ample 3 cover observations concerning couples of known individuals. Conversely,
HLIKES

4 covers the observation o<Mary,Paul> = (LIKES(Mary,Paul),FMary ∪ FPaul)
because all NM-models for B = K ∪ FMary ∪ FPaul ∪HLIKES

4 satisfy:

– happy(Mary), due to the axiom A1 and to the rule R2. Indeed, since from
A1 ∃WANTS-TO-MARRY−.>(Mary) holds in every model of B, it follows that in
every model there exists a constant x such that WANTS-TO-MARRY(x,Mary)
holds in the model, consequently from rule R1 it follows that happy(Mary)
also holds in the model;

– RICH(Paul), since the default rule R1 is always applicable for Paul.

Note that HLIKES
4 covers also o<Mary,Mary> = (LIKES(Mary,Mary),FMary).

3.3 A proof-of-concept application scenario in Ontology Evolution

The ingredients identified in the previous section are the starting point for the
definition of ILP algorithms, that once implemented, can support the evolution
of ontologies. Before clarifying how, we remind the reader that - according to
[20] - the ontology evolution process is composed of the following six phases:

1. Change capturing : This phase encapsulates the process of deciding to apply
a change on an ontology. This might be forced by explicit requirements of
the ontology engineer or by results of automatic change discovery methods.

2. Change representation: In order to resolve changes, they should be identified
and represented clearly and in a suitable format.

3. Semantic of changes: How a change can affect the ontologys consistency must
be understood in advance, whereas the meaning of consistency depends on
the underlying ontology model.

4. Change propagation: To preserve consistency, affected artefacts should be
handled appropriately as well, especially in a distributed environment.

5. Change implementation: Before applying a change, all implications of it have
to be presented to the user, who then can accept or discard it. If the user
agrees with the changes, all activities to apply the change have to be per-
formed.

6. Change validation: It should be possible for a user to validate performed
changes and to reverse the effects of them when necessary.

We argue that the phases 1.-3. are crucial from our point of view. Indeed
change capturing (1.) provides the target predicate and the observations for one
or more learning problems of the form as in Definition 1. Once captured this way,
each change is represented (2.) as the hypothesis inductively generated accord-
ing to Definition 1. A particular attention must then be paid to the semantics of
those changes (3.) that contain NAF literals because they can affect the ontol-
ogy consistency. Indeed the change operations considered in this paper, i.e. the
creation of a concept and the creation of a role, both boil down to the addition of
new rules to the input SHIQ+log¬ KB as illustrated in the following example.



Example 8. Let us suppose that for the concept LONER we have oJoe as a positive
example and oMary and oPaul as negative examples. From this set of observations,
an ILP algorithm implementing the ingredients identified in Section 3.2 and
adopting a top-down strategy can induce HLONER

1 as the hypothesis of rule-based
definition for LONER because it covers all positive examples and none of the
negative examples w.r.t. the BK of Example 1. Conversely, if oJoe and oMary are
both positive examples and oPaul is the only negative example for LONER, the
hypothesis HLONER

3 will be returned.
Let us now suppose that o<Mary,Paul> and o<Mary,Mary> are positive examples for

the role LIKES and any other observation is considered as negative example. In
this case, the hypothesis HLIKES

4 is the inductively correct definition of LIKES.

4 Final Remarks

In this paper, we have proposed an ILP framework built upon SHIQ+log¬

which is a decidable instantiation of the most powerful KR framework cur-
rently available for the integration of DLs and CLs. Indeed, well-known ILP
techniques for induction have been reformulated in terms of the deductive rea-
soning mechanims of DL+log. Notably, we have defined a decidable generality
ordering, K-subsumption, for SHIQ+log¬ rules on the basis of the decidable
algorithm NMSAT-SHIQ+log. We would like to point out that the ILP frame-
work proposed is suitable for supporting the evolution of a SHIQ ontology for
two main reasons. First, it induces rules with a SHIQ predicate in the head.
Second, it can deal with incomplete knowledge, thus coping with a more plau-
sible scenario of ontology evolution. Though the work presented in this paper
can be considered as a feasibility study, it provides the principles for learning in
SHIQ+log¬. We would like to emphasize that they will be still valid for any
other upcoming decidable instantiation of DL+log, provided that Datalog¬

is still considered for the CL part. The ILP framework presented in this paper
differs from the related proposals [17] and [12] in several respects, notably the
following ones. First, it relies on a more expressive DL (i.e., SHIQ). Second,
it allows for inducing definitions for new DL concepts (i.e., rules with a SHIQ
literal in the head). Third, it relies on a more expressive yet decidable CL (i.e.,
Datalog¬). Fourth, it adopts a tighter form of integration between the DL part
and the CL part of rules (i.e., the weakly-safe one).

As next step towards any practice, we plan to define ILP algorithms starting
from the ingredients identified in this paper. Also, we intend to study in more
depth the application of these algorithms to Ontology Evolution, e.g. in the
light of related work such as [19] and [3]. Finally, we would like to investigate
the impact of having Datalog¬∨ both in the language of hypotheses and in the
language for the background theory. The inclusion of the nonmonotonic features
of SHIQ+log full will strengthen the ability of our ILP framework to deal
with incomplete knowledge by performing an inductive form of commonsense
reasoning. One such ability can turn out to be useful in the Semantic Web as a
complement to reasoning with uncertainty and under inconsistency.
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